xilinxfpga设计基础
- 格式:doc
- 大小:325.00 KB
- 文档页数:11
1.2.1 FPGA工作原理与简介如前所述,FPGA是在PAL、GAL、EPLD、CPLD等可编程器件的基础上进一步发展的产物。
它是作为ASIC领域中的一种半定制电路而出现的,即解决了定制电路的不足,又克服了原有可编程器件门电路有限的缺点。
由于FPGA需要被反复烧写,它实现组合逻辑的基本结构不可能像ASIC那样通过固定的与非门来完成,而只能采用一种易于反复配置的结构。
查找表可以很好地满足这一要求,目前主流FPGA都采用了基于SRAM工艺的查找表结构,也有一些军品和宇航级FPGA采用Flash或者熔丝与反熔丝工艺的查找表结构。
通过烧写文件改变查找表内容的方法来实现对FPGA的重复配置。
根据数字电路的基本知识可以知道,对于一个n输入的逻辑运算,不管是与或非运算还是异或运算等等,最多只可能存在2n种结果。
所以如果事先将相应的结果存放于一个存贮单元,就相当于实现了与非门电路的功能。
FPGA的原理也是如此,它通过烧写文件去配置查找表的内容,从而在相同的电路情况下实现了不同的逻辑功能。
查找表(Look-Up-Table)简称为LUT,LUT本质上就是一个RAM。
目前FPGA 中多使用4输入的LUT,所以每一个LUT可以看成一个有4位地址线的的RAM。
当用户通过原理图或HDL语言描述了一个逻辑电路以后,PLD/FPGA 开发软件会自动计算逻辑电路的所有可能结果,并把真值表(即结果)事先写入RAM,这样,每输入一个信号进行逻辑运算就等于输入一个地址进行查表,找出地址对应的内容,然后输出即可。
下面给出一个4与门电路的例子来说明LUT实现逻辑功能的原理。
例1-1:给出一个使用LUT实现4输入与门电路的真值表。
表1-1 4输入与门的真值表从中可以看到,LUT具有和逻辑电路相同的功能。
实际上,LUT具有更快的执行速度和更大的规模。
由于基于LUT的FPGA具有很高的集成度,其器件密度从数万门到数千万门不等,可以完成极其复杂的时序与逻辑组合逻辑电路功能,所以适用于高速、高密度的高端数字逻辑电路设计领域。
简谈XilinxFPGA原理及结构FPGA是在PAL、PLA和CPLD等可编程器件的基础上进一步发展起来的一种更复杂的可编程逻辑器件。
它是ASIC领域中的一种半定制电路,既解决了定制电路的不足,又克服了原有可编程器件门电路有限的缺点。
由于FPGA需要被反复烧写,它实现组合逻辑的基本结构不可能像ASIC那样通过固定的与非门来完成,而只能釆用一种易于反复配置的结构,查找表-Look Up Table,LUT,可以很好地满足这一要求。
目前,主流FPGA都采用了基于SRAM工艺的查找表结构,也有一些军品和宇航级FPGA采用Flash/熔丝/反熔丝工艺的查找表结构。
1查找表结构及功能由布尔代数理论可知,对于一个n输入的逻辑运算,最多产生2^n个不同的组合。
所以,如果预先将相应的结果保存在一个存储单元中,就相当于实现了与非门电路的功能。
FPGA的原理的实质,就是通过配置文件对查找表进行配置,从而在相同的电路情况下实现了不同的逻辑功能。
1.1输入查找表结构LUT本质就是一个RAM。
自FPGA诞生以来,多使用4输入的LUT,可以看成一个包含四位地址线的RAM。
当设计者通过原理图或HDL描述了一个逻辑电路后,FPGA厂商提供的集成开发工具就会自动计算逻辑电路的所有可能结果,并把真值表事先写人到RAM中。
这样,每输入一个信号进行逻辑运算就等于输人一个地址进行查表,找出地址对应的内容,然后输出内容即可。
下面用一个4输人逻辑与门电路的例子来说明LUT实现组合逻辑的原理。
LUT描述四输入逻辑与关系如表2.1所示。
表2.1 输入与门的真值表从表2.1可以看到,LUT具有和逻辑电路相同的功能,但是LUT 具有更快的执行速度和更大的规模。
与传统化简真值表构造组合逻辑的方法相比,LUT具有明显的优势,主要表现在:(1)LUT实现组合逻辑的功能由输入决定,而不是由复杂度决定。
(2)LUT实现组合逻辑有固定的传输延迟。
1.2输入查找表新结构在65nm工艺条件下,与其他电路(特别是互连电路)相比,LUT的常规结构大大缩小。
FPGAxilinx开发环境Vivado介绍Zynq7000中PS和PL进⾏协同⼯作,其性能架构需要更好的开发⼯具和⼿段。
为提⾼设计效率,简化设计流程,Xilinx推出了以知识产权((Intellectual Property,IP)和系统为中⼼的Vivado设计套件[25-27]。
该套件包括硬件平台设计和开发⼯具Vivado IDE(Vivado Itegrated Development),嵌⼊式开发⼯具Xilinx SDK(Software Development Kit)以及⾼层次综合Vivado HLS(High-Level Synthesis)。
为更好的理解基于Zynq7000的软硬件协同设计流程,⾸先对上述开发⼯具进⾏介绍:(1)Vivado IDE:Vivado IDE将寄存器传输级(Register-Transfer Level,RTL)的电路设计和基于IP核的系统级设计集成在⼀个设计环境中,并且提供了IP集成器和IP封装器等⾼效的设计⼯具,⽤户可以直接调⽤套件提供的IP核,也可以根据⾃⾝需求编写RTL代码,利⽤IP封装器封装后直接例化使⽤。
为⽅便⽤户设计,Vivado IDE⽀持MicroBlaze软处理器的总线接⼝和IP端⼝⾃动连接,编译综合后可直接⽣成PS配置⽂件和PL⽐特流⽂件。
(2)Xilinx SDK:SDK是基于Eclipse平台开发的软件设计⼯具,⽀持Zynq7000系列器件。
SDK⽀持C或C++语⾔,为所有IP核提供驱动程序。
并且SDK内部配备各种软件调试⼯具,⽀持断点设置、单步调试以及内存监控等功能,可以与Vivado IDE内部的集成逻辑分析仪(Integrated Logic Analyzer,ILA)协同调试,提⾼了软硬件协同处理系统的设计效率。
(3)Vivado HLS:Vivado HLS是⼀种算法级的设计⼯具,⽀持C或C++等⾼级编程语⾔。
该⼯具可将实现算法的⾼级编程语⾔转化为RTL 级硬件电路。
xilinx数字信号处理系统设计指南pdf
《Xilinx数字信号处理系统设计指南》是一本由Xilinx公司出版的指南,旨在帮助工程师们理解和设计数字信号处理(DSP)系统。
该指南涵盖了FPGA(可编程逻辑器件)的原理和应用,以及数字信号处理算法和技术的基础知识。
该指南包含以下主要内容:
1. FPGA基础知识:介绍了FPGA的原理、结构和工作原理,以及FPGA开发环境和工具的使用方法。
2. 数字信号处理基础知识:介绍了数字信号处理的基本概念、数学模型以及常用的信号处理算法和技术,如滤波、变换等。
3. Xilinx DSP工具链:详细介绍了Xilinx提供的DSP开发工具链,包括MATLAB和Simulink与System Generator的集成、Xilinx IP核的使用等。
4. DSP系统设计实例:提供了一些实际的DSP系统设计案例,包括语音处理、图像处理、通信系统等,通过这些案例可以了解如何使用Xilinx FPGA实现复杂的DSP功能。
5. 性能优化和调试技巧:介绍了如何优化DSP系统性能,包括算法优化、数据流管理、时钟分配等方面的技巧,并提供了一些常见的问题排查和调试方法。
总之,《Xilinx数字信号处理系统设计指南》是一本深入介绍Xilinx FPGA在数字信号处理领域应用的权威指南,适合有一定FPGA和DSP基础的工程师阅读和参考。
它可以帮助读者理
解FPGA的原理和应用,掌握数字信号处理算法和技术,以及使用Xilinx开发工具链进行DSP系统设计和优化。
Xilinx可编程逻辑器件设计与开发(基础篇)连载36:Spartan 第10章PlanAhead工具应用PlanAhead工具是Xilinx提供的一个集成的、可视化的FPGA设计工具,它可以被应用于FPGA设计过程中的不同阶段,常见的应用包括用PlanAhead进行RTL源代码的开发、I/O引脚规划、RTL网表分析、布局布线结果的分析、布局规划,还可以在PlanAhead中将Chipscope核插入设计辅助调试,从而提高性能。
也可以用PlanAhead尝试各种实现属性的不同设置,应用不同的时序约束、物理约束和布局规划技术来提高设计性能。
我们还可以将ISE的布局布线结果导入PlanAhead进行分析,定位关键路径,找到影响设计性能的真正原因,并通过添加合理的约束、尝试多种布局规划策略以提高设计性能。
PlanAhead具有以下功能。
I/O引脚规划。
RTL开发和分析。
综合和实现。
设计分析。
静态时序预估。
时序约束编辑器。
强大的布局规划。
基于块的逻辑设计。
值得一提的是,PlanAhead已经集成于ISE 11.x中,包括综合前引脚规划I/O pin planning (Pre-Synthesis)、综合后引脚规划I/O pin planning(Post-Synthesis)、综合后区域/引脚/逻辑规划Floorplan Area/IO/Logic(Post-Synthesis)和实现后时序分析/设计规划Analyze TIming/Floorplan Design(Post-ImplementaTIon),它替代了以前常用的PACE和Floorplanner 工具。
10.1 PlanAhead开发流程如图10-1所示,PlanAhead设计流程主要包含三个部分,分别是基本设计流程、实验流程和设计分析/布局规划流程。
下面分别简单介绍。
FPGA开发入门教程FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,它的功能和电路结构可以通过配置来定义和改变。
FPGA开发是一门广泛应用于数字电路设计和嵌入式系统开发的技术,为了让初学者能够快速入门FPGA开发,下面将为你介绍一些基本的知识和步骤。
首先,你需要准备一块FPGA开发板,这是进行FPGA开发的基础设备。
常用的开发板有Xilinx的Zynq开发板和Altera的Cyclone开发板。
选择适合自己的开发板并购买好后,你需要将其连接到计算机上,可以使用USB接口或者以太网接口。
在进行FPGA开发之前,你需要了解一些基本的概念和概述。
首先,了解FPGA的基本结构和工作原理,掌握FPGA的内部资源如LUT(Look-Up Table)、寄存器、片上内存等。
其次,学习硬件描述语言(HDL),比如Verilog或VHDL,这是描述FPGA电路的语言。
一般来说,进行FPGA开发的流程包括以下几个步骤:1.确定设计目标:首先,你需要明确自己的设计目标,包括所要实现的功能、性能要求等。
这将为你后面的设计和实现提供指导。
2.设计电路:使用HDL语言,根据设计目标,将电路进行描述。
你可以使用模块化设计的思想,将电路划分为多个模块,然后逐个进行设计和实现。
4.综合和布局布线:综合是将HDL代码转换为FPGA的逻辑电路的过程,布局布线是将逻辑电路映射到FPGA的物理资源的过程。
这两个步骤是将电路从逻辑描述转换为实际可用的FPGA电路的关键步骤。
通过上述步骤,你就可以完成一次简单的FPGA开发了。
当然,FPGA 开发涉及到的知识还有很多,包括时序设计、高级优化技术等。
希望通过这篇文章,你能对FPGA开发有一个初步的了解,并能够为你的学习和实践提供一些指导。
fpga现代数字系统设计教程——基于xilinx可编程逻辑在当今的数字系统设计领域中,基于现场可编程门阵列(Field-Programmable Gate Array,FPGA)技术的应用日益普遍。
Xilinx是其中一家领先的FPGA厂商,其可编程逻辑芯片被广泛应用于各个领域。
本教程旨在介绍FPGA现代数字系统设计的基本概念与技术,重点关注基于Xilinx可编程逻辑的实践应用。
一、引言FPGA是一种可重构的硬件平台,具有高度的灵活性与可定制性。
通过不同的配置,FPGA可以实现各种数字电路功能,比如逻辑运算、数字信号处理、嵌入式系统等等。
Xilinx提供了一套完整的开发工具与设计流程,使得FPGA的设计与实现更加高效与简便。
二、FPGA基础知识介绍1. FPGA的基本结构与工作原理在FPGA中,逻辑资源(如逻辑门、寄存器)通过可编程的内部连接资源相互连接,形成不同的数字电路。
FPGA采用按位编程的方式,通过配置存储器将逻辑连接进行设定,从而实现不同的功能实现。
2. Xilinx系列FPGA概述Xilinx公司生产的FPGA主要分为Artix、Kintex、Virtex等系列,每个系列有不同的性能与资源规模适用于不同的应用场景。
本节将介绍主要的Xilinx系列FPGA及其特点。
三、FPGA设计实践1. 集成开发环境(Integrated Development Environment,IDE)概述设计FPGA系统需要使用特定的软件工具,例如Xilinx提供的Vivado开发环境。
本节将介绍Vivado的基本功能与使用方法。
2. 基于Xilinx可编程逻辑的数字电路设计通过Vivado IDE,我们可以使用硬件描述语言(HDL)如VHDL或Verilog来描述数字电路。
本节将介绍如何使用HDL进行FPGA设计,包括逻辑门设计、时序控制、状态机设计等。
3. FPGA系统集成设计除了单个模块的设计,FPGA设计还需要进行系统级集成。
FPGA设计方案FPGA(现场可编程门阵列)是一种可实时配置硬件功能的可编程逻辑器件,广泛应用于数字电路设计、嵌入式系统和数字信号处理等领域。
本文将探讨FPGA设计的基本原理、方法和应用。
首先,我们来了解FPGA的基本原理。
FPGA由可编程逻辑单元(CLB)和可编程输入输出单元(IOB)组成。
CLB由可编程查找表(LUT)和触发器构成,可以实现各种逻辑功能。
IOB用于与外部设备进行数据交换。
FPGA还包括时钟分配网络、布线资源和配置存储器等。
FPGA的设计主要包括以下几个步骤。
首先,需求分析,确定设计的目标和功能。
然后,进行系统设计,包括确定硬件组件和接口,以及搭建模块层次结构。
接下来是模块设计,将系统分解为功能模块,并设计每个模块的内部结构。
然后是逻辑设计,使用硬件描述语言(如VHDL或Verilog)编写逻辑电路的描述。
最后是验证和仿真,通过软件仿真、硬件仿真和测试验证设计的正确性和功能。
FPGA设计有着广泛的应用。
在数字电路设计中,FPGA可用于实现各种逻辑电路,如加法器、乘法器、寄存器和状态机等。
在嵌入式系统中,FPGA可用于实现控制逻辑和接口电路,如时钟分频器、串口通信和DMA控制器等。
在数字信号处理中,FPGA可用于实现复杂算法,如数字滤波器、FFT和图像处理等。
FPGA的设计方法有多种。
传统的设计方法是手动设计,即通过手工编写硬件描述语言和手动布线来实现设计。
这种方法需要设计人员具备深厚的硬件知识和经验,并且设计时间长,容易出错。
近年来,出现了自动化设计方法,如高层次综合(HLS)和可编程SoC(PSoC)等。
HLS可以将高级语言(如C或C++)转换为硬件描述语言,大大简化了设计流程。
PSoC将可编程逻辑与微处理器和外设集成在一起,实现了更高的集成度和灵活性。
FPGA设计还面临几个挑战。
首先是设计复杂性。
随着设计规模和功能要求的增加,设计变得越来越复杂。
其次是时序约束。
在FPGA设计中,时序对于电路的正确性至关重要。
第一章开发软件ISE与开发流程LUT主要适合SRAM工艺生产,因此FPGA都是基于SRAM工艺的,掉电就会丢失。
设计输入除了常见的文本输入,还可以采用图形输入方式:单击Design Utilities->Creat Schematic Symbol,则会在工程文件夹下生成一个文件,同时这个生成的符号被加入到符号库中。
这样可以添加元件。
用户约束文件UCF的编写:管脚约束:如NET “<Signal Name>” LOC = <Pin Name>; --将信号锁定到fpga的管脚。
时钟约束:如NET “<Net Name>” PERIOD = period {HIGH/LOW}[high or low time]。
采用图形化方法输入约束文件:创建ucf文件,选择ucf文件,然后点击Processes->User Constrains->Create Timing Constraints添加时序约束;点击Processes->User Constrains->I/O Pin Planning添加管脚约束。
设计综合(Synthesize)综合将概念性硬件描述语言HDL的设计定义转换成针对目标器件的逻辑或者物理表示。
XST(Xilinx Synthesis Tools)就是综合工具,其输出为Xilinx特有的NGC网表文件,NGC包含转化后的逻辑数据和约束信息。
综合是设计流程中的基本步骤,它将概念性硬件描述语言的设计定义转换为针对器件的逻辑或物理表示。
在综合过程中,状态机是单独处理、独立分析的,根据综合的选项,综合器选择状态机在综合过程中选用的实现算法。
综合完成后,综合器会根据综合选项和XCF(XST Constraint File, 综合约束文件),对综合结果做一些基础的优化。
HDL文件语法分析检查语法错误HDL综合宏识别、优先状态机展开资源共享技术底层优化宏实现、时序优化映射、复制寄存器NGR文件NGC文件LOG文件功能仿真(Simulation->behavioral)功能仿真可以对工程设计文件进行初步的功能验证。
仿真软件将HDL语言转换为抽象的逻辑电路,忽略信号在逻辑器件和传输线上的延时,并对应各种可能的输入信号仿真得到设计工程的输出信号,检验输出信号是否满足预期的要求。
功能仿真需要创建Test Bench文件。
工程实现(Implementation)工程实现包含以下四个步骤:Translate—将综合后的网表文件NGC和约束文件UCF融合到同一个Xilinx的设计文件PCF中。
Map—将设计中的功能器件映射到工程设计的目标器件资源中。
Place and Route—对映射后的目标器件资源进行布局和布线,满足时序约束。
Generate Programming File—生成可以下载到器件中的比特流文件,对器件进行编程配置。
时序仿真(Simulation->Post Route)对经过布局布线后的仿真模型加入延时文件进行仿真的过程,他将最基本的门级延时计算在内,模拟工程设计在FPGA器件内的实现过程。
经过时序仿真后的设计基本上与实际电路是一致的。
时序仿真的基本参数:时钟周期Period:最小时钟周期是指信号从一个触发器或锁存器的输入端,经过一系列的组合逻辑单元和信号线,到达下一个同步器件,所用的最长时间。
端口到建立时间(Pad to setup time):信号从进入fpga芯片,经过一系列的逻辑元件和连线,到达一个同步器件(触发器、锁存器或存储器)的输入端所用的最长时间。
时钟到端口时间(Clock to pad time):数据信号从触发器或锁存器的输入端口,经过逻辑单元和连线时延,到达fpga芯片的输出管脚的最长时间。
这个时间在约束文件中称为OFFSET OUT AFTER约束。
端口到端口时间(Pad to pad time):数据信号从输入端口进入fpga芯片,经过一系列逻辑元件和连线延时后到达fpga的输出端口的最大时间。
器件配置利用iMPACT工具将比特流文件编程到fpga中。
第二章 VHDL硬件描述语言基础知识fpga电路设计的四个层次:行为层次(Behavioral)、寄存器传输层次(RTL, Register Transfer Level)、逻辑门层次(Logic)和布图层次(Layout)。
行为层次主要关注模块的功能描述和仿真验证,寄存器传输层次要关注模块的可综合电路的实现,逻辑门层次考虑如何用门级电路实现给定功能,布图层次考虑如何将电路适配到fpga的资源中。
2.2VHDL基本结构实体与构造体实体与C++中的类相似。
构造体的行为描述通常采用process进程语句实现。
构造体的数据流描述方式主要使用VHDL语言中的标准布尔函数,将信号之间的布尔代数关系用布尔方程式来表示。
结构体的结构描述主要通过下层模块的声明和调用及端口映射将下层模块相连。
Generic参数声明类似于C++语言中的类属参数声明。
library IEEE;use COUNTER isgeneric( COUNT_WIDTH :INTEGER:=7);port( RST, SET, CLR :in STD_LOGIC;SETVALUE :in STD_LOGIC_VECTOR(COUNT_WIDTH downto0);COUNTOUT :out STD_LOGIC_VECTOR(COUNT_WIDTH downto0) );end COUNTER;库用户自定义库时,先用关键字library说明要引用的库名,然后用use语句打开库中程序包。
在计算机中新建一个文件夹,将文件夹名改为用户自定义“库名”,将编辑的程序包等以文件形式存在该文件下,此时该文件夹即为用户自定义库。
在ise中自定义library时,首先要新建library,然后编写相应的程序包,并将程序包移到(move to library)该library中,然后就可以使用use <库名>之类的语句了。
程序包程序包的作用是收集被多个VHDL实体共享的数据类型、子程序或数据对象,使其适用于更一般的访问和调用范围。
配置一个实体可以声明多个构造体,但形成最终电路时,只能使用一种结构体作为功能实现的描述,这时就需要使用配置将实体与结构体连接起来。
配置不是从属单元,可以独立存在。
通常在使用时都会将配置单独写入一个文件中。
1、默认配置语法如下。
当实体选择的结构体中,不包含BLOCK语句和COMPONENT语句时,可采用默认配置为实体选择不同的结构体和对VHDL程序的性能评估。
2、元件配置。
在层次化设计中,应用库中的元件是设计人员经常采用的一种效率比较高的工作方式。
引用元件的方法有两种:使用元件例化语句;使用元件配置。
元件配置语句的语法结构有两种形式,分别是低层次的配置和实体—结构体对的配置。
低层次的配置语法为:实体—结构体对的配置的语法结构如下:显然,实体—结构体对比低层次的配置要好。
3、结构体配置。
虽然元件配置语句配置实体具有一定的优势,这种方法易写也易懂;但是书写过于臃肿,于是引出了第三种配置语句—结构体配置语句。
结构体配置语句必须放在所要配置的实体中的结构体中。
其语法如下:【举例】采用结构体配置实现全加器y :out std_logic);end component;signal tmp1, tmp2, tmp3 :std_logic;for U1, U2 : add use entity(xor_str);for U3, U4 : add use entity(and_str);for U5 : add use entity(or_str);beginU1 : add port map(A,B,tmp1);U2 : add port map(tmp1,Cin,S);U3 : add port map(tmp1,Cin,tmp2);U4 : add port map(A,B,tmp3);U5 : add port map(tmp2,tmp3,Co);end structure;语法要素对象类型Port、Constant、Signal、Variable变量在综合后可以是一个连线(wire),也可以是一个寄存器(register),综合的结果取决于变量在时序电路中是否用于保存信号值。
变量虽然可以赋初始值,但是在综合时,综合器会忽略掉。
信号在声明结构中被赋予的初始值,与变量相同,在综合时也会被忽略。
信号的赋值可以加入延时,如 A <= B after5 ns;但是,延时语句只在行为建模时起作用,而在综合时也会被完全忽略。
数据类型标量类型1、bit类型是二值系统中的最基本单元,分别表示低电平和高电平。
2、Boolean类型没有数值的含义,也不能进行算术运算,只能作为关系运算的结果,在判断语句中判断使用。
3、 Integer类型的数据在底层电路中用一系列二进制位表示。
使用时要指定range范围,这样综合器才能综合。
4、real类型的数据很多公司的综合工具不支持。
5、物理类型用于表示一些物理量,完整的物理数据类型包含数值和单位两部分。
定义物理类型时必须先给出一个基准单位。
如VHDL只定义了一个物理类型:type TIME is range-47to47unitsfs;ps =1000 fs;ns =1000 ps;us =1000 ns;ms =1000 us;sec =1000 ms;min =60 sec;hr =60 min;end units6、符号类型character通常用单引号括起来,如’Z’。
7、标准逻辑类型STD_LOGIC与bit类型相似,也是表示单个数字信号逻辑的,每个STD_LOGIC都有9种不同的状态。
8、枚举类型enumerate在状态机和复杂系统的描述中尤其有用。
9、错误等级severity_level共有四种状态可用:note、warning、error、failure。
错误等级通常与assert语句配合使用。
复合类型1、位矢量类型BIT_VECTOR是由多个位型数据组合起来的一组数据。
例子如下:signal A_WORD :bit_vector(7downto0);A_WORD <= X"0101_1100";2、标准逻辑矢量型STD_LOGIC_VECTOR是由多个标准逻辑数据组合起来的。
3、字符串类型是由多个字符类型的数据组合起来的。
4、数组array是由多个相同类型的数据组成的集合。
VHDL中有两种定义矩阵的方法,一种称为Constrained,另一种称为Unconstrained,两者之间的不同在于定义数组时索引值的范围不同。