4.3.7一元一次方程的应用(储蓄问题)
- 格式:ppt
- 大小:612.00 KB
- 文档页数:18
一、教学目标:1. 让学生理解一元一次方程的概念及其在实际生活中的应用。
2. 培养学生运用一元一次方程解决储蓄问题的能力。
3. 提高学生对数学与实际生活联系的认识,培养学生的逻辑思维能力。
二、教学内容:1. 回顾一元一次方程的定义及解法。
2. 学习储蓄问题的基本知识,如利息的计算公式。
3. 运用一元一次方程解决储蓄问题。
三、教学重点与难点:1. 重点:让学生学会运用一元一次方程解决储蓄问题。
2. 难点:理解并掌握利息的计算公式,将其运用到实际问题中。
四、教学方法:1. 采用案例教学法,以实际储蓄问题引导学生学习。
2. 采用问题驱动法,引导学生主动探究问题解决方案。
3. 采用小组讨论法,培养学生的团队合作能力。
五、教学过程:1. 导入:以一个简单的储蓄问题引发学生思考,引导学生进入学习状态。
2. 讲解:介绍一元一次方程的概念及其解法,讲解利息的计算公式。
3. 案例分析:分析实际储蓄问题,引导学生运用一元一次方程解决问题。
4. 实践操作:让学生独立完成一些储蓄问题的练习,巩固所学知识。
6. 作业布置:布置一些有关储蓄问题的练习题,巩固所学知识。
六、教学评估:1. 课堂练习:观察学生在课堂练习中的表现,评估他们对于一元一次方程和储蓄问题的理解程度。
2. 课后作业:检查学生完成的课后作业,评估他们对于课堂所学知识的掌握情况。
3. 小组讨论:评估学生在小组讨论中的参与程度和问题解决能力。
七、教学反馈与调整:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出学生的优点和需要改进的地方。
2. 根据学生的学习进度和理解程度,适时调整教学内容和教学方法,以提高教学效果。
八、教学延伸与拓展:1. 引导学生思考一元一次方程在其他领域的应用,如购物、投资等。
2. 引导学生深入学习利息的计算公式,了解不同类型的储蓄产品及其特点。
九、教学资源:1. 教案、PPT、练习题等教学资料。
2. 计算器、黑板、投影仪等教学设备。
一元一次方程的应用题(储蓄、利息问题)一.选择题(共10小题)1.一年期定期储蓄年利率为2.25%,按照国家规定,所得利息要缴纳20%的利息税,王大爷于2004年6月存入银行一笔钱,一年到期时,共得税后利息540元,则王大爷2004年6月的存款额为()A.24 000元B.30 000元C.12 000元D.15 000元2.两年期定期储蓄的年利率为2.25%,国家规定,所得利息要缴纳20%的利息税,例如,存入两年期100元,到期储户所得税后利息应这样计算:税后利息=100×2.25%×2﹣100×2.25%×2×20%=100×2.25%×2×(1﹣20%).王师傅今年4月份存入银行一笔钱,若两年到期可得税后利息540元,则王师傅的存款数为()A.20000元B.18000元C.15000元D.12800元3.从1999年11月1日起,全国储蓄存款征收利息税,税率为利息的20%,即储蓄利息的20%由各银行储蓄点代扣代收.某人在1999年12月存入人民币若干元,年利率为2.25%,一年到期后将缴纳利息税72元,则他存入的人民币为()A.1600元B.16000元C.360元D.3600元4.妈妈将2万元为小明存了一个6年期的教育储蓄(免利息税),6年后,总共能得27056元,则这种教育储蓄的年利率为()A.5.86%B.5.88%C.5.84%D.5.82%5.一年前小明把80元压岁钱存进了银行中的少儿储蓄一年后本息正好够买一台录音机,已知录音机每台92元,问银行的年利率是()A.1.5%B.15%C.1.2%D.12%6.某理财产品的年收益率为5.21%,定期1年,每年到期后可连本带息继续购买下一年的产品.若张老师购买了x万元该种理财产品,2年后一共拿到10万元,则根据题意列方程正确的是()A.(1+5.21)x=10B.(1+5.21)2x=10C.2(1+5.21%)x=10D.(1+5.21%)2x=107.李明存入1000元,定期一年,该种储蓄的年利率为2.25%,到期后扣除20%的利息税后得到本息和为()A.1018B.18C.1022.5D.22.58.国家规定存款利息的纳税办法是:利息税=利息×5%;银行一年定期储蓄的年利率为2.25%,今年小刚取出一年到期的本金及利息时,交了4.5元的利息税,则小刚一年前存入银行的钱为()A.2400元B.1800元C.4000元D.4400元9.从1999年11月1日起,全国储蓄存款征收利息税,税率是利息的20%,即储蓄利息的20%由各银行储蓄点代扣代收,小明的爸爸在2013年4月存入人民币若干元,年利率为2.25%,一年到期后将缴纳利息税72元,则小明的爸爸存入的人民币为()A.1600元B.16000元C.360元D.3600元10.周老师前年存了年利率为3.25%的两年期定期储蓄.今年到期后,所得利息正好为六(1)班买了一份价值80.60元的全家桶.问周老师前年存了()元.A.1240元B.1250元C.1260元D.1270元二.填空题(共10小题)11.小红的妈妈将一笔奖金存入银行,一年定期,按照银行利率牌显示:定期储蓄一年的年利率是2.25%,利息税是20%,经计算,小红的妈妈可在一年后得到税后利息108元,那么小红的妈妈存入的奖金是元.12.某人按定期2年向银行储蓄1500元,假设年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%),此人实得利息为.13.一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库.假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是元.14.小杰将今年春节收到的2500元压岁钱的80%存入银行,存期一年到期后得到2050元,那么这项储蓄的年利率是.15.小明妈妈在一家银行存了5000元钱,一年后取出本息和为5125元(没有利息税),则这家银行储蓄的年利率是.16.从1991年11月1日起,全国储蓄存征收利息税,税率为利息的20%,即储蓄利息的20%由各银行储蓄代扣代收,某人在2010年元月存入人民币若干元,年利率为2.25%,一年到期后将缴纳利息税72元,则他存入银行的人民币为.17.小英存了一个3年期的教育储蓄(3年期的年利率为2.7%).3年后能取到本息和10810元,则她开始存入了元.18.小明爸爸存了年利率为2.25%的一年期定期储蓄,一年到期后将交纳利息税72元(利息税率为利息的20%),则小明爸爸存入的人民币为元.19.李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本利和为2048元,则该种储蓄的年利率为.20.两年期定期储蓄的年利率为2.25%,按国家规定,所得利息要缴纳20%的利息税.王大爷于2002年6月存入银行一笔钱,两年到期时,共得税后利息540元,则王大爷2002年6月存款额为元.三.解答题(共8小题)21.小希准备在6年后考上大学时,用15000元给父母买一份礼物表示感谢,决定现在把零花钱存入银行.下面有两种储蓄方案:①直接存一个6年期.(6年期年利率为2.88%)②先存一个3年期,3年后本金与利息的和再自动转存一个3年期.(3年期年利率为2.70%)你认为按哪种储蓄方案开始存入的本金比较少?请通过计算说明理由.22.小丽的妈妈在银行存入5000元,存期一年,到期银行代扣利息税22.5元,求这项储蓄的年利率是多少?(国家规定存款利息的纳税办法是:利息税=利息×20%,储户取款时由银行代扣代收).23.小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得本利和为3243元.请你帮小明算一算这种储蓄的年利率.24.妈妈为小华存了一个3年期的教育储蓄(设3年期的年利率为5%),3年后能取10350元,妈妈开始存入了多少元?25.老王把10000元按一年期定期储蓄存入银行,到期支取时,扣去利息税后实得本利和为10160元.已知利息税税率为20%,问当时一年期定期储蓄的年利率为多少?26.爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后能取5405元,那么刚开始他存入多少元?27.储户到银行存款可以获得一定的存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%.(1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可以得到利息元,扣除个人所得税后实际得到元.(2)小明的爸爸把一笔钱按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?28.1年定期储蓄年利率为1.98%,所得利息要交纳20%利息税.老刘有一笔1年期定期储蓄,到期纳税后得利息396元,问老刘有多少本金?。
一元一次方程的应用——储蓄教案第一章:引言1.1 教学目标让学生了解储蓄的基本概念。
让学生掌握一元一次方程在储蓄问题中的应用。
1.2 教学内容储蓄的定义和分类。
存款利息的计算方法。
一元一次方程的概念和性质。
1.3 教学方法采用案例分析法,引导学生通过实际问题理解一元一次方程的应用。
采用小组讨论法,培养学生的合作能力和解决问题的能力。
第二章:储蓄的基本概念2.1 教学目标让学生了解储蓄的定义和分类。
让学生掌握存款利息的计算方法。
2.2 教学内容储蓄的定义和分类,包括活期储蓄和定期储蓄。
存款利息的计算方法,包括单利和复利。
2.3 教学方法采用讲解法,向学生讲解储蓄的定义和分类。
采用实例演示法,向学生展示存款利息的计算方法。
第三章:一元一次方程的应用3.1 教学目标让学生掌握一元一次方程的概念和性质。
让学生学会运用一元一次方程解决储蓄问题。
3.2 教学内容一元一次方程的概念和性质,包括解的概念和求解方法。
一元一次方程在储蓄问题中的应用,包括存款和取款问题。
3.3 教学方法采用讲解法,向学生讲解一元一次方程的概念和性质。
采用案例分析法,引导学生通过实际问题解决储蓄问题。
第四章:存款问题4.1 教学目标让学生学会运用一元一次方程解决存款问题。
让学生了解不同存款方式下的利息计算方法。
4.2 教学内容存款问题的解决方法,包括本金、利率和时间的计算。
不同存款方式下的利息计算方法,包括单利和复利。
4.3 教学方法采用案例分析法,引导学生通过实际问题解决存款问题。
采用小组讨论法,培养学生的合作能力和解决问题的能力。
第五章:取款问题5.1 教学目标让学生学会运用一元一次方程解决取款问题。
让学生了解取款时的利息计算和手续费问题。
5.2 教学内容取款问题的解决方法,包括本金、利息和手续费的计算。
取款时的利息计算和手续费问题,包括利息的计算方法和手续费的收取方式。
5.3 教学方法采用案例分析法,引导学生通过实际问题解决取款问题。
§3. 6 一元一次方程的应用4——储蓄问题学习目标:会列一元一次方程解决简单的储蓄问题.学习重点:会列一元一次方程解决简单的储蓄问题.一、课前准备:1.一年定期存款的年利率为1.98%.,某同学在银行存入一年定期存款1500元,一年到期时,利息为元;又银行存款利息税为20%(国家征收利息的20%为利息税,取款时由银行代收),这样,该同学一年到期时,他需扣除利息税元,他的实得利息为元;取出的本息和为元.请写出计算过程.2. 用代数式表示:一年定期存款的年利率为1.98%.,某同学在银行存入一年定期存款a元,一年到期时,利息为元;又银行存款利息税为20%(国家征收利息的20%为利息税,取款时由银行代收),这样该同学一年到期时,他需扣除利息税元,他实得利息为元;取出的本息和为元.3. 三年定期存款的年利率为2.25%.,小张在银行存入三年定期存款2000元,则三年到期时,利息为元;应扣除利息税元,他的实得利息为元;应取出的本息和为元.二、探究活动:(一)探求银行储蓄中各量之间的关系每个存期内的利息与本金的比叫做利率.如果存取款时,顾客存入银行的钱叫做本金、存入的时间叫做存期(期数)、银行按利率付给顾客的酬金叫做利息、利息的20%为利息税、储户实际所得利息为实得利息(税后利息)、到期后顾客的本金与实得利息的和为本利和.那么这些量之间的基本的等量关系有哪些?:想一想,试着用等式表示它们之间的关系.比如:本利和=本金+税后利息 ......(二)灵活应用公式解决储蓄问题例1.一年定期存款的年利率为1.98%.小华存入1年定期储蓄人民币若干元,到期时银行实际向他支付了税后利息23.76元.问?分析:1.若设小华当时存入人民币为x元,那么一年到期时应得利息为1.98%x元,利息税为20%•1.98%x•1元,实得利息(税后利息)(1-20%)1.98%x.2.这个问题中的等量关系是:实得利息=应得利息-利息税=23.76解:设小华当时存入人民币为x元.根据题意,得:(1-20%)•1.98%x•1=23.76解这个方程,得:x=答:P123练习 1.一年定期存款的年利率为1.98%.小张存入1年定期储蓄人民币若干元,到期时他向银行缴纳3.96元的利息税.问他当初存入银行的本金是多少元?分析:1.若设小张存入本金为x元,那么一年到期时利息为元,利息税为元.2.这个问题中的等量关系是:解:设根据题意,得:解这个方程,得:答:例2.张雨辰同学向银行以两种形式存入定期为一年的两张存款单,第一张存款单存入的本金是2000元,第二张存款单存入的本金是1000元,到期后全部取出,扣除利息所得税后可得利息43.92元.已知这两种储蓄的年利率的和是3.24%.问这两种储蓄的年利率各是多少?分析:1.等量关系有几个?它们分别是:2.列一元一次方程用的等量关系是:3.对于较复杂的应用题,我们可以借助列表分析法理清思路.若设本金为2000元的存款年利率为x, 本金为1000元的存款年利率为(),则:解:设练习2.这是小红2003年12月02日向银行存入期限为二年的存款(年利率是2.25%),上面显示到期后应交纳利息税是14.4元,那么她存入银行的本金是多少元?分析:1.若设小张存入本金为x元,那么二年到期时利息为元,利息税为元.2.这个问题中的等量关系是:解:设四、师生共同小结:1.本节主要内容是什么?2.本节主要数学思想方法是什么?五、拓展:国家规定个人发表文章、出版著作所获稿费应纳税,其计算办法是:(1)稿费不高于800元不纳税;(2)稿费高于800元,但不高于4000元时,应缴纳超过800元的那部分的14%的税款;(3)高于4000元时,应缴纳全部稿费的11%的税款.王教授出版一本著作获得一笔稿费,他缴纳了550元的税.试问王教授获得的这笔稿费是多少元?六、课堂反馈:张华同学2003年11月30日向银行存入期限为三年的存款(年利率是2.52%),上面显示到期后银行实际向他支付了人民币是424.19元,那么:(1)他存入银行的本金是多少元?(2)该储户实得利息是多少?解:七、作业:P123练习. 2.课堂反馈分类指导:P54 1、2、3。
一元一次方程的典型题型1. 和、差、倍、分问题:( 1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提. 常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:( 1)既有调入又有调出;( 2)只有调入没有调出,调入部分变化,其余不变;( 3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且K a< 9,0 < b< 9,0 < c< 9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5. 工程问题:工程问题中的三个量及其关系为:工作总量=工作效率X工作时间6. 行程问题:(1)行程问题中的三个基本量及其关系:路程=速度X时间.( 2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.7. 商品销售问题有关关系式:商品利润=商品售价一商品进价=商品标价X折扣率一商品进价商品利润率=商品利润/ 商品进价商品售价=商品标价X折扣率8. 储蓄问题⑴ 顾客存入银行的钱叫做本金, 银行付给顾客的酬金叫利息, 本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率. 利息的20%付利息税⑵利息=本金X利率X期数本息和=本金+利息利息税=利息X税率(20%【典型例题】【典型例题】一、一元一次方程的有关概念例1. 一个一元一次方程的解为2,请写出这个一元一次方程.1分析与解:这是一道开放性试题,答案不唯一•如2x=1, x-2=0等等.【点拨】解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成•二、一元一次方程的解例2.若关于x的一兀一次方程2x k x33k 1的解是x21,则k的值是( )A. 2 B . 1C 13D.0711分析:根据方程解的定义,一兀「次方程的解能使方程左、右两边的值相等,把x= -1代入原方程得到一个关于k的一兀一次方程,解这个方程即可得到k的值.■2-k ・1-3k解:把x=-1代入2x k X 3k[中得,^^- - =1,解得:k=1.答案为B.3 2 3 2【点拨】根据方程解的概念,直接把方程的解代入即可三、一元一次方程的解法例3.如果2005 200.5 x 20.05,那么x等于( )(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45分析与解:移项,得2005-200.5+20.05=x,解得:x=1824.55.答案为A.【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.心 2 3 1例4. 3{?[尹-1)-3卜3}=3分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生1解:去大括号,得[2(X-1)-3]-2=31去中括号,得2(X-1)-3-2=31 1去小括号,得?x-?-3-2=31 1移项,得歹石+3+2+31 17合并,得歹=亍系数化为1,得:x = 17四、一元一次方程的实际应用例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1 )求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.分析:可以先设1个小餐厅可供y名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y )名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程2 (1680-2y ) +y=2280解:(1 )设1个小餐厅可供y 名学生就餐,则1个大餐厅可供(1680-2y )名学生就餐, 根据题意,得2(1680-2y )+y=2280解得:y=360 (名) 所以 1680-2y=960 (名) 答:(略)•(2)因为 960 5 360 2 5520 5300,所以如果同时开放 7个餐厅,能够供全校的 5300名学生就餐. 【点拨】第⑴问属于直接列方程解应用题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可•例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等•该工艺品每件的进价、标 价分别是多少元?分析:根据利润=售价-进价与售价=标价X 折扣率这两个等量关系以及按标价的八五折 销售该工艺品8件与将标价降低 35元销售该工艺品12件所获利润相等,就可以列出一元一 次方程•解:设该工艺品每件的进价是X 元,标价是(45+x )元.依题意,得:8(45+x )X 0.85-8x= (45+X-35 ) X 12-12x解得:x=155 (元) 所以 45+x=200 (元) 答:(略)•【点拨】这是销售问题,在解答销售问题时把握下列关系即可: 商品售价=商品标价X 折扣率商品利润=商品售价一商品进价=商品标价X 折数一商品进价例7. (2006 •益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话: 李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本. 售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见•根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?分析:这是一道情景对话问题,具有一定的新颖性 •解答这类问题的关键是要从对话中捕捉等量关系•从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5 ) =95元•根据上述等量关系可以得到相应的方程•解:设笔记本每本 x 元,则钢笔每支为 (x+2)元,据题意得10 (x+2) +15x=100-5解得,x=3 (元) 所以x+2=5 (元)答:(略)•商品利润率商品利润 商品进价X 100%。
《一元一次方程的应用:(储蓄问题)》案例分析“以学生的发展为本”,是通过转变学生的学习方式和教师的教学方式,培养学生创新精神和实践能力。
要求数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在动手实践、自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动的经验。
现就《一元一次方程的应用:(储蓄问题)》的教学实践谈一点看法:一、设计意图本课时根据学生已有的学习经验和生活经验,选取教材一元一次方程的应用例题二(储蓄问题)。
这课题虽是学生所熟悉的,但由于学生缺乏实际的操作而显得有些纸上谈兵。
为了让学生所学知识真正用于生活,也为了让学生明白数学知识是来源于生活,因而在教学准备中,让学生自己去收集有关储蓄信息,让学生了解到银行的储蓄业务并不只是我们所见到的一般储蓄。
在教学的引入过程中,着重复习储蓄计算中的几个基本量以及它们的等量关系,为以后遇到的基本量发生变化而等量关系不变的教学任务打下基础。
在教学过程中抓住列方程解应用题的一般步骤进行教学,通过审题,抓住已知量、未知量,理清数量关系,为进一步开展思维活动提供依据。
二、教学设计课题:生活中的数学————储蓄学习目标1、理解利率问题中的本金、利息等概念;2、掌握利率问题的基本关系,掌握分析数量关系和列方程的方法。
3、继续体验方程概念模型在应用问题求解中的有效刻画。
教学重点经历分析、探究的过程,学会用一元一次方程解决有关储蓄计算的实际问题教学难点经历分析、探究的过程,学会用一元一次方程解决有关储蓄计算的实际问题,列出方程课型新授课时1教师活动环节学生活动修改教师用多媒体展示本课教学目标,并适当介绍. 目标导学学生齐读,明确学习目标,布置自主学习任务请问这张存单给你哪些信息?你对哪条信息比较有兴趣?本金:利息:利息=本息和:1、小明把5000元按一年期的定期储蓄存入银行,年利率为1.98%,到期后可得利息()元。
一元一次方程应用题公式知能点1:市场经济、打折销售问题(1)售价、进价、利润的关系式:商品利润=商品售价—商品进价(2)进价、利润、利润率的关系:利润率=(商品利润/商品进价)×100%(3)标价、折扣数、商品售价关系:商品售价=标价×(折扣数/10)(4)商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)(5)商品总销售额=商品销售价×商品销售量(6)商品总的销售利润=(销售价-成本价)×销售量知能点2;储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税(2)利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)(3)商品利润率=(商品利润/商品进价)×100%知能点3:工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=1合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”知能点4:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=r2h②长方体的体积V=长×宽×高=ab(形状面积变了,周长没变;原料体积=成品体积)知能点5:行程问题掌握行程中的基本关系:路程=速度×时间。