浙教版-数学-七年级上册-一元一次方程的应用之储蓄浓度问题
- 格式:ppt
- 大小:181.00 KB
- 文档页数:6
一元一次方程的应用【考点透视】一、考纲指要1.了解用一元一次方程解决实际问题的一般步骤.2.能根据具体问题中的数量关系,列出一元一次方程,解决实际问题。
3.能根据具体问题中的数量关系,列出可化为一元一次的分式方程,解决实际问题。
二、命题落点1.有关数字、行程、工程等常规问题,如例1和例2。
2.有关配套、利息等与生产生活有关类型题,如例3和例4。
3.有关打折销售、利润等与营销决策有关类型题,如例5。
【典例精析】例1:某桥长1000米,一列火车从桥上通过,测得火车从开始上桥到过完桥共用1分钟,而整列火车完全在桥上的时间为40秒,求火车的速度和长度.分析 本题根据火车的速度不变列方程.解:1分钟=60秒,设火车的长度为x 米,由题意得601000401000x x +=- 解得 x=200 ∴火车的速度20401000=-x (米/秒 答:火车的速度为20米/秒,火车的长度为200米.例2:(2005.马尾区)如图是2005年6月份的日历,如图中那样,用一个圈竖着圈住3圈的三个数的和为39,则这三个数中最大的一个为.解析 本题关键是找出日历中存在的数量关系,即:在日历中,每一竖排相邻两个数字之间差7.设一竖列上的相邻的3个数的中间一个数为x ,则最小一个数为(7-x ),最大一个数为(7+x ),有:39)7()7(=+++-x x x ,解得:x=13,∴最大一个数为20. 答案:20 例3:(2004.某某)购某种三年期国债x 元,到期后可得本息和y 元,已知y=kx ,则这种国债的年利率为( ) A .k B .3k C .k-1 D .13k - 解析 解决利息问题的关键是抓住两个等量关系:利息=本金×利率×期数, 本息和=本金+利息. 这种国债的年利率为a 元,由题意得:3x (1+a )=y,因为y=kx ,所以 k=3(1+a ),解得:31-=k a ,故选D 2x ×2.25%×(1-20%)=540. 答案:D例4:(2005.某某省)X 新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.分析 本题中的等量关系是:售价=标价×10折数. 解:设李明上次购买书籍的原价是x 元,由题意得:,12208.0-=+x x 160:=x 解得. 答:李明上次所买书籍的原价是160元.例5:(2004.某某)某市今年1月10起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6 m 3,求该市今年居民用水的价格.分析 本题是一道和收水费有关的实际问题.解决本题的关键是根据题意找到相等关系:今年5月份的用水量一去年12月份的用量=6m 3. 同时分式方程应注意验根.解:设该市去年居民用水的价格为x 元/m 3, 则今年用水价格为(1+25%)x 元/m 3 根据题意得: 36186(125%)x x-=+ 解得:x 经检验:x =1.8是原方程的解 (125%) 2.25x ∴+=3【常见误区】列方程解决实际问题常见的思维误区是:由于审题不清,找不到“等量关系”或找错,诸如(1)利润=售价×利润率,(2)打几折就是标价乘几,(3)在得到方程的解后,不检验它是否符合实际意义等错误类型;在列方程解应用题时,我们可以采用画图,列表格的方法展示数量之间的关系,更形象、直观地帮助理解问题.。
知识点一 方程的概念 含有未知数的等式叫方程方程必须具备两个条件 一是等式,二是含有未知数注意:方程中的未知数可以用x 表示,也可以用其他字母表示,方程中的未知数的个数不一定是一个,可以是两个或两个以上。
知识点二 解方程和方程的解1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2解方程是一个过程,方程的解是一个结果。
3检验一个数是不是方程的解,只需要将这个数代入原方程即可。
若方程两边相等,则这个数是方程的解,反之则不是。
例2 x=5方程23)36(3)42(=-++x x 的解吗?解:将x=5代入原方程,两边成立,所以,x=5是原方程的解。
解一元一次方程的一般步骤(重点)解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化为1.这些步骤不是固定不变的,有时可以省略某个步骤,主要是根据方程的特点灵活选用。
解含分数系数的一元一次方程的一般步骤总结如下表:注意(1)解一元一次方程时,应灵活运用一般步骤中的各种做法,采取哪些步骤要看解什么样的方程,有分母则去分母,有括号就去括号(2)解一元一次方程时,不一定是按照上表中自上而下的顺序解方程,有时要根据方程的形式、特点灵活安排求解步骤,熟练后还可以合并或简化某些步骤. 解方程2.04.05.05.15.05.0-x 2.0x+=+ 知识点三 一元一次方程的特点一元一次方程的定义:只有一个未知数,未知数的次数都是1的方程。
特点:1只有一个未知数; 2未知数的次数是1;3可带分母,但分母不能带有未知数。
如421=-x 就不是一元一次方程。
例3下列各式哪些是一元一次方程?①56-1=55;②2x+6=0;③6x=0;④8y-3=12;⑤0532=+-x x ;⑥2x 十5z=23;⑦11-x 22x 1=++例4已知43654=+-n x 是一元一次方程,求n 的值。
【变式2】若关于的方程是一元一次方程,则_______【变式3】若关于的方程()523=+--mx x m m 是一元一次方程,则_______. 【变式4】若关于的方程()5)2()2(22=+++-x m x m m 是一元一次方程,则_______.知识点四 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题知识框图朱国林关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么 x+2=x+3是一元一次方程吗?从概念上来看,是一元一次方程,但稍作变形,就是2=3,是不是觉得很可笑?因此,一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为ax=b (a ≠0,a 、b 均为常数)的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。
关于用方程解应用题的秘诀:相关条件设未知数,剩余条件列方程考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 考点三、解一元一次方程考点四、列一元一次方程解与实际生活无关的题目(可以是选择题、填空题、解答题) 考点五、列一元一次方程解与实际生活有关的题目(可以是选择题、填空题、解答题)将考点与相应习题联系起来考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 1、下列等式中是一元一次方程的是( )A .3x=y-1B .2(1)21x x -=+C .3(x-1)= -2x-3D .3x 2-2=3E .11x x=+ 2、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个 3、如果06312=+--a x是一元一次方程,那么=a ,方程的解为 。
(特别注意)考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 1、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3532+=b a 2、解方程2631xx =+-,去分母,得( ) (A )133x x --= (B )633x x --= (C )633x x -+= (D )133x x -+=3、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程2332=t ,未知数系数化为1,得;1=t (D )方程110.20.5x x --=化成101010125x x --= 考点三、解一元一次方程(1)x x 3.15.67.05.0-=-; (2);(3)1676352212--=+--x x x ; (4)4.06.0-x 3.011.0+x .考点四、列一元一次方程,解与实际生活无关的题目(可以是选择题、填空题、解答题) 1、方程432-=+x m x 与方程6)16(21-=-x 的解相同,则m 的值为__________. 2、已知5x+3=8x -3和65a x +=37这两个方程的解是互为相反数,则a= . 3、某数的4倍减去3比这个数的一半大4,则这个数为__________.4、若与互为相反数,则的值是 .5、一个两位数,个位上的数字是十位上的数字的3倍,它们的和是12,那么这个两位数是 .6、写出一个以x=-21为解的一元一次方程7、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=- 怎么办呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( ) A.1 B.2 C.3 D.48、已知21=x 是方程32142m x m x -=--的根,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值.★★★已知关于x 的一元一次方程b x x +=+2301121的解为2=x ,那么关于y 的一元一次方程b y y ++=++)()(123101121的解为 . 考点五、列一元一次方程解与实际生活有关的题目(可以是选择题、填空题、解答题) 1、日历上竖列相邻的三个数,它们的和是39,则第一个数是( )A.6B.12C.13D.142、有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还有1人不能上车.有下列四个等式:①4010431m m +=-;②1014043n n ++=;③1014043n n --=;④4010431m m +=+.其中正确的是( ) A.①② B.②④ C.②③ D.③④ 3、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A.不赚不亏 B.赚8元 C.亏8元 D. 赚15元4、一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( ) A.40% B.20% C.25% D.15%5、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的41,则小强的叔叔今年____________岁. 6、一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了2天未完成,剩下的工作量由乙完成,还需的天数为 ( )(A).1 天 (B)2 天 (C)3 天 (D)4天 7、小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )A.106元B.102元C.111.6元D.101.6元8、银行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( ) (A )直接存一个3年期;(B )先存一个1年期的,1年后将利息和自动转存一个2年期; (C )先存一个1年期的,1年后将利息和自动转存两个1年期; (D )先存一个2年期的,2年后将利息和自动转存一个1年期.9、某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是 元.10、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是___________。