浙教版-数学-七年级上册-一元一次方程的应用之储蓄浓度问题
- 格式:ppt
- 大小:181.00 KB
- 文档页数:6
一元一次方程的应用【考点透视】一、考纲指要1.了解用一元一次方程解决实际问题的一般步骤.2.能根据具体问题中的数量关系,列出一元一次方程,解决实际问题。
3.能根据具体问题中的数量关系,列出可化为一元一次的分式方程,解决实际问题。
二、命题落点1.有关数字、行程、工程等常规问题,如例1和例2。
2.有关配套、利息等与生产生活有关类型题,如例3和例4。
3.有关打折销售、利润等与营销决策有关类型题,如例5。
【典例精析】例1:某桥长1000米,一列火车从桥上通过,测得火车从开始上桥到过完桥共用1分钟,而整列火车完全在桥上的时间为40秒,求火车的速度和长度.分析 本题根据火车的速度不变列方程.解:1分钟=60秒,设火车的长度为x 米,由题意得601000401000x x +=- 解得 x=200 ∴火车的速度20401000=-x (米/秒 答:火车的速度为20米/秒,火车的长度为200米.例2:(2005.马尾区)如图是2005年6月份的日历,如图中那样,用一个圈竖着圈住3圈的三个数的和为39,则这三个数中最大的一个为.解析 本题关键是找出日历中存在的数量关系,即:在日历中,每一竖排相邻两个数字之间差7.设一竖列上的相邻的3个数的中间一个数为x ,则最小一个数为(7-x ),最大一个数为(7+x ),有:39)7()7(=+++-x x x ,解得:x=13,∴最大一个数为20. 答案:20 例3:(2004.某某)购某种三年期国债x 元,到期后可得本息和y 元,已知y=kx ,则这种国债的年利率为( ) A .k B .3k C .k-1 D .13k - 解析 解决利息问题的关键是抓住两个等量关系:利息=本金×利率×期数, 本息和=本金+利息. 这种国债的年利率为a 元,由题意得:3x (1+a )=y,因为y=kx ,所以 k=3(1+a ),解得:31-=k a ,故选D 2x ×2.25%×(1-20%)=540. 答案:D例4:(2005.某某省)X 新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.分析 本题中的等量关系是:售价=标价×10折数. 解:设李明上次购买书籍的原价是x 元,由题意得:,12208.0-=+x x 160:=x 解得. 答:李明上次所买书籍的原价是160元.例5:(2004.某某)某市今年1月10起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月份多6 m 3,求该市今年居民用水的价格.分析 本题是一道和收水费有关的实际问题.解决本题的关键是根据题意找到相等关系:今年5月份的用水量一去年12月份的用量=6m 3. 同时分式方程应注意验根.解:设该市去年居民用水的价格为x 元/m 3, 则今年用水价格为(1+25%)x 元/m 3 根据题意得: 36186(125%)x x-=+ 解得:x 经检验:x =1.8是原方程的解 (125%) 2.25x ∴+=3【常见误区】列方程解决实际问题常见的思维误区是:由于审题不清,找不到“等量关系”或找错,诸如(1)利润=售价×利润率,(2)打几折就是标价乘几,(3)在得到方程的解后,不检验它是否符合实际意义等错误类型;在列方程解应用题时,我们可以采用画图,列表格的方法展示数量之间的关系,更形象、直观地帮助理解问题.。
知识点一 方程的概念 含有未知数的等式叫方程方程必须具备两个条件 一是等式,二是含有未知数注意:方程中的未知数可以用x 表示,也可以用其他字母表示,方程中的未知数的个数不一定是一个,可以是两个或两个以上。
知识点二 解方程和方程的解1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2解方程是一个过程,方程的解是一个结果。
3检验一个数是不是方程的解,只需要将这个数代入原方程即可。
若方程两边相等,则这个数是方程的解,反之则不是。
例2 x=5方程23)36(3)42(=-++x x 的解吗?解:将x=5代入原方程,两边成立,所以,x=5是原方程的解。
解一元一次方程的一般步骤(重点)解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化为1.这些步骤不是固定不变的,有时可以省略某个步骤,主要是根据方程的特点灵活选用。
解含分数系数的一元一次方程的一般步骤总结如下表:注意(1)解一元一次方程时,应灵活运用一般步骤中的各种做法,采取哪些步骤要看解什么样的方程,有分母则去分母,有括号就去括号(2)解一元一次方程时,不一定是按照上表中自上而下的顺序解方程,有时要根据方程的形式、特点灵活安排求解步骤,熟练后还可以合并或简化某些步骤. 解方程2.04.05.05.15.05.0-x 2.0x+=+ 知识点三 一元一次方程的特点一元一次方程的定义:只有一个未知数,未知数的次数都是1的方程。
特点:1只有一个未知数; 2未知数的次数是1;3可带分母,但分母不能带有未知数。
如421=-x 就不是一元一次方程。
例3下列各式哪些是一元一次方程?①56-1=55;②2x+6=0;③6x=0;④8y-3=12;⑤0532=+-x x ;⑥2x 十5z=23;⑦11-x 22x 1=++例4已知43654=+-n x 是一元一次方程,求n 的值。
【变式2】若关于的方程是一元一次方程,则_______【变式3】若关于的方程()523=+--mx x m m 是一元一次方程,则_______. 【变式4】若关于的方程()5)2()2(22=+++-x m x m m 是一元一次方程,则_______.知识点四 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题知识框图朱国林关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么 x+2=x+3是一元一次方程吗?从概念上来看,是一元一次方程,但稍作变形,就是2=3,是不是觉得很可笑?因此,一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为ax=b (a ≠0,a 、b 均为常数)的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。
关于用方程解应用题的秘诀:相关条件设未知数,剩余条件列方程考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 考点三、解一元一次方程考点四、列一元一次方程解与实际生活无关的题目(可以是选择题、填空题、解答题) 考点五、列一元一次方程解与实际生活有关的题目(可以是选择题、填空题、解答题)将考点与相应习题联系起来考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 1、下列等式中是一元一次方程的是( )A .3x=y-1B .2(1)21x x -=+C .3(x-1)= -2x-3D .3x 2-2=3E .11x x=+ 2、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个 3、如果06312=+--a x是一元一次方程,那么=a ,方程的解为 。
(特别注意)考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 1、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3532+=b a 2、解方程2631xx =+-,去分母,得( ) (A )133x x --= (B )633x x --= (C )633x x -+= (D )133x x -+=3、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程2332=t ,未知数系数化为1,得;1=t (D )方程110.20.5x x --=化成101010125x x --= 考点三、解一元一次方程(1)x x 3.15.67.05.0-=-; (2);(3)1676352212--=+--x x x ; (4)4.06.0-x 3.011.0+x .考点四、列一元一次方程,解与实际生活无关的题目(可以是选择题、填空题、解答题) 1、方程432-=+x m x 与方程6)16(21-=-x 的解相同,则m 的值为__________. 2、已知5x+3=8x -3和65a x +=37这两个方程的解是互为相反数,则a= . 3、某数的4倍减去3比这个数的一半大4,则这个数为__________.4、若与互为相反数,则的值是 .5、一个两位数,个位上的数字是十位上的数字的3倍,它们的和是12,那么这个两位数是 .6、写出一个以x=-21为解的一元一次方程7、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=- 怎么办呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( ) A.1 B.2 C.3 D.48、已知21=x 是方程32142m x m x -=--的根,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值.★★★已知关于x 的一元一次方程b x x +=+2301121的解为2=x ,那么关于y 的一元一次方程b y y ++=++)()(123101121的解为 . 考点五、列一元一次方程解与实际生活有关的题目(可以是选择题、填空题、解答题) 1、日历上竖列相邻的三个数,它们的和是39,则第一个数是( )A.6B.12C.13D.142、有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还有1人不能上车.有下列四个等式:①4010431m m +=-;②1014043n n ++=;③1014043n n --=;④4010431m m +=+.其中正确的是( ) A.①② B.②④ C.②③ D.③④ 3、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A.不赚不亏 B.赚8元 C.亏8元 D. 赚15元4、一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( ) A.40% B.20% C.25% D.15%5、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的41,则小强的叔叔今年____________岁. 6、一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了2天未完成,剩下的工作量由乙完成,还需的天数为 ( )(A).1 天 (B)2 天 (C)3 天 (D)4天 7、小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )A.106元B.102元C.111.6元D.101.6元8、银行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( ) (A )直接存一个3年期;(B )先存一个1年期的,1年后将利息和自动转存一个2年期; (C )先存一个1年期的,1年后将利息和自动转存两个1年期; (D )先存一个2年期的,2年后将利息和自动转存一个1年期.9、某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是 元.10、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是___________。
《一元一次方程的应用》讲义一元一次方程是数学中的重要基础知识,在实际生活中有着广泛的应用。
通过建立一元一次方程模型,我们可以解决许多有趣且实用的问题。
一、行程问题行程问题是一元一次方程常见的应用类型之一。
比如,甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为每小时 x 千米,乙的速度为每小时 y 千米,经过 t 小时后两人相遇。
已知 A、B 两地的距离为 s 千米,那么可以根据路程=速度×时间这个公式,得到方程:(x + y)t = s 。
再比如,某人骑自行车以每小时 15 千米的速度从甲地到乙地,回来时因逆风,速度变为每小时 10 千米,设甲地到乙地的距离为 s 千米,去时所用时间为 s÷15 小时,回来时所用时间为 s÷10 小时,因为来回的路程相同,所以可列方程:s÷15 + 1 = s÷10 (假设回来时多用 1 小时)。
二、工程问题工程问题也是常考的类型之一。
例如,一项工程,甲单独做需要 x天完成,乙单独做需要 y 天完成,两人合作需要 z 天完成。
把工作总量看作单位“1”,甲每天的工作效率就是 1/x ,乙每天的工作效率就是1/y ,两人合作每天的工作效率就是 1/z 。
根据工作效率×工作时间=工作总量,可得到方程:(1/x + 1/y)z = 1 。
又如,某工厂要生产一批零件,原计划每天生产 a 个,实际每天多生产 b 个,提前 c 天完成任务。
设原计划生产 d 天,那么工作总量为ad 个。
实际每天生产(a + b) 个,实际用的天数为 d c 天,可列方程:a×d =(a + b)×(d c) 。
三、销售问题在销售问题中,经常会涉及到进价、售价、利润、利润率等概念。
比如,某商品进价为 x 元,售价为 y 元,利润为 z 元,那么利润=售价进价,即 z = y x 。
如果已知商品的进价为 a 元,利润率为 b%,售价为 c 元,因为利润率=(利润÷进价)× 100% ,所以可列方程:(c a)÷a × 100% =b% 。
一元一次方程应用题专题讲解列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
一、列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。
七年级上册应用题专题讲解一、列方程解应用题的一般步骤〔解题思路〕〔1〕审—审题:认真审题,弄清题意,找出能够表示此题含义的相等关系〔找出等量关系〕.〔2〕设—设出未知数:根据提问,巧设未知数.〔3〕列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.〔4〕解—解方程:解所列的方程,求出未知数的值.〔5〕答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.〔注意带上单位〕二、各类题型解法分析一元一次方程应用题归类聚集:行程问题,工程问题,和差倍分问题〔生产、做工等各类问题〕,等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与本钱分析,古典数学,浓度问题等。
〔一〕和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……〞,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……〞来表达。
2.多少关系:通过关键词语“多、少、和、差、缺乏、剩余……〞来表达。
增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x元,那么2x+1000=25000 2x=24000 x=12000答:去年该单位为灾区捐款12000元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x公斤,那么x-[25%x+40%×(1-25%)x]+1=25%x+40%×(1-25%)x即10%x=1 x=10答:油箱里原有汽油10公斤.等积变形是以形状改变而体积不变为前提。