3. 高效性: 它应该具有计算量小、占用存储单元 少、计算过程简单、规律性强等优点.
可编辑课件PPT
4
《数值分析》课程主要介绍几类数学问题的经典 算法. 在学习中既要重视实际应用, 又要重视有关理论, 必须注意理解算法的设计原理和处理技巧, 重视基本 概念和理论——误差分析, 收敛性与稳定性. 认真完成 习题中的理论证明和计算方面的相关问题, 手算与上 机计算相结合, 同时注意培养利用计算机进行科学计 算的能力.
似值 x*的绝对误差限, 简称为误差限. 在工程技术中常记作 x=x*±*。 例如, 电压V=100±2(V), V*=100(V)是V的一个近
似值, 2(V)是V*的一个误差限, 即
| V–V*| 2(V)
可编辑课件PPT
11
二、相对误差与相对误差限
对于两个数值
x1=100±2, x2=10±1
[4] Rainer Kress. Numerical Analysis. New York:
Springer-Verlag, 2003.
可编辑课件PPT
1
实际问题
否
解释 实际问题
是
结束
抽象
建立数学模型
简化
类方 型法
结果分析 求解计算
应用于实践
可编辑课件PPT
2
数值分析研究的主要内容:是各类数学问题的近 似解法——数值方法, 是从数学模型(由实际问题产生 的一组解析表达式或原始数据)出发, 寻求在有限步内 可以获得数学问题满足一定精度近似解的运算规则, 这种规则称为算法, 它包括计算公式, 计算方案和整个 计算过程.
值x的比值为近似值x*的相对误差, 并记作er(x*),
可编辑课件PPT
12