锁相与频率合成技术共69页
- 格式:ppt
- 大小:5.47 MB
- 文档页数:69
锁相环(PLL)频率合成调谐器调谐器俗称高频头,是对接收来的高频电视信号进行放大(选频放大)并通过内部的变频器把所接收到的各频道电视信号,变为一固定频率的图像中频(38MHz)和伴音中频以利于后续电路(声表面滤波器、中放等)对信号进行处理。
调谐器(高频头)原理:高频放大:把接收来的高频电视信号进行选频放大。
本机振荡器:产生始终高于高频电视信号图像载频38MHz的等幅载波,送往混频器。
混频器:把高频放大器送来的电视信号和本机振荡器送来的本振等幅波,进行混频产生38MHz的差拍信号(即所接收的中频电视信号)输出送往预中放及声表面滤波器。
结论:简单的说:只要改变本机振荡器的频率即可达到选台的目的)一、电压合成调谐器:早期彩色电视接收机大部分均采用电压合成高频调谐器,其调谐器的选台及波段切换均由CPU输出的控制电压来实现(L、H、U波段切换电压及调谐选台电压),其中调谐选台电压用来控制选频回路和本振回路的谐振频率,调谐选台电压的任何变化都将导致本机振荡器频率偏移,选台不准确、频偏、频漂。
为了保证本机振荡器频率频率稳定,必须加上AFT系统。
由于AFT系统中中放限幅调谐回路和移相网络一般由LC谐振回路构成,这个谐振回路是不稳定的,这就造成了高频调谐器本机振荡器频率不稳,也极易造成频偏、频漂。
二、频率合成调谐器1、频率合成的基本含义:是指用若干个单一频率的正弦波合成多个新的频率分量的方法(频率合成调谐器的本振频率是由晶振分频合成的)。
频率合成的方法有很多种。
下图为混频式频率合成器方框图以上图中除了三个基频外还有其“和频”及“差频”输出(还有各个频率的高次谐波输出)。
输出信号的频率稳定性由基准信号频率稳定性决定,而且输出信号频率误差等于各基准信号误差之和,因此要想减少误差除了要提高基准信号稳定度之外还应减少基准信号的个数。
2、锁相环频率合成器:其方框图类似于彩色电视接收机中的副载波恢复电路,只是在输入回路插入了一个基准信号分频器(代替色同步信号输入)而在反馈支路插入一个可编程分频器(代替900移相)。
摘要频率源是现代通信系统的心脏,其稳定与否直接影响到系统的正常工作。
现代通信系统对于稳定的频率源的需求也越来越广泛,而频率稳定度问题则已成为许多现代通信系统和设备的一个关键性技术问题。
如今锁相技术以其独特和优良的性能在调制解调、频率合成、FM立体声解码等方面普遍应用。
锁相环路具有载波跟踪特性,作为一个窄带跟踪滤波器,可以提取淹没在噪声之中的信号;用高稳定的参考振荡器锁定,可以提供一系列频率高稳定的频率源。
本文主要讨论了基于锁相环的宽带调频电路的设计问题。
以MOTOROLA 公司生产的大规模集成芯片MC145146为核心元件,配以周边MC12017,MC1648等器件,设计了可以与宽带调频电路接口的锁相环,软件部分采用单片机控制频率的编辑和显示,更加直观和方便。
关键词:锁相环、频率合成器、鉴相器、调频ABSTRACTThe frequency source is the key specification of a modem communication system. The modern communication systems require more and more stable frequency source, and the problem of the frequency stability has become a key technique problem of most electronic instruments. The PLL circuits are global used in modulation and demodulation、frequency synthesize、FM stereo decode and so on. The PLL circuits has the characteristic of carrier track. As a narrow band fitter, it can pick up the signal which is submerged in the noise. When it is locked with a high-stable reference oscillator, it can be a high-stable frequency source which can offer series of frequency. This paper mainly discusses the design problems of broadband frequency modulation circuits based on PLL. With the main devices MC145146、MC12017、MC1648 which are manufactured by MOTOROLA. The work includes designing a PLL which is able to interface with a broadband frequency modulation circuits, making the corresponding hardware and finishing the testing of the hardware.Key words: PLL ; frequency-synthesizer;phase detector;modulation目录第1章绪论 (1)1.1锁相技术的发展概况 (1)1.2频率综合技术及其发展 (1)1.3锁相环路的工作特点 (3)1.4设计任务与实现方案 (3)第2章锁相频率合成器的设计 (5)2.1锁相频率合成器 (5)2.1.1 锁相环路的基本组成 (5)2.1.2 使用前置分频器的锁相频率合成器的组成 (6)2.1.3 变模分频锁相频率合成器 (6)2.2基于MC145146的锁相频率合成器的设计 (8)2.2.1 频率合成芯片MC145146及其外接部分的设计 (9)2.2.2 环路滤波器的设计 (12)2.2.3 压控振荡器的设计 (13)2.2.4 前置预分频器的设计 (15)2.3本设计中参数的确定 (16)2.4本章小结 (18)第3章单片机控制部分 (19)3.1单片机控制的原理 (19)3.2单片机控制部分主要程序模块的处理流程图 (21)3.3本章小结 (23)结论 (24)参考文献 (25)致谢 (27)附录A 全电路原理总图 (28)第1章绪论1.1 锁相技术的发展概况锁相技术是实现相位自动控制的一门学科。
锁相环倍频锁相环倍频是一种常用的频率合成技术,可以将输入的信号倍频到更高的频率。
它在现代通信、雷达、微波、光纤通信等领域中得到广泛应用。
本文将对锁相环倍频的原理、应用和实现进行详细阐述。
一、锁相环倍频的原理锁相环倍频是利用锁相环的稳定性和反馈控制能力来实现的。
锁相环由一个相频比较器、一个电压控制振荡器(VCO)、一个相位误差检测器、滤波电路和一个反馈回路组成。
1.相频比较器:将输入信号和VCO的输出信号进行比较,得到相位误差信号。
2.VCO:根据相频比较器输出的相位误差信号,调整自身的频率。
3.相位误差检测器:检测VCO输出信号的相位与输入信号的相位之间的差异。
4.滤波电路:将相位误差信号进行滤波处理,得到控制VCO频率的电压信号。
5.反馈回路:将滤波电路输出的电压信号反馈给VCO,控制VCO的频率与输入信号的频率保持一致。
锁相环倍频的工作原理是通过调整VCO频率,使得反馈回路能够将输入信号与VCO输出信号的相位保持恒定,从而实现对输入信号的倍频。
二、锁相环倍频的应用锁相环倍频广泛应用于各种需要高稳定性和高精度的频率合成系统中。
下面介绍几个典型的应用场景。
1.通信领域:在无线通信中,锁相环倍频可以将基带信号倍频到射频频率,用于信号的调制和解调。
它可以使得信号频率更高,提高通信信号的传输距离和抗干扰能力。
2.雷达系统:在雷达系统中,锁相环倍频可以将低频信号倍频到微波频率,用于雷达的脉冲压缩和信号处理。
它可以提高雷达系统的分辨率和目标检测能力。
3.光纤通信:在光纤通信系统中,锁相环倍频可以将低频光信号倍频到高频光信号,用于光时钟的生成和光信号的调制。
它可以实现光信号的稳定传输和高速通信。
三、锁相环倍频的实现锁相环倍频的实现需要选择合适的锁相环参数和设计合理的电路结构。
下面介绍几种常用的锁相环倍频实现方案。
1.模拟锁相环倍频:模拟锁相环倍频使用模拟电路实现,具有延迟小、稳定性好等特点。
它适用于频率较低的应用场景,如音频信号的倍频。
课程设计题目: 锁相式数字频率合成器的设计已知技术参数和设计要求:12 3 4一、锁相式数字频率合成器设计方框图二、锁相式数字频率合成器设计要求1、要求设计出数字锁相式频率合成器的完整电路。
2、晶体振荡器部分要求用数字电路设计(可以参考CD4060 74LS04等)。
3、要求1/M分频器分别产生,1KH Z、2KH Z、4KH Z的方波信号,并且通过开关分别选择其中之一接入锁相环的相位比较器输入端作为 f R。
4、要求频率合成器输出的频率范围f o分别为(0000~9999 )X 1KH Z、(0000~9999 )X 2KH Z、(0000~ 9999 )X 4KH Z,并且设计出相对应的1/N分频器(四位)。
5、锁相环型号:选择LM4046、或CD4046。
石英晶体选择4.096MH Z或8.192MH Z等,其他集成电路及元器件根据设计要求自己选择。
6、用Protel 99SE或Protel DXP画出锁相式数字频率合成器的原理方框图、电路图、仿真波形图(仿真1/N分频器和1/M分频器输出信号波形)、然后画出PCB图。
7、计算当F r =1Kh Z、2KH Z、4KH Z时1/M分频器应该是多少分频,锁相式数字频率合成器输出频率计算:f0=?(每个人计算f0= ?的要求见附录一电子表格)。
8、主要参数测试:包括晶体振荡器输出频率;1/M分频器输出频率;1/N可编程分频器的测试;锁相环的扑捉带和同步带测试方法;锁相环压控振荡器的控制特性曲线测试方法,(以上测试要说明用何种仪器)。
做出误差分析。
9、编写出数字锁相式频率合成器的课程设计报告。
3 4工作计划安排:课程设计动员、下达任务书、查阅和收集资料。
根据课程设计任务书要求,设计和计算电路。
学习用Protel 99SE 或Protel DXP 画出电路的 工作原理图、PCB 图和元器件清单。
对设计电路进行调试、 仿真并写出课程设计报告。
上交课程设计论文。
目录摘要 (1)1. 设计任务 (2)2. 锁相频率合成器的硬件设计 (2)2.1 锁相环基本原理 (2)2.2 频率合成器总体设计方案 (3)2.3 VCO电路设计(MAX2620) (4)2.4 集成锁相环电路设计(MB1504) (6)2.5 单片机控制电路设计 (9)3. 软件设计 (11)3.1 MB1504数据输入设计 (11)3.2 程序流程设计 (13)总结 (15)参考文献 (16)锁相频率合成器的设计摘要由锁相环构成的间接式频率合成器在无线通信领域发挥着非常重要的作用。
通常采用锁相频率合成器的输出信号来作为无线接收机中的本振信号,以使直接频率调制器、频率解调器能够从输入信号中再生载波。
本文锁相频率合成器的整个设计方案,包括压控振荡器VCO电路设计、MB1504集成锁相环电路设计、以及单片机最小硬件系统、单片机与MB1504接口电路等硬件电路设计;软件方面,以MB1504串行数据输入格式为标准,通过分析MB1504串行数据传输时序图,建立了串行通信协议。
关键词:频率合成器;锁相环;控振荡器(VCO)1. 设计任务设计一个基于锁相环的锁相频率合成器2. 锁相频率合成器的硬件设计2.1 锁相环基本原理锁相环(PLL )是一个相位跟踪系统。
图2-1显示了最基本的锁相环方框图。
它包括三个基本部件,鉴相器(PD ) 环路滤波器(LPF )和压控振荡器(VCO )图2- 1 基本的锁相环方框图设参考信号(1) 式中 ur 为参考信号的幅度ωr 为参考信号的载波角频率θr(t)为参考信号以其载波相位ωrt 为参考时的瞬时相位若参考信号是未调载波时,则θr(t)= θ1=常数。
设输出信号为(2)式中 Uo 为输出信号的振幅ωo 为压控振荡器的自由振荡角频率θo (t)为参考信号以其载波相位ωot 为参考时的瞬时相位, 在VCO 未受控制前他是常数,受控之后他是时间函数。
则两信号之间的瞬时相位差为(3) 由频率和相位之间的关系可得两信号之间的瞬时频差为(4)()sin[()]r r r r u t U t t ωθ=+()cos[()]o o o o u t U t t ωθ=+0000()()(())()()c r r r r t t t t t t θωθωθωωθθ=+-+=-+-00()()e r d t d t dt dt θθωω=--鉴相器是相位比较器,他把输出信号uo(t)和参考信号ur(t)的相位进行比较,产生对应于两信号相位差θe (t)的误差电压ud(t)。
频率合成技术原理频率合成技术是一种用于产生特定频率的信号的技术。
通过频率合成技术,我们可以将一个或多个较低频率的信号组合在一起,从而得到一个高频率的合成信号。
频率合成技术在通信系统中得到广泛应用,特别是在无线通信和雷达系统中。
基于锁相环的频率合成是一种广泛使用的方法,它利用了锁相环电路的特性。
锁相环电路由相位比较器、环路滤波器、VCO(控制电压振荡器)和分频器组成。
其工作原理如下:1.相位比较器:相位比较器用于比较参考信号和VCO输出信号的相位差。
如果相位差存在,则相位比较器将产生一个纠偏信号。
2.环路滤波器:环路滤波器用于平滑纠偏信号,以便更好地控制VCO的频率。
3.VCO:VCO的频率受到环路滤波器输出信号的控制。
如果纠偏信号存在,则VCO的频率将增加或减小,以减小纠偏信号。
4.分频器:分频器将VCO的输出信号进行分频,以便产生所需的最终频率。
通过调节参考信号和锁相环中的其他参数,我们可以得到所需的合成频率。
基于锁相环的频率合成技术具有输出信号频率非常稳定的优点,可以实现高精度的频率合成。
另一种常见的频率合成技术是直接数字合成(DDS)技术。
基于DDS的频率合成器使用数字信号处理器(DSP)和相位累加器来产生输出信号。
1.相位累加器:相位累加器是一个数字计数器,用于累加一个固定的相位步进值。
这个相位步进值由控制器传递给相位累加器,并决定了输出信号的频率。
2.数字信号处理器:DSP接收相位累加器的输出,并使用一种数学公式将其转换为合成频率的数字表示。
该数字信号随后通过数字模拟转换器(DAC)转换为模拟信号。
3.数字模拟转换器:DAC将数字表示的信号转换为模拟信号,该信号经过滤波器以消除数字转换过程中引入的噪声和失真。
基于DDS的频率合成技术具有输出频率范围广、相位和频率调节较灵活等优点。
然而,由于其使用了数字信号处理器,因此在高频率合成时可能会受到时钟频率的限制。
总的来说,频率合成技术是一种通过组合较低频率信号以产生特定频率的信号的方法。
1.1概述1.2频率合成技术及其发展随着通信、数字电视、卫星定位、航空航天和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率个数的要求越来越高。
为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术。
频率合成的方法主要有三种:直接合成模拟式频率合成、直接数字频率合成和锁相频率合成。
通过对频率进行加、减、乘、除运算,可从一个高稳定度和高准确度的标准频率源,产生大量的具有同一稳定度和准确度的不同频率。
频率合成器是从一个或多个参考频率中产生多种频率的器件。
它是现代通讯系统必不可少的关键电路,广泛应用于数字通信、卫星通信、雷达、导航、航空航天、遥控遥测以及高速仪器仪表等领域。
以通信为代表的信息产业是当代发展最快的行业,因此,频率合成器也得到了较快发展,形成了完善的系列品种,市场需求也特别大。
频率合成器的技术复杂度很高,经过了直接合成模拟式频率综合器、锁相式频率综合器、直接数字式频率综合器(DDS)三个发展阶段。
直接合成模拟式频率合成器是通过倍频器、分频器、混频器,对频率进行加、减、乘、除运算,得到各种所需频率。
直接合成法的优点是频率转换时间短,并能产生任意小的频率增量。
但用这种方法合成的频率范围将受到限制。
更重要的是,直接合成模拟式频率合成器不能实现单片集成,而且输出端的谐波、噪声及寄生频率难以抑制。
因此,直接合成模拟式频率综合器已逐渐被锁相式频率综合器、直接数字式频率综合器取代。
使用PLL技术实现的锁相式频率合成器在性能上较之RC、LC振荡源有很大提高,但外围电路仍然较复杂,且容易受外界干扰,分辨率难以提高,其它指标也不理想。
近年来,直接数字频率合成器(DDS)的出现,使频率合成技术大大前进了一步。
频率控制是现代通信技术中很重要的一环,获取宽带、快速、精细、杂散小的频率控制信号一直是通信领域中的一个重要研究内容。
DDS技术是从相位概念出发直接合成所需波形的一种新的频率合成技术,具有频率分辨率高、频率变换速度快、相位可连续线性变化等优点,在基于数字信号处理的现代通信频率控制中已被广泛采用。
简单锁相频率合成器设计报告组别:第二组姓名:武艳磊陆祖送许志强时间:2007年7月31日简单锁相频率合成器摘要:随着通讯,宇航,和遥控遥测技术的不断发展,对信号频率的调控,稳定度和准确度的要求不断提高。
锁相频率合成器是利用锁相环的窄带跟踪特性,在石英晶体振荡器提供的基准频率源的作用下,产生一系列离散频率的仪器。
它主要有两个分频器CC4040,CC40103和一个锁相环路CD4046组成,首先有分频器R(CC4040)把基准频率源经R分频后送入签相器,而锁相环压控振荡器输出的频率经分频器N(CC40103)N分频后也送入签相器,然后由锁相环路输出需要的频率。
它的优点是系统结构简单,输出频率成分频谱纯度高,而且易于得到大量的离散频率,是一个较好频率转换系统。
关键词:锁相,签频,分频正文:一、系统设计方案一:直接式频率合成器,通过倍频器,分频器,混频器对信号进行加减乘除运算,得到各种所需频率。
直接式频率合成器的优点是转换时间短,并能产生任意小的频率增量,但是它也存在不可克服的缺点,用这种方法的频率范围将收到限制。
大量的倍频,混频等电路需要大量的滤波电路,使电路复杂化。
而且输出端的谐波,燥声和寄生频率难以抑制。
方案二:间接式频率合成器,主要是利用锁相环的频率跟踪特性来得到不同的频率,结构图框图如图1:它的优点是结构简单,输出频率成分频谱纯度高,而且容易得到大量的离散频率。
综上所述,为了更容易实现频率合成器的功能所以选择了方案二。
二、单元电路设计频率合成器的中心部分是CD4046锁相环路,其内部结构电路如下:CD4046工作原理如下:输入信号Ui从14脚输入后,经放大器A1进行放大、整形后加到相位比较器Ⅰ、Ⅱ的输入端,图3开关K拨至2脚,则比较器Ⅰ将从3脚输入的比较信号Uo与输入信号Ui作相位比较,从相位比较器输出的误差电压UΨ则反映出两者的相位差。
UΨ经R3、R4及C2滤波后得到一控制电压Ud加至压控振荡器VCO的输入端9脚,调整VCO的振荡频率f2,使f2迅速逼近信号频率f1。
频率合成技术课程设计——锁相环锁相环技术(PLL)是实现相位自动控制的一门新技术。
锁相即相位锁定,自动相位控制(A PC ),利用相位自动调节的方法实现两个信号的相位同步。
锁相环就是完成这一任务的相位负反馈控制系统。
一、频率源的发展和现状(锁相)上世纪三十年代,频率源首次出现,发展至今己有八十多年的历史。
现在物联网技术已经是一个未来的研究热点,物联网技术其关键也是在现代的射频领域研究。
频率源技术则是射频领域中一项非常重要的研究,其技术也是难度非常大的现代先进电子电路技术。
其性能的好与坏,对卫星、雷达、基站、仪器仪表等的性能有着至关重要的影响。
发达国家走在这项技术的前沿,他们制作的频率源稳定、输出频带宽。
即使在恶劣条件下,频率源的相位噪声也保持在可控范围内。
由于出色的频率源技术,导致发达国家在雷达,飞机等特殊通讯领域一直占据主导地位。
随着大规模集成电路的迅速发展,DDS 技术、锁相环频率合成方式已经发展得比较成熟。
Qualcomm、ADI、Hittite、Motorola、Cypress 等相继推出了各自高性能的频率合成芯片。
目前高性能的锁相式频率合成芯片有 Peregrine Semiconductor 的 PE3236,PE3342 等;Qualcomm 的 Q3336;ADI 公司的 ADF411X系列等产品。
这些集成锁相环体积小,工作频率可做得很高,除此以外,各公司还在互联网上放了大量设计资料以及本公司产品的CAD 和仿真软件,这样就大大减少了频率合成应用系统设计者的工作量。
Hittite公司的的小数分频器HMC700,最高工作频率可以到 8GHz。
具有超低的相位噪声特性,归一化的噪声基底为-227dBc。
目前生产 DDS 芯片公司主要有 ADI、Qualcomm、Sciteg、Standford、Harris 及Synegy 等公司以及法国的 Omerga、Dassault 公司等。
市场上性能优越的DDS 芯片也层出不穷,Qualcomm 公司推出了 DDS 系列 Q2220、Q2230、Q2334、Q2240、Q2368,其中 Q2368 的时钟频率 130MHz,分辨率 0.03Hz,杂散-76dBc,变频时间 0.1μs;美国 Analog Device 公司也相继推出了高性能的 DDS 系列:AD9910,AD9912,其 DDS 中相位累加器位数已做到48 位,1GHz 的时钟频率,最高输出频率400MHz,在输出频率近端,无杂散动态范围可以到-86dBc,频率捷变速度达到ns 级。