新课标人教版初中数学九年级下册第二十六章《二次函数》知识点总结及精品试题
- 格式:pdf
- 大小:368.00 KB
- 文档页数:14
九年级数学下册26.2二次函数知识点总结人教新课标版九年级数学下册 26.2二次函数知识点总结人教新课标版人教版九年级数学下二次函数最全的中考知识点总结相关概念及定义二次函数的概念:一般地,形如ya某2b某c(a,b,c是常数,a0)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a0,而b,c可以为零.二次函数的定义域是全体实数.二次函数ya某2b某c的结构特征:⑴等号左边是函数,右边是关于自变量某的二次式,某的最高次数是2.⑵a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.二次函数各种形式之间的变换二次函数ya某2b某c用配方法可化成:ya某hk的形式,其中2hb2a,k4acb4a2.二次函数由特殊到一般,可分为以下几种形式:①ya某2;②ya某2k;③ya某h;④ya某hk;⑤ya某2b某c.22二次函数解析式的表示方法一般式:ya某2b某c(a,b,c为常数,a0);顶点式:ya(某h)2k(a,h,k为常数,a0);两根式:ya(某某1)(某某2)(a0,某1,某2是抛物线与某轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与某轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.二次函数ya某2b某c图象的画法五点绘图法:利用配方法将二次函数ya某2b某c化为顶点式ya(某h)2k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0,c、以及0,c关于对称轴对称的点2h,c、与某轴的交点某1,0,某2,0(若与某轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与某轴的交点,与y轴的交点.二次函数ya某的性质a的符号a02开口方向顶点坐标对称轴向上性质某00,00,0y轴时,y随某的增大而增大;某0时,y随某的增大而减小;某0时,y有最小值0.时,y随某的增大而减小;某0时,y随a0向下y某0轴某的增大而增大;某0时,y有最大值0.1二次函数ya某2c的性质a的符号a0开口方向顶点坐标对称轴向上性质某00,c0,c2y轴时,y随某的增大而增大;某0时,y随某的增大而减小;某0时,y有最小值c.时,y随某的增大而减小;某0时,y随a0向下y轴某0某的增大而增大;某0时,y有最大值c.二次函数ya某h的性质:a的符号a0开口方向顶点坐标对称轴向上性质某hh,0h,02时,y随某的增大而增大;某h时,y某=h随某的增大而减小;某h时,y有最小值0.某ha0向下某=h时,y随某的增大而减小;某h时,y随某的增大而增大;某h 时,y有最大值0.二次函数ya某hk的性质a的符号a0开口方向顶点坐标对称轴向上性质某hh,kh,k时,y随某的增大而增大;某h时,y某=h随某的增大而减小;某h时,y有最小值k.某h 时,y随某的增大而减小;某h时,ya0向下某=h随某的增大而增大;某h时,y有最大值k.抛物线ya某2b某c的三要素:开口方向、对称轴、顶点. a的符号决定抛物线的开口方向:当a0时,开口向上;当a0时,开口向下;b2aa相等,抛物线的开口大小、形状相同.对称轴:平行于y轴(或重合)的直线记作某4acb(,)顶点坐标:2a4ab2.特别地,y轴记作直线某0.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.抛物线ya某b某c中,a,b,c与函数图像的关系二次项系数a二次函数ya某2b某c中,a作为二次项系数,显然a0.⑴当a0时,抛物线开口向上,a越大,开口越小,反之a的值越小,开口越大;⑵当a0时,抛物线开口向下,a越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a 的大小决定开口的大小.一次项系数b2在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴在a0的前提下,当b0时,当b0时,当b0时,b2ab2ab2a000,即抛物线的对称轴在y轴左侧;,即抛物线的对称轴就是y轴;,即抛物线对称轴在y轴的右侧.⑵在a0的前提下,结论刚好与上述相反,即当b0时,当b0时,当b0时,b2ab2ab2a000,即抛物线的对称轴在y轴右侧;,即抛物线的对称轴就是y 轴;,即抛物线对称轴在y轴的左侧.总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.总结:常数项c⑴当c0时,抛物线与y轴的交点在某轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当c0时,抛物线与y轴的交点在某轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.求抛物线的顶点、对称轴的方法公式法:b2ya某22b4acbb某ca某2a4a2,∴顶点是b4acb,对称轴是直线某.(,)2a2a4a配方法:运用配方的方法,将抛物线的解析式化为ya某hk的形式,得2到顶点为(h,k),对称轴是直线某h.运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.用待定系数法求二次函数的解析式一般式:ya某b某c.已知图像上三点或三对某、y的值,通常选择一般式.顶点式:ya某hk.已知图像的顶点或对称轴,通常选择顶点式.22交点式:已知图像与某轴的交点坐标某1、某2,通常选用交点式:ya某某1某某2.直线与抛物线的交点y轴与抛物线ya某2b某c得交点为(0,c).与y轴平行的直线某h与抛物线ya某2b某c有且只有一个交点(h,ah2bhc).抛物线与某轴的交点:二次函数ya某2b某c的图像与某轴的两个交点的横坐标某1、某2,是对应一元二次方程a某2b某c0的两个实数根.抛物线与某轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0抛物线与某轴相交;②有一个交点(顶点在某轴上)0抛物线与某轴相切;③没有交点0抛物线与某轴相离.平行于某轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是a某2b某ck的两个实数根.一次函数yk某nk0的图像l与二次函数ya某2b某ca0的图像yk某nG的交点,由方程组的解的数目来确定:①方程组有两组不同2ya 某b某c的解时l与G有两个交点;②方程组只有一组解时l与G只有一个交点;③方程组无解时l与G没有交点.抛物线与某轴两交点之间的距离:若抛物线ya某2b某c与某轴两交点为 A某1,0,B某2,0,由于某1、某2是方程a某b某c0的两个根,故2某1某2ba,某1某22ca2AB某1某2某1某2某1某24某1某224cbaab4aca2a二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达关于某轴对称ya某2b某c关于某轴对称后,得到的解析式是ya某2b某c;ya某hk2关于某轴对称后,得到的解析式是ya某hk;2关于y轴对称ya某2b某c关于y轴对称后,得到的解析式是ya某2b某c;ya某hk2关于y轴对称后,得到的解析式是ya某hk;2关于原点对称ya某2b某c关于原点对称后,得到的解析式是ya某2b某c;ya某hk关于原点对称后,得到的解析式是ya某hk;关于顶点对称ya某b某c关于顶点对称后,得到的解析式是ya某b某cya某hkb22a;关于顶点对称后,得到的解析式是ya某hk.4关于点m,n对称ya某hk2关于点m,n对称后,得到的解析式是ya某h2m2nk2总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图象的平移平移步骤:2⑴将抛物线解析式转化成顶点式ya某hk,确定其顶点坐标h,k;⑵保持抛物线ya某2的形状不变,将其顶点平移到h,k处,具体平移方法如下:y=a某2向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k定点Q,直线y(a2)某2经过点Q,求抛物线的解析式。
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y ax bx c =++的比较【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =--3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
新课标人教版初中数学九年级下册第二十六章《二次函数》中考试题汇总一 .选择题1.(2010兰州)二次函数2365y x x =--+的图像的顶点坐标是( A ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4)2.(2010兰州) 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( B ) A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=23.(2010河北)如图,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上, 且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( D )A .(2,3)B .(3,2)C .(3,3)D .(4,3)4.(2010陕西)将抛物线C :y=x ²+3x-10,将抛物线C 平移到C /。
若两条抛物线C,C /关于直线x=1对称,则下列平移方法中正确的是(C ) A 将抛物线C 向右平移52个单位B 将抛物线C 向右平移3个单位 C 将抛物线C 向右平移5个单位D 将抛物线C 向右平移6个单位5.(2010遵义)如图,两条抛物线12121+-=x y 、12122--=x y 与分别经过点()0,2-,()0,2且平行于y 轴的两条平行线围成的阴影部分的面积为( A )A.8 B.6 C.10 D.46.(2010莱芜)二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的图象不经过( B ) A .第一象限 B .第二象限 C .第三象限D .第四象限xyO7.(2010丽水)如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( C )A .2225y x = B .2425y x =C .225y x = D .245y x =8.(2010丽水)下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( C )9.(2010成都)把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( D ) (A )21y x =+ (B )2(1)y x =+ (C )21y x =- (D )2(1)y x =-10.(2010兰州) 抛物线c bx ax y ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数a b cy x++=在同一坐标系内的图像大致为( D )11.(2010济南)二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是( C )A .x <-1B .x >2C .-1<x <2D .x <-1或x >2xxxxx12.(2010杭州)定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ]的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( B )A. ①②③④B. ①②④C. ①③④D. ②④13.(2010舟山)已知二次函数131232+-=x x y ,则函数值y 的最小值是( C ) A. 3 B. 2 C. 1 D. -114.(2010咸宁)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是(A ) A .1y >2yB .1y 2y =C .1y <2yD .不能确定15.(2010桂林)将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( D )A .221216y x x =--+ B .221216y x x =-+- C .221219y x x =-+- D .221220y x x =-+-16.(2010桂林)如图,已知正方形ABCD 的边长为4 ,E 是BC 边上的一个动点,AE ⊥EF , EF 交DC 于F , 设BE =x ,FC =y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是( A )A .B .C .D .A BEF x y 2412O x y2412O xy 2412O xy 2412O17.(2010盐城)给出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =.0<x 时,y 随x 的增大而减小的函数有( C ) A .1个 B .2个 C .3个 D .4个18.(2010浙江金华)已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( B ) A . 最小值 -3B . 最大值-3C . 最小值2D . 最大值219.(2010宁夏)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式 ( B )A .2(1)3y x =--+B .2(1)3y x =-++C .2(1)3y x =---D .2(1)3y x =-+-.20.(2010天津)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->; ②0abc >; ③80a c +>; ④930a b c ++<.其中,正确结论的个数是(D ) A.1 B.2 C.3 D.421.(2010台州)如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小 值为3-,则点D 的横坐标最大值为(D )A .-3B .1C .5D .822.(2010宿迁)如图,在矩形ABCD 中, ABP 在BC 边上移动时,直角边MP 始终经过点A相 交于点Q .BP =x ,CQ =y ,那么y 与x MQDCBP AADCB23.(2010东营)二次函数2y ax bx c =++的图象如图所示,则一次函数ac bx y -=与反比例函数xcb a y +-=在同一坐标系内的图象大致为( B )24. (2010黄冈)若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是(D )A .±6B .4C .±6或4D .4或-625. (2010泰安)下列函数:①x y 3-= ②12-=x y ③)0(1<-=x xy ④322++-=x x y ,其中y 的值随x 值的增大而增大的函数有( C )A .4个B .3个C .2个D .1个26. (2010泰安)如图,矩形ABCD 的两对角线AC 、BD 交于点O ,∠AOB=60°,设AB=x cm ,矩形ABCD 的面积为scm 2,则变量s 与x 之间的函数关系式为( A )A .23x s =B .233x s =C .223x s =D .221x s =27.(2010 达州 )抛物线图象如图所示,根据图象,抛物线的解析式可能..是( C ) A.223y x x =-+ B. 223y x x =--+ C. 223y x x =-++ D. 223y x x =-+-y xO y xO y xO yxO 1- 1O xy28.(2010 柳州 )抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表:x… 2-1-0 1 2 … y…4664…①抛物线与x 轴的一个交点为(20)-, ②抛物线与y 轴的交点为(06), ③抛物线的对称轴是:1x = ④在对称轴左侧y 随x 增大而增大 A .1 B.2 C.3 D.429. (2010潍坊)已知函数21y x =与函数2132y x =-+的图象大致如图.若12y y <,则自变量x 的取值范围是( C )A .322x -<< B. 322x x ><-或C. 322x -<<D. 322x x <->或。
人教版九年级下册数学二次函数知识点总结教案主讲人:李霜霜一、教学目标:(1)了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函数解析式,并能解决简单的实际问题.(2)通过练习及提问,复习二次函数的基础知识;通过对典型例题的分析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数学思想.二、教学重点、难点教学重点:二次函数的图像,性质和应用教学难点:运用二次函数知识解决较综合性的数学问题. 三、教学过程复习巩固(一)二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.(二)二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:(三)二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.(四)二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. (五)二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.(六)二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.(七)二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.(八)二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根..② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;例题讲解:15.已知二次函数图象的对称轴是30x +=,图象经过(1,-6),且与y 轴的交点为(0,52-). (1)求这个二次函数的解析式;(2)当x 为何值时,这个函数的函数值为0?(3)当x 在什么范围内变化时,这个函数的函数值y 随x 的增大而增大?17.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D. (1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。
第二十六章 二次函数第1课时 26.1 二次函数一、阅读教科书第2—3页上方 二、学习目标:1.知道二次函数的一般表达式;2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地,形如____________________________的函数,叫做二次函数。
其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习1.观察:①y =6x 2;②y =-32x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2 (5)y =x +1x五、课堂训练1.y =(m +1)x mm 2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( )A .y =x +12 B . y =3 (x -1)2 C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值;(3)当y =-13时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.六、目标检测1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-12.下列函数中,是二次函数的是( )A .y =x 2-1B .y =x -1C .y =8xD .y =8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.第2课时 二次函数y =ax 2的图象与性质一、阅读课本:P4—6上方 二、学习目标:1.知道二次函数的图象是一条抛物线; 2.会画二次函数y =ax 2的图象;3.掌握二次函数y =ax 2的性质,并会灵活应用. 三、探索新知:画二次函数y =x 2的图象.【提示:画图象的一般步骤:①列表(取几组x 、y 的对应值;②描点(表中x 、y 的数值在坐标平面中描点(x ,y );③连线(用平滑曲线).】由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).四、例题分析例1 在同一直角坐标系中,画出函数y=12x2,y=x2,y=2x2的图象.y=x2的图象刚画过,再把它画出来.归纳:抛物线y=12x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).例2 请在例1的直角坐标系中画出函数y =-x 2,y =-12x 2, y =-2x 2的图象.归纳:抛物线y =-x 2,y =-12x 2, y =-2x 2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”) . 五、理一理122.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______ 对称,开口大小_______________.3.当a >0时,a 越大,抛物线的开口越___________; 当a <0时,|a | 越大,抛物线的开口越_________;因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越________.六、课堂训练 12.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图, ① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2 比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________七、目标检测1.函数y =37x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数y =mx 22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.第3课时 二次函数y =ax 2+k 的图象与性质一、阅读课本:P6—7上方 二、学习目标:1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 三、探索新知:在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象.观察图象得:2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.四、理一理知识点1.2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y =ax 2向上平移k (k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m (m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.五、课堂巩固训练2.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________. 3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________.六、目标检测2.抛物线y =-13 x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.4.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________.第4课时 二次函数y =a(x-h)2的图象与性质一、阅读课本:P7—8二、学习目标:1.会画二次函数y =a (x -h )2的图象;2.掌握二次函数y =a (x -h )2的性质,并要会灵活应用; 三、探索新知:画出二次函数y =-12 (x +1)2,y -12(x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.12.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2 ;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12(x +1)2 .四、整理知识点2.对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.五、课堂训练2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.六、目标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y =m (x +n)2向左平移2个单位后,得到的函数关系式是y =-4 (x -4)2,则 m =__________,n =___________.3.若将抛物线y =2x 2+1向下平移2个单位后,得到的抛物线解析式为_______________. 4.若抛物线y =m (x +1)2过点(1,-4),则m =_______________.第5课时 二次函数y =a(x -h)2+k 的图象与性质一、阅读课本:第9页. 二、学习目标:1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质;3.会应用二次函数y =a (x -h)2+k 的性质解题. 三、探索新知:画出函数y =-12(x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.由图象归纳:2.把抛物线y =-12x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12(x +1)2-1.2.抛物线y=a (x-h)2+k与y=ax2形状___________,位置________________.五、课堂练习2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.六、目标检测2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B CD4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)第6课时二次函数y=ax2+bx+c的图象与性质一、阅读课本:第10页.二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+212.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.第7课时 二次函数y =ax 2+bx +c 的性质一、复习知识点:第6课中“理一理知识点”的内容. 二、学习目标:1.懂得求二次函数y =ax 2+bx +c 与x 轴、y 轴的交点的方法; 2.知道二次函数中a ,b ,c 以及△=b 2-4ac 对图象的影响. 三、基本知识练习1.求二次函数y =x 2+3x -4与y 轴的交点坐标为_______________,与x 轴的交点坐标____________.2.二次函数y =x 2+3x -4的顶点坐标为______________,对称轴为______________. 3.一元二次方程x 2+3x -4=0的根的判别式△=______________. 4.二次函数y =x 2+bx 过点(1,4),则b =________________.5.一元二次方程y =ax 2+bx +c (a ≠0),△>0时,一元二次方程有_______________, △=0时,一元二次方程有___________,△<0时,一元二次方程_______________. 四、知识点应用1.求二次函数y =ax 2+bx +c 与x 轴交点(含y =0时,则在函数值y =0时,x 的值是抛物线与x 轴交点的横坐标).例1 求y =x 2-2x -3与x 轴交点坐标.2.求二次函数y =ax 2+bx +c 与y 轴交点(含x =0时,则y 的值是抛物线与y 轴交点的纵坐标).例2 求抛物线y =x 2-2x -3与y 轴交点坐标.3.a 、b 、c 以及△=b 2-4ac 对图象的影响. (1)a 决定:开口方向、形状(2)c 决定与y 轴的交点为(0,c )(3)b 与-b2a共同决定b 的正负性(4)△=b 2-4ac ⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000例3 如图, 由图可得:a_______0b_______0c_______0△______0例4 已知二次函数y =x 2+kx +9.①当k 为何值时,对称轴为y 轴;②当k 为何值时,抛物线与x 轴有两个交点; ③当k 为何值时,抛物线与x 轴只有一个交点. 五、课后练习1.求抛物线y=2x2-7x-15与x轴交点坐标__________,与y轴的交点坐标为_______.2.抛物线y=4x2-2x+m的顶点在x轴上,则m=__________.3.如图:由图可得:a_______0b_______0c_______0△=b2-4ac______0六、目标检测1.求抛物线y=x2-2x+1与y轴的交点坐标为_______________.2.若抛物线y=mx2-x+1与x轴有两个交点,求m的范围.3.如图:由图可得:a _________0b_________0c_________0△=b2-4ac_________0第8课时二次函数y=ax2+bx+c解析式求法一、阅读课本:第12~13页.二、学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式.三、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.四、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x 轴的两交点为(-1,0)和(3,0),且过点(2,-3). 求抛物线的解析式. 五、归纳用待定系数法求二次函数的解析式用三种方法: 1.已知抛物线过三点,设一般式为y =ax 2+bx +c .2.已知抛物线顶点坐标及一点,设顶点式y =a(x -h)2+k .3.已知抛物线与x 轴有两个交点(或已知抛物线与x 轴交点的横坐标),设两根式:y =a(x -x 1)(x -x 2) .(其中x 1、x 2是抛物线与x 轴交点的横坐标)六、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?七、课堂训练1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与 y 轴交于点C (0,3),求二次函数的顶点坐标.4.如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.八、目标检测1.已知二次函数的图像过点A (-1,0),B (3,0),C (0,3)三点,求这个二次函数解析式.Q P C B A第9课时用函数观点看一元二次方程一、阅读课本:第16~19页二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx+c与x轴的公共点的个数.三、探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x+1=0的根的判别式△_______0.四、理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数__________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值.2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五、基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________ 4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0六、课堂训练1.特殊代数式求值:①如图看图填空:(1)a +b+c_______0(2)a -b+c_______0(3)2a -b_______0②如图2a+b_______04a+2b +c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七、目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八、课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).第10课时实际问题与二次函数(1)一、阅读教科书:P22的问题二、学习目标:几何问题中应用二次函数的最值.三、课前基本练习1.抛物线y=-(x+1)2+2中,当x=___________时,y有_______值是__________.2.抛物线y=12x2-x+1中,当x=___________时,y有_______值是__________.3.抛物线y=a x2+b x+c(a≠0)中,当x=___________时,y有_______值是__________.四、例题分析:(P15的探究)用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化,当l是多少时,场地的面积S最大?五、课后练习1.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?2.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是h=30t-5t2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?3.如图,四边形的两条对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?DCBA4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?六、目标检测如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当 点E 位于何处时,正方形EFGH 的面积最小?第11课时 实际问题与二次函数(2)商品价格调整问题一、阅读课本:第23页(探究1)二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?F E D C B A HG F E D C B A分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?图①第12课时 实际问题与二次函数(3)一、阅读课本:第25页探究3二、学习目标:1.会建立直角坐标系解决实际问题;2.会解决桥洞水面宽度问题.三、基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________.2.拱桥呈抛物线形,其函数关系式为y =-14x 2,当拱桥下水位线在AB 位置时,水面宽为 12m ,这时水面离桥拱顶端的高度h 是( )A .3mB .2 6 mC .4 3 mD .9m3.有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD ,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M 处?四、课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c 的形式,请根据所给的数据求出a 、c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m ,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m .(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?第13课时二次函数综合应用一、复习二次函数的基本性质二、学习目标:灵活运用二次函数的性质解决综合性的问题.三、课前训练1.二次函数y=kx2+2x+1(k<0)的图象可能是()2.如图:(1)当x为何范围时,y1>y2?(2)当x为何范围时,y1=y2?(3)当x为何范围时,y1<y2?3.如图,是二次函数y=ax2-x+a2-1的图象,则a=____________.4.若A(-134,y1),B(-1,y2),C(53,y3)为二次函数y=-x2-4x+5图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y35.抛物线y=(x-2) (x+5)与坐标轴的交点分别为A、B、C,则△ABC的面积为__________.6.如图,已知在平面直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD =5.若矩形以每秒2个单位长度沿x轴正方向做匀速运动,同时点P从A点出发以每秒1个单位长度沿A→B→C→D的路线做匀速运动.当点P运动到点D时停止运动,矩形ABCD也随之停止运动.(1)求点P从点A运动到点D所需的时间.(2)设点P运动时间为t(秒)①当t=5时,求出点P的坐标.②若△OAP的面积为S,试求出S与t之间的函数关系式(并写出相应的自变量t的取值范围).五、目标检测如图,二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0)两交点,且交y轴于点C.(1)求b、c的值;(2)过点C作CD∥x轴交抛物线于点D,点M为此抛物线的顶点,试确定△MCD的形状.。
第26章 二次函数全章总结提升◆本章总结归纳(一)知识框架(二)重点难点突破1.函数图象的理解与应用易错点:函数图象的意义认识不表,它的性质、特征与函数图象联系不上,不能达到数形互助;突破点:加强对函数图象中点的坐标的意义认识,分析各点的坐标,理解y 随x 的变化情况,从而达到能直接根据图象说出二次函数的有关性质。
(如:增减性、极值、对称轴等)理解,,a b c 的值对抛物线2y ax bx c =++的影响,提高解题效率 2.抛物线2y ax bx c =++的特征与,,a b c 符号:,,a b c 决定开口方向0,0,a a >⎧⎨<⎩开口向上;开口向下.,,a b c 与b 决定对称轴位置,,a b a b ⎧⎨⎩同号,在轴左侧;异号,在轴右侧.c 决定抛物线与y 轴交点的位置0,0,0,c c c >⎧⎪=⎨⎪<⎩交点在y 轴的正半轴上;交点在原点;交点在y 轴的负半轴上. 易错点:以上关系不清楚,导致做题盲目,出错。
突破点:数形结合,变式训练,特别是,,a b c 与b 一走决定对称轴位置的理解与判定。
3.解析式之间的转化与解析式的求法。
易错点:①将2y ax bx c =++化成顶点式224()24b ac b y a x a a -=++ ②用待定系数法求解时,不能根据不同条件恰当地选取解析式。
突破点:①强调配方的步骤、配方的规律,注意恒等变形与检验。
②比较不同形式的解析式的优劣,应用的环境,加强对顶点式、交点式的理解,并能正确运用。
4.抛物线的平移规律,表达式的变化。
易错点:抛物线的移动,对解析式变化理解不透,不同方向的移动,到底是加还是减判断不清。
突破点:抓住顶点坐标的变化,熟记平移规律,左加右减,上加下减。
5.抛物线与x 轴交点情况。
易错点:此类题综合性较大,对应关系不很明确,隐含条件较多,极易出错。
突破点:抛物线与x 轴交点横坐标就是相应一元二次方程的两根,把交点的个数转化为方程。
二次函数各知识点、考点、典型例题及对应练习专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2ba的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)图13.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号)专题复习二:二次函数表达式的确定 考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1ABC D图1菜园墙图2图2 2-1- 012 y x13x =时y=1,求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少..平移 个单位,使得该图象的顶点在原点.专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x<<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况图1当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根.(2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题四:利用二次函数解决实际问题解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.x图1。
第26章 二次函数全章总结提升◆本章总结归纳(一)知识框架(二)重点难点突破1.函数图象的理解与应用易错点:函数图象的意义认识不表,它的性质、特征与函数图象联系不上,不能达到数形互助;突破点:加强对函数图象中点的坐标的意义认识,分析各点的坐标,理解y 随x 的变化情况,从而达到能直接根据图象说出二次函数的有关性质。
(如:增减性、极值、对称轴等)理解,,a b c 的值对抛物线2y ax bx c =++的影响,提高解题效率2.抛物线2y ax bx c =++的特征与,,a b c 符号: ,,a b c 决定开口方向0,0,a a >⎧⎨<⎩开口向上;开口向下.,,a b c 与b 决定对称轴位置,,a b a b ⎧⎨⎩同号,在轴左侧;异号,在轴右侧.c 决定抛物线与y 轴交点的位置0,0,0,c c c >⎧⎪=⎨⎪<⎩交点在y 轴的正半轴上;交点在原点;交点在y 轴的负半轴上.易错点:以上关系不清楚,导致做题盲目,出错。
突破点:数形结合,变式训练,特别是,,a b c 与b 一走决定对称轴位置的理解与判定。
3.解析式之间的转化与解析式的求法。
易错点:①将2y ax bx c =++化成顶点式224()24b ac b y a x a a -=++ ②用待定系数法求解时,不能根据不同条件恰当地选取解析式。
突破点:①强调配方的步骤、配方的规律,注意恒等变形与检验。
②比较不同形式的解析式的优劣,应用的环境,加强对顶点式、交点式的理解,并能正确运用。
4.抛物线的平移规律,表达式的变化。
易错点:抛物线的移动,对解析式变化理解不透,不同方向的移动,到底是加还是减判断不清。
突破点:抓住顶点坐标的变化,熟记平移规律,左加右减,上加下减。
5.抛物线与x 轴交点情况。
易错点:此类题综合性较大,对应关系不很明确,隐含条件较多,极易出错。
突破点:抛物线与x 轴交点横坐标就是相应一元二次方程的两根,把交点的个数转化为方程。
22. 二次函数知识点一:二次函数的概念1.一般地,如果y=ax2+bx+c(a, b, c是常数,a≠0),那么y叫做x的二次函数。
其中,x是自变量,a, b, c分别是函数解析式的二次项系数、一次项系数和常数项。
2.注意以下几点:(1)y=ax2+bx+c(a, b, c是常数,a≠0)叫做二次函数的一般式,任何一个二次函数的解析式都可以化为此形式;(2)在二次函数y=ax2+bx+c(a≠0)中,a必须不等于0,因为若a=0的话,此式子则变为y= bx+c的形式,就不是二次函数了;(3)在二次函数y=ax2+bx+c(a≠0)中,若y =0,则二次函数可以转化为一元二次方程ax2+bx+c=0(a≠0)。
例1. 下列各式中,y是x的二次函数的是( )A.y=x(x+1)B. x2y=1C. y=2x2−2(x−1)2D. y=x-0.5例2. 有下列函数:①y=x2+8;②y=2x(1-x);③y=ax2+bx+c;④y=3x2+3x2;⑤y=(m2+1)x2−x+3;⑥y=2x2−12x(4x−3)其中一定是二次函数的有______(从小到大填序号对应的数字,用逗号隔开)例3. 把二次函数y=(x+3)(2x-5)+x(3x-1)化为一般形式______,二次项系数为______,一次项系数为______,常数项为______,b2−4ac =______.例4. 若y=(2a+4)x3|a|−4+10x+12是二次函数,则a的值为______.例5. 已知函数y=(2m2+5m)x2+3mx−8为二次函数,则m的取值范围是______.知识点二:实际问题中的二次函数关系由实际问题列二次函数关系式,一般分四步完成:一找:根据实际问题的意义,找出等量关系;二列:由等量关系列出函数关系式;三化:把关系式化为二次函数的一般形式;四定:根据实际意义,确定自变量的取值范围。
例1. 在下列4个不同的情境中,两个变量所满足的函数关系属于二次函数关系的有______个。
反比例函数1。
反比例函数y =x3-k 的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ) (A )k <3 (B )k ≤3 (C )k >3 (D )k ≥3 答案:A 2.已知:正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M (a,1), MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,求这两个函数的解析式. 解:∵MN ⊥x 轴,点M (a ,1) ∴S △OMN=a 21=2 ∴a=4 ∴M(4,1)∵正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的 图象交于点M (4,1)∴ 414121k k == 解得44121==∴正比例函数的解析式是x y 41=,反比例函数的解析式是 3. 不在函数xy 12=图像上的点是 ( ) A .(2,6) B.(-2,-6) C.(3,4) D.(-3,4) 答案:D 4.如图,在第一象限内,点P,M ()2,a 是双曲线)0(≠=k xky 上的两点,PA ⊥x 轴于点A,MB ⊥x 轴于点B,PA 与OM 交于点C,则△OAC 的面积 为 .答案:345.反比例函数xy 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中3210x x x <<<, 则1y ,2y ,3y 的大小关系是( )A .321y y y <<B .312y y y <<C .213y y y <<D .123y y y <<答案:B 6.函数xy 1-=的自变量x 的取值范围是 . 答案:0≠x图27.如图2,所示的计算程序中,y 与x 之间的函数关系对应的图象所在的象限是( C )A. 第一象限B. 第一、三象限C. 第二、四象限D. 第一、四象限 8.若反比例函数ky x=的图象经过点(-3,2),则k 的值为 ( A ). A .-6 B .6 C .-5 D .59. 函数y =x -2+31-x 中自变量x 的取值范围是A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3答案 A 10.如图,已知梯形ABCO 的底边AO 在x 轴上,BC ∥AO ,AB ⊥AO ,过点C 的双曲线k y x=交OB 于D ,且OD :DB=1 :2,若△OBC 的面积等于3,则k 的值()A . 等于2B .等于34C .等于245D .无法确定答案 B11. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 12--=的图像上. 下列结论中正确的是( ) A .321y y y >> B .231y y y >> C .213y y y >> D . 132y y y >>答案B12. 已知:y =y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,且x =1时,y =3;x =-1时,y =1. 求x =-21时,y 的值.解:解:y 1与x 2成正比例,y 2与x 成反比例设y 1=k 1x 2,y 2=x k 2,y =k 1x 2+x k 2…………………………………………………2分把x =1,y =3,x =-1,y =1分别代入上式得 ⎩⎨⎧-=+=212113k k k k ……………………3分∴x x y k k 12,12221+=⎩⎨⎧== …………………………………………5分当x =-21, y =2×(-21)2+211-=21-2=-23 ………………………………6分13.(本题满分9分)如图,P 1是反比例函数)0(>k x ky =在第一象限图像上的一点,点A 1 的坐标为(2,0). (1)当点P 1的横坐标逐渐增大时,△P 1O A 1的面积 将如何变化?(2)若△P 1O A 1与△P 2 A 1 A 2均为等边三角形,求 此反比例函数的解析式及A 2点的坐标.第25题图答案:(1)解:(1)△P 1OA 1的面积将逐渐减小. …………………………………2分 (2)作P 1C ⊥OA 1,垂足为C ,因为△P 1O A 1为等边三角形, 所以OC=1,P 1C=3,所以P 1)3,1(. ……………………………………3分代入xk y =,得k=3,所以反比例函数的解析式为x y 3=. ……………4分作P 2D ⊥A 1 A 2,垂足为D 、设A 1D=a ,则OD=2+a ,P 2D=3a ,所以P 2)3,2(a a +. ……………………………………………………………6分代入xy 3=,得33)2(=⋅+a a ,化简得0122=-+a a解的:a=-1±2 ……………………………………………7分 ∵a >0 ∴21+-=a………………………………8分所以点A 2的坐标为﹙22,0﹚ ………………………………………………9分14.函数y =1x +2中自变量的取值范围是___________. 答案2x ≠-15.已知反比例函数y = kx的图象与二次函数y =ax 2+x -1的图象相交于点(2,2) (1)求a 和k 的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?答案 因为二次函数21y ax x =+-与反比例函数ky x=交于点(2,2)所以2=4a+2-1,解得14a = (2)分所以k=4 ........................................................................................................4分(2)反比函数的图像经过二次函数图像的顶点 ............................................5分由(1)知,二次函数和反比例函数的关系式分别是 2114y x x =+-和 4y x= 因为[]222221111(44)(448)44411(2)8(2)244y x x x x x x x x =+-=+-=++-=+-=+-................6分所以二次函数图像的顶点坐标是(-2,-2)...........................................................7分因为x =-2时,422y ==--所以反比例函数图像经过二次函数图像的顶点........8分 16.已知反比例函数y =1x,下列结论不正确...的是( ) A .图象经过点(1,1) B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大 17. 已知点P 的坐标为(m ,0),在x 轴上存在点Q (不与P 点重合),以PQ 为边作正方形PQMN ,使点M 落在反比例函数y = 2x-的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有..两个,且一个正方形的顶点M 在第四象限,另一个正方形的顶点M 1在第二象限.(1)如图所示,若反比例函数解析式为y = 2x-,P 点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN ,请你在图中画出符合条件的另一个正方形PQ 1M 1N 1, 并写出点M 1的坐标;M 1的坐标是(2) 请你通过改变P 点坐标,对直线M 1 M 的解析式y ﹦kx +b 进行探究可得 k ﹦ , 若点P 的坐标为(m ,0)时,则b ﹦ ;(3) 依据(2)的规律,如果点P 的坐标为(6,0),请你求出点M 1和点M 的坐标. 解:(1)如图;M 1 的坐标为(-1,2) ……2分(2)1-=k ,m b = …………………4分(各2分) (3)由(2)知,直线M 1 M 的解析式为6+-=x y 则M (x ,y )满足2)6(-=+-⋅x x解得1131+=x ,1132-=x ∴ 1131-=y ,1132+=y(第23题∴M 1,M 的坐标分别为(113-,113+),(113+,113-).……………4分18.(如左下图)已知反比例函数1my x-=的图象如图,则m 的取值范围是 .答案:m <119.(如右上图)反比例函数)0(1>-=x xy 的图象如图1所示,随着x 值的增大,y 值( ) A .增大 B .减小 C.不变 D.先增大后减小答案:A 20.已知函数xy 6-=,当2-=x 时,y 的值是______. 答案:321.如图,一次函数y ax b =+的图象与x与反比例函数k y x=的图象相交于C ,D 点作y 轴,x 轴的垂线,垂足为E ,F 有下列四个结论: ①△CEF 与△DEF 的面积相等; ②③△DCE ≌△CDF ; ④其中正确的结论是 .22. (2010经过A (1,2)、B (2,b )两点. (1)求双曲线的解析式;(2)试比较b 与2的大小.答案:解:(1)因为点A (1,2)在函数y =k x上k =2,所以双曲线的解析式为2y x=; (2)由函数2y x=的性质可得在第一象限y 随x 第13题图图1数图象上求出b 的值,从而比较b 与2的大小)23.如图,正比例函数12y x =的图象与反比例函数k y x =(0)k ≠在第一象限的图象交于A点,过A 点作x 轴的垂线,垂足为M ,已知OAM∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.答案.解:(1) 设A 点的坐标为(a ,b ),则kb a=.∴ab k =.∵112ab =,∴112k =.∴2k =. ∴反比例函数的解析式为2y x=. ············································ 3分(2) 由212y xy x ⎧=⎪⎪⎨⎪=⎪⎩得2,1.x y =⎧⎨=⎩ ∴A 为(2,1). ································· 4分 设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,1-).令直线BC 的解析式为y mx n =+.∵B 为(1,2)∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴BC 的解析式为35y x =-+. ··············································· 6分当0y =时,53x =.∴P 点为(53,0). 24.如图,已知反比例函数ky x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象xA (第20题)写出使反比例函数的值大于一次函数的值的x 的取值范围.答案:.解:(1)∵已知反比例函数ky x=经过点(1,4)A k -+,∴41kk -+=,即4k k -+= ∴2k=∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+ ∴1b=∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。