光栅衍射
- 格式:ppt
- 大小:1.10 MB
- 文档页数:36
光栅衍射现象描述
一、光栅衍射
由大量等宽等间距的平行狭缝构成的光学器件称为光栅
设透射光栅的总缝数为N,缝宽为a , 缝间不透光部分宽度为b,(a+b) =d 称为光栅常量
二、光栅衍射条纹的成因
对于具有N个狭缝的光栅,在平行光照射下,每个狭缝都要产生各自的衍射条纹,尽管各狭缝的位置不同,但由于屏幕放在透镜的焦平面处,这N组衍射条纹将通过透镜完全重合,如同单个狭缝所形成的衍射条纹一样.
由于各狭缝都处在同一波阵面上,相邻两缝所有的对应点发射的子波到达屏上P点的光程差都是相等的,所以通过所有狭缝的光都是相干光,在屏幕上P点处还将出现相干叠加,形成干涉条纹,这就是多缝干涉.
光栅的衍射条纹足中缝衍射和多缝干涉的综合效果.
干涉条纹的光强要受到单缝衍射的调制
由于光栅的缝数很多,设为N,则在屏幕上P 点处的合振幅应是来自一条缝的光的振幅N倍,而光强将是来自一条缝光强的倍,所以光栅的条纹是很亮的。
17_11光栅衍射 1光栅衍射光栅 —— 许多等宽的狭缝等距离排列起来形成的光学元件 透射光栅—— 在透明的衬底上刻有大量相互平行等宽等间距的刻痕刻痕为不透光部分 —— 宽度为b相邻刻痕间透明部分 —— 宽度为a ,如图XCH004_089所示。
反射光栅 —— 在光洁度很高的金属表面刻出一系列等间距的平行细槽,光滑部分用来反射光 —— 如图XCH004_089_01所示 光栅常数:d a b =+—— N 表示光栅上缝的数目,现在可以做到光栅上每毫米达到上千条单缝 2 衍射条纹—— 光栅衍射是多缝干涉和单缝衍射的综合结果 1) 多缝干涉形成的亮条纹在衍射角ϕ的方向上,相邻两个缝发出的光到达屏幕上P 点的光程差均为:sin d ϕ 当sin d k ϕλ= —— 0,1,2,k =±±—— N 条缝发出光在P 点的叠加是干涉相长,形成亮条纹 —— 约定衍射角ϕ在光轴上方取值为正,下方取值为负P 点光的振幅:123N A A A A A =++++如果各缝光的振幅相同:1230N A A A A A ===== ,0A NA =亮条纹的强度:20I N I = —— 200I A =亮条纹光的强度远远大于一个缝的光强 —— 这些亮条纹称为主极大决定主极大位置的方程sin d k ϕλ= —— 光栅方程 2) 多缝干涉形成的暗条纹0ϕ=为零级主极大,或零级亮条纹在ϕ∆方向上如果第1个缝和第N 个缝到P 点的光程差为:sin Nd ϕλ∆= ——如图XCH004_090_01所示第1个缝和第12N +个缝到P 的光程差为2λ 第2个缝和第22N +个缝到P 的光程差为2λ 第3个缝和第32N +个缝到P 的光程差为2λ 第2N个缝和第N 个缝到P 的光程差为2λ —— 光栅上半部分和下半部分对应的缝发出的光在P 干涉相消,该方向对应的是暗条纹 零级主极大最近邻的暗条纹的衍射角:sin Ndλϕϕ∆≈∆=零级主极大的角宽度:22Ndλϕ∆≈根据光栅方程一级主极大的衍射角:sin d ϕλ=,11sin dλϕϕ≈=可见:12Nddλλϕϕ∆≈<<≈—— 说明零级主极大条纹的宽度远远小于零级和一级主极大亮条纹的间距—— ϕ∆方向上暗条纹的位置远离一级主极大,紧靠零级主极大,如图XCH004_090_02所示 如果ϕ'∆方向上第1个缝和第N 个缝到P 点的光程差为:sin 2Nd ϕλ'∆= 总可以将光栅分为相等的4部分,那么有:第1部分和第3部分对应的狭缝发出的光到P 的光程差为λ 第2部分和第4部分对应的狭缝发出的光到P 的光程差为λ 第1部分和第2部分对应的狭缝发出的光到P 的光程差为/2λ 第3部分和第4部分对应的狭缝发出的光到P 的光程差为/2λ —— 该方向对应的是暗条纹相应的暗条纹的衍射角:2sin Ndλϕϕ''∆≈∆= 一级主极大的衍射角:11sin dλϕϕ≈=可见:12Nd dλλϕϕ'∆≈<<≈ —— ϕ'∆方向上的暗条纹也远离一级主极大从sin Nd k ϕλ''∆= —— k ''(,2,3,k N N N ''≠ )为整数可以得到一系列光强为零的位置,对应的就是暗条纹—— 两个暗条纹之间必然是亮条纹,具体的分析表明这些亮条纹是一些狭缝发出的光的干涉相长和一些狭缝发出的光的干涉相消,强度比主极大亮条纹的小许多,几乎不可见的 —— 称为次主极大 多缝干涉形成一系列又细又亮的明条纹,两个明条纹之间有N -1个暗条纹和N -2个次主极大。
光栅衍射是一种光波通过光栅(或称光栅板)时产生的衍射现象,它基于光波的干涉和衍射原理。
光栅是一个具有一定周期性结构的光学元件,通常由等距的狭缝或透明区域与不透明区域交替排列而成。
以下是光栅衍射的简要原理:
光波入射:当一束单色光波以特定的波长入射到光栅上时,光波会经过光栅的透明区域或狭缝,同时也会受到光栅的周期性结构影响。
干涉现象:光栅的周期性结构会导致入射光波在各个狭缝或透明区域上发生干涉现象。
这意味着从不同狭缝或透明区域出射的光波会相互叠加,形成一系列明暗相间的光斑。
衍射光束:在光栅上方,干涉产生了一系列不同方向的衍射光束。
这些光束具有特定的角度和波长,构成了光栅衍射的光谱。
光谱分布:衍射光束的角度和强度分布与光栅的周期性、波长以及入射角有关。
通过调整这些参数,可以控制光栅衍射的光谱特性。
观察和应用:光栅衍射的光谱通常可以在屏幕或检测器上观察到。
这种技术在物理学、化学、光学、光谱学、激光技术等领域广泛应用,用于分析光的波长、频率和强度等信息。
总的来说,光栅衍射是一种利用光波的干涉和衍射原理,通过光栅的周期性结构来分散和分析光波的方法。
它是一种重要的光学技术,用于研究和应用光学和波动性质。
光栅衍射的现象解释光栅衍射是一种基于光的干涉现象,它是光学领域中的重要现象之一。
当光通过一个光栅时,会产生一系列明暗相间的条纹,这些条纹被称为光栅衍射图样。
这种现象在很多领域中都有应用,比如光学仪器中的分光计、光谱仪以及光学传感器等。
从光的波动性角度来解释光栅衍射,可以用波的干涉理论来进行推导。
在光波通过光栅时,每个缝隙会成为一个次波源,这些次波源会发出相干光波。
当这些光波相遇时,它们会发生干涉,产生明暗相间的条纹。
光栅的线数密度(单位长度内线的数量)决定了明暗条纹的密度。
当光栅的线数密度增加时,条纹变得更加密集。
而线宽的大小则决定了条纹的清晰度,线宽越小,条纹越清晰。
同时,光栅的周期性也对衍射效果产生影响。
周期越大,条纹越大。
光栅衍射的条纹形状可以用光的传播性质来解释。
光波的传播可以用波前说来进行描述,即光波传播时,每个波前都可以看作是光的传播方向的一个平面。
当波前遇到光栅时,会受到光栅的布拉格定律影响,波前会发生改变,形成新的波阵面。
这种波阵面的改变导致了光的衍射现象。
光栅衍射的现象也可以通过光的粒子性来解释。
根据光的粒子性,光子通过光栅时,会在不同的缝隙中发生散射。
当光线从光栅表面射出时,不同方向上的光子发生干涉,形成了条纹。
这种解释方式强调了光的粒子本性对衍射的贡献。
除了以上的解释方式,还可以从数学的角度来解释光栅衍射。
光栅衍射可以通过光波的衍射公式进行计算。
这个公式描述了光栅衍射的空间分布。
通过光波的波长、入射光的角度和光栅的参数等变量,可以精确计算出光栅衍射的空间图样。
光栅衍射在实际应用中有广泛的应用。
例如,在分光计和光谱仪中,通过分析光栅衍射图样,可以得到物质的光谱信息。
另外,在光学传感器中,利用光栅衍射的原理可以实现精确的测距和测量。
总结起来,光栅衍射的现象可以通过波动性理论、光的传播性质、光的粒子性和数学公式等多种角度来进行解释。
这种现象广泛应用于光学领域中,为我们提供了很多重要的测量和分析手段。
光的光栅衍射光栅是一种具有多道平行透射或反射结构的光学元件。
当平行光线照射在光栅上时,经过光栅的衍射现象会产生明暗相间的衍射条纹,这种现象被称为光的光栅衍射。
一、光栅的基本原理光栅由许多等间距的狭缝或者凹凸形成,这些狭缝或者凹凸被称为光栅的栅元。
当平行光线照射到光栅上时,光线会被栅元分散成多个子波,然后这些子波相互干涉形成衍射条纹。
二、光栅的衍射公式假设光栅栅元的间距为d,入射光波长为λ,入射角为θ。
光栅衍射公式可以表示为:mλ = dsin(θ)其中,m为衍射级次,表示同一条纹系列的序号。
三、光栅衍射的特点1. 衍射角的变化:随着光波长的减小,衍射角也会逐渐变大。
2. 衍射级次的增加:随着衍射级次的增加,衍射条纹也会更加密集,形成更多的亮暗间隔。
3. 衍射条纹的宽度:衍射条纹的宽度与光波长和光栅间距有关,光波长越小,光栅间距越大,衍射条纹的宽度越宽。
四、光栅衍射的应用1. 测量光波长:通过精确测量光栅衍射的衍射角和衍射级次,可以计算出光波长的数值。
2. 光谱仪:光栅衍射可以将入射的多色光分散成各个波长的单色光,用于分析和测量光的成分和特性。
3. 光学显微镜:光栅衍射可以提高显微镜的分辨率,使观察对象更加清晰。
4. 光栅标定:光栅衍射可以作为一种标定方法,用于校准仪器或者物理量测量。
五、实验方法及步骤1. 准备光栅:选择合适的光栅,光栅的参数应与实验要求相匹配。
2. 设置实验仪器:将光源和光栅正确安装,调整光线的入射角度,确保平行光照射到光栅上。
3. 观察衍射条纹:通过适当的光学仪器观察、记录衍射条纹的形态和特征。
4. 计算光波长:根据衍射公式和测量到的衍射角和衍射级次,计算出光波长的数值。
光的光栅衍射现象是一种重要的光学现象,它不仅有助于我们深入了解光的性质,还在科学研究和实际应用中发挥着重要作用。
通过实验方法和计算公式,我们可以准确测量光波长,分析光的成分和特性,提高显微镜的分辨率等。
因此,对光栅衍射的研究和应用具有重要的意义和价值。
光栅的衍射原理
光栅是一种具有规则排列的平行凸起或凹陷的结构,它可以将光束分成多个方向上的几束光。
光栅的衍射原理是基于菲涅尔衍射和夫琅禾费衍射的原理。
当平行光束照射到光栅上时,每个光栅单元的凸起或凹陷都会成为一个次级波源。
这些次级波源发出的光波会以球面波的形式向四周传播,这个现象可以用菲涅尔衍射来描述。
当这些球面波达到远离光栅表面的平面上时,它们会相互干涉。
根据夫琅禾费衍射原理,只有当光栅的凹陷或凸起处相位差为整数倍的波长时,才会有明显的衍射现象。
这是因为凹陷或凸起产生相位差,而光栅上的不同位置的光波与相位差不同的波相干叠加,干涉产生衍射。
在衍射现象中,光栅会将入射光束分散成多个方向上的几束光,这些光束的角度和强度由衍射角和光栅参数决定。
光栅的参数包括光栅常数、光栅宽度和光栅厚度等。
光栅的衍射原理不仅可以用于分析光的频谱成分,还可以应用于光学仪器中,如光谱仪和波长选择器等。
此外,光栅的衍射原理也可以用于光栅干涉仪和激光干涉仪等光学测量设备中。
综上所述,光栅的衍射原理基于菲涅尔衍射和夫琅禾费衍射的基本原理,通过光栅上的凸起或凹陷形成的次级波源产生干涉,从而使光束发生衍射现象。
这一现象可以应用于光学测量和光谱分析等领域。