11 光栅衍射
- 格式:ppt
- 大小:2.51 MB
- 文档页数:35
光栅衍射现象描述
一、光栅衍射
由大量等宽等间距的平行狭缝构成的光学器件称为光栅
设透射光栅的总缝数为N,缝宽为a , 缝间不透光部分宽度为b,(a+b) =d 称为光栅常量
二、光栅衍射条纹的成因
对于具有N个狭缝的光栅,在平行光照射下,每个狭缝都要产生各自的衍射条纹,尽管各狭缝的位置不同,但由于屏幕放在透镜的焦平面处,这N组衍射条纹将通过透镜完全重合,如同单个狭缝所形成的衍射条纹一样.
由于各狭缝都处在同一波阵面上,相邻两缝所有的对应点发射的子波到达屏上P点的光程差都是相等的,所以通过所有狭缝的光都是相干光,在屏幕上P点处还将出现相干叠加,形成干涉条纹,这就是多缝干涉.
光栅的衍射条纹足中缝衍射和多缝干涉的综合效果.
干涉条纹的光强要受到单缝衍射的调制
由于光栅的缝数很多,设为N,则在屏幕上P 点处的合振幅应是来自一条缝的光的振幅N倍,而光强将是来自一条缝光强的倍,所以光栅的条纹是很亮的。
4.10光栅的衍射【实验目的】(1)进一步熟悉分光计的调整与使用;(2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法;(3)加深理解光栅衍射公式及其成立条件。
【实验原理】衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。
它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。
透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。
而平面反射光栅则是在磨光的硬质合金上刻许多平行线。
实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。
由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。
另外,光栅还应用于光学计量、光通信及信息处理。
1(测定光栅常数和光波波长光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相iC B 互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。
A G如图1所示,设光栅常数d=AB的光栅G,有一束平行光与, 光栅的法线成i角的方向,入射到光栅上产生衍射。
从B点作BC垂直于入射光CA,再作BD垂直于衍射光AD,AD与光栅法线所成的夹角为,。
如果在这方向上由于光振动的加强而在F处产生了一个明条纹,其光程差CA+AD必等于波长的整数倍,即: F图1 光栅的衍射 dimsinsin,,,, (1) ,,式中,,为入射光的波长。
当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号,在光栅法线两侧时,(1)式括号内取负号。
如果入射光垂直入射到光栅上,即i=0,则(1)式变成:dmsin,,, (2) m这里,m=0,?1,?2,?3,…,m为衍射级次,,第m级谱线的衍射角。
m平行光望远镜物镜黄黄绿绿紫紫中央明纹图3 光栅衍射光谱图2衍射光谱的偏向角示意图光栅G在小平台上的位置2(用最小偏向角法测定光波波长如图2所示,波长为的光束入射在光栅G上,入射角为i,若与入射线同在光栅 ,法线n一侧的m级衍射光的衍射角为沪,则由式(1)可知dimsinsin,,,, (3) ,,若以?表示入射光与第m级衍射光的夹角,称为偏向角,,,,,i (4),,i显然,?随入射角i而变,不难证明时?为一极小值,记作,,称为最小偏向角。
光栅衍射原理光栅衍射是一种重要的光学现象,它是光波通过光栅时发生的一种衍射现象。
光栅是一种具有周期性透明和不透明条纹的光学元件,当光波通过光栅时,会发生衍射现象,产生一系列亮暗相间的衍射条纹。
光栅衍射原理是基于赫姆霍兹衍射定律和夫琅禾费衍射原理的基础上,通过光栅的周期性结构和光波的相互干涉作用来解释光栅衍射现象。
在光栅衍射中,光波通过光栅时会受到光栅周期性结构的影响,使得光波在不同方向上发生相位差,进而产生衍射现象。
光栅衍射的主要特点包括衍射角度与波长、光栅间距和衍射级数之间的关系、衍射条纹的亮暗分布规律等。
通过对光栅衍射的研究,可以深入理解光的波动性质和光学干涉、衍射的规律,对于光学领域的研究和应用具有重要意义。
光栅衍射原理的基本思想是,光栅的周期性结构能够使入射光波发生相位差,进而产生衍射现象。
光栅的周期性结构可以被描述为光栅常数d,它是光栅上相邻两个透明或不透明条纹之间的距离。
当入射光波通过光栅时,不同波长的光波会在不同的角度上产生衍射,而不同级数的衍射条纹则对应着不同的衍射角度。
这些衍射条纹的亮暗分布规律可以通过光栅衍射方程和衍射级数公式来描述和计算。
光栅衍射原理的研究对于光学领域具有广泛的应用价值。
例如,在光谱分析领域,可以利用光栅衍射的特性来分析物质的光谱特征,实现光谱的分辨和测量。
在激光技术中,光栅衍射可以用来调制和分析激光的空间和频率特性,实现激光的调制和控制。
在光学成像领域,光栅衍射可以应用于光学显微镜、光学望远镜等光学成像设备中,提高成像的分辨率和清晰度。
总之,光栅衍射原理是光学领域中的重要理论基础,它通过对光波的衍射现象进行深入研究,揭示了光的波动性质和光学干涉、衍射的规律。
光栅衍射的研究不仅对于光学理论的发展具有重要意义,而且在光学技术和应用中具有广泛的应用前景。
通过对光栅衍射原理的深入理解和应用,可以推动光学领域的发展,促进光学技术的创新和进步。
大学物理光栅衍射光栅衍射是大学物理中的一项重要内容,它涉及到光的波动性和干涉原理。
本文将从光栅衍射的原理、实验装置、实验方法和结论等方面进行介绍。
一、光栅衍射原理光栅是一种具有周期性结构的衍射器件,它由许多平行且等距的狭缝构成。
当光通过光栅时,会产生一系列明暗相间的衍射条纹,这种现象被称为光栅衍射。
光栅衍射的原理是基于光的波动性和干涉原理。
根据波动理论,光在通过光栅时会产生衍射现象,即光波偏离了直线传播路径。
同时,由于光波的干涉作用,不同狭缝产生的光波相互叠加,形成了明暗相间的衍射条纹。
二、实验装置实验装置主要包括光源、光栅、屏幕和测量工具等。
光源通常采用激光器或汞灯等高亮度光源,以便产生足够的光强度。
光栅是一块具有许多狭缝的透明板,狭缝的数目和间距可以根据实验需要进行选择。
屏幕用于接收衍射条纹,测量工具用于测量衍射条纹的间距和亮度。
三、实验方法实验时,首先将光源、光栅和屏幕按照一定距离放置,确保光束能够照射到光栅上并产生衍射条纹。
然后,通过调整光源的角度和位置,观察衍射条纹的变化。
同时,使用测量工具对衍射条纹的间距和亮度进行测量和记录。
为了获得准确的实验结果,需要进行多次测量并取平均值。
四、结论通过实验,我们可以得出以下1、光栅衍射现象是光的波动性和干涉原理的表现。
2、衍射条纹的间距和亮度受到光源角度和位置的影响。
3、通过测量衍射条纹的间距和亮度,可以推断出光源的角度和位置。
4、光栅衍射现象在光学测量和光学通信等领域具有广泛的应用价值。
大学物理光栅衍射是一个非常重要的实验内容,它不仅有助于我们理解光的波动性和干涉原理,还可以应用于实际生产和科学研究领域。
光,这一神奇的物理现象,是我们日常生活中无处不在的存在。
当我们看到五彩斑斓的世界,欣赏着阳光下波光粼粼的湖面,或是夜空中闪烁的星光,这一切都离不开光的衍射。
在大学物理中,光的衍射是理解波动光学和深入探究光本质的关键。
我们需要理解什么是光的衍射。
光栅衍射原理
光栅衍射原理是一种重要的物理现象,经常应用于光学领域。
所
谓光栅,是指一种具有特殊条纹结构的透明或不透明物体,它可以将
入射的光束分散成一系列的衍射光束。
这一过程被称为光栅衍射。
在光栅衍射的过程中,光线会通过光栅的条纹结构,产生不同的
衍射光束。
这些衍射光束具有不同的相位和方向,它们会在空间中相
互干涉,从而形成衍射图案。
这些图案可以展示出光栅的轮廓和结构,同时也可以用于定量分析物体的几何形状和尺寸等特征。
光栅衍射原理的应用非常广泛。
在光学成像领域,光栅衍射可以
用于制造高质量的光栅透镜,从而实现更为精确的成像效果。
在物体
检测和材料表征领域,光栅衍射可以用于定量分析物体的形状、尺寸、厚度等特性,从而为实验设计和工程应用提供有力支持。
此外,光栅衍射原理也被广泛运用于天文学、化学、生物学等领域。
在这些领域中,光栅衍射可以协助科学家们进一步研究物体的结构、性质和变化规律,为前沿科研和技术创新提供有力支持。
总之,光栅衍射原理是一项重要的物理现象,具有广泛的应用前
景和实用价值。
我们应该继续深入研究和探索其原理和应用,为科技
进步和社会发展做出更大的贡献。
光栅衍射是一种光波通过光栅(或称光栅板)时产生的衍射现象,它基于光波的干涉和衍射原理。
光栅是一个具有一定周期性结构的光学元件,通常由等距的狭缝或透明区域与不透明区域交替排列而成。
以下是光栅衍射的简要原理:
光波入射:当一束单色光波以特定的波长入射到光栅上时,光波会经过光栅的透明区域或狭缝,同时也会受到光栅的周期性结构影响。
干涉现象:光栅的周期性结构会导致入射光波在各个狭缝或透明区域上发生干涉现象。
这意味着从不同狭缝或透明区域出射的光波会相互叠加,形成一系列明暗相间的光斑。
衍射光束:在光栅上方,干涉产生了一系列不同方向的衍射光束。
这些光束具有特定的角度和波长,构成了光栅衍射的光谱。
光谱分布:衍射光束的角度和强度分布与光栅的周期性、波长以及入射角有关。
通过调整这些参数,可以控制光栅衍射的光谱特性。
观察和应用:光栅衍射的光谱通常可以在屏幕或检测器上观察到。
这种技术在物理学、化学、光学、光谱学、激光技术等领域广泛应用,用于分析光的波长、频率和强度等信息。
总的来说,光栅衍射是一种利用光波的干涉和衍射原理,通过光栅的周期性结构来分散和分析光波的方法。
它是一种重要的光学技术,用于研究和应用光学和波动性质。
光栅衍射的定义
光栅衍射是指当光线通过具有周期性透过或不透过特定区域的光栅时,发生的衍射现象。
光栅是一种由一系列平行且等间距的透明或不透明条纹组成的光学元件。
当平行光线照射到光栅上时,光线会经过光栅的透射或反射,并在屏幕或接收器上形成干涉图样。
光栅衍射的发生是由于光线通过光栅时发生了干涉效应。
当光线通过光栅的时候,不同条纹处的光线会以不同的角度发生折射或反射,使得光线的相位发生变化。
这些不同相位的光线在屏幕或接收器上相遇并叠加,形成干涉图样。
光栅衍射的干涉图样通常表现为一系列亮暗相间的条纹,其中亮条纹对应着干涉增强的区域,暗条纹对应着干涉减弱的区域。
条纹的间距和形状取决于光栅的周期和结构,以及入射光的波长。
光栅衍射在科学研究和实际应用中具有广泛的应用,例如光谱仪、衍射光栅、激光打印等。
通过光栅衍射现象,我们可以获取物体的光谱信息、进行精确测量和数据处理等。
工物系 核11 李敏 93 实验台号19光栅衍射实验一、实验目的(1) 进一步熟悉分光计的调整与使用;(2) 学习利用衍射光栅测定光波波长及光栅常数的原理和方法; (3) 加深理解光栅衍射公式及其成立条件; 二、实验原理测定光栅常数和光波波长如右图所示,有一束平行光与光栅的法线成i 角,入射到光栅上产生衍射;出射光夹角为ϕ。
从B 点引两条垂线到入射光和出射光。
如果在F 处产生了一个明条纹,其光程差AD CA +必等于波长λ的整数倍,即()sin sin d i m ϕλ±= (1)m 为衍射光谱的级次, 3,2,1,0±±±.由这个方程,知道了λϕ,,,i d 中的三个量,可以推出另外一个。
若光线为正入射,0=i ,则上式变为λϕm d m =sin (2)其中m ϕ为第m 级谱线的衍射角。
据此,可用分光计测出衍射角m ϕ,已知波长求光栅常数或已知光栅常数求波长。
用最小偏向角法测定光波波长如右图。
入射光线与m 级衍射光线位于光栅法线同侧,(1)式中应取加号,即。
以为偏向角,则由三角形公式得(3)易得,当时,∆最小,记为,则变为,3,2,1,0,2sin2±±±==m m d λδ(4)由此可见,如果已知光栅常数d ,只要测出最小偏向角,就可以根据(4)算出波长。
三、实验仪器分光计在本实验中,分光计的调节应该满足:望远镜适合于观察平行光,平行光管发出平行光,并且二者的光轴都垂直于分光计主轴。
光栅调节光栅时,调节小平台使光栅刻痕平行于分光计主轴。
放置光栅时应该使光栅平面垂直于小平台的两个调水平螺钉的连线。
水银灯1.水银灯波长如下表颜色紫 绿 黄 红 波长/nm2.使用注意事项(1)水银灯在使用中必须与扼流圈串接,不能直接接220V 电源,否则要烧毁。
(2)水银灯在使用过程中不要频繁启闭,否则会降低其寿命。
(3)水银灯的紫外线很强,不可直视。