第5章 时变电磁场和平面电磁波1
- 格式:pdf
- 大小:238.08 KB
- 文档页数:15
第5章 平面电磁波5.1基本内容概述本章讨论均匀平面波在无界空间传播的特性,主要内容为:均匀平面波在无界的理想介质中的传播特性和导电媒质中的传播特性,电磁波的极化,均匀平面波在各向异性媒质中的传播、相速与群速。
5.1.1理想介质中的均匀平面波1.均匀平面波函数在正弦稳态的情况下,线性、各向同性的均匀媒质中的无源区域的波动方程为220k ∇+=E E对于沿z 轴方向传播的均匀平面波,E 仅是z 坐标的函数。
若取电场E 的方向为x 轴,即x x E =E e ,则波动方程简化为222d 0d x x E k E z+= 沿+z 轴方向传播的正向行波为()j jkz x m z E e e φ-=E e (5.1)与之相伴的磁场强度复矢量为()()z kz z ωμ=⨯H e E 1j jkz ym E e e φη-=e (5.2)电场强度和磁场强度的瞬时值形式分别为(,)Re[()]cos()j t x m z t z e E t kz ωωφ==-+E E e (5.3)(,)Re[()]cos()j t m y Ez t z e t kz ωωφη==-+H H e (5.4)2.均匀平面波的传播参数 (1)周期2T πω=(s),表示时间相位相差2π的时间间隔。
(2)相位常数k =(rad/m ),表示波传播单位距离的相位变化。
(3)波长kπλ2=(m ),表示空间相位相差2π的两等相位面之间的距离。
(4)相速p v kω==m/s ),表示等相位面的移动速度。
(5)波阻抗(本征阻抗)x y E H η==Ω),描述均匀平面波的电场和磁场之间的大小及相位关系。
在真空中,37712000≈===πεμηη(Ω) 3.能量密度与能流密度在理想介质中,均匀平面波的电场能量密度等于磁场能量密度,即221122εμ=E H电磁能量密度可表示为22221122e m w w w εμεμ=+=+==E H E H (5.5)瞬时坡印廷矢量为21zη=⨯=S E H e E (5.6)平均坡印廷矢量为211Re 22av z η*⎡⎤=⨯=⎣⎦S E H e E (5.7) 4.沿任意方向传播的平面波对于任意方向n e 传播的均匀平面波,定义波矢量为n x x y y z z k k k k ==++k e e e e (5.8)则00()n jk j --==e r k r E r E e E e (5.9)()()1n η=⨯H r e E r (5.10)00n =e E (5.11)5.1.2电磁波的极化1.极化的概念波的极化表征在空间给定点上电场强度矢量的取向随时间变化的特性, 并用电场强度矢量的端点在空间描绘出的轨迹来描述。
梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。
:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。
散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。
斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。
3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。
第5章初识电磁场与电磁波课标要求1.能列举磁现象在生产生活中的应用。
了解我国古代在磁现象方面的研究成果及其对人类文明的影响。
关注与磁相关的现代技术发展。
2.通过实验,认识磁场。
了解磁感应强度,会用磁感线描述磁场。
体会物理模型在探索自然规律中的作用。
3.知道磁通量。
通过实验,了解电磁感应现象,了解产生感应电流的条件。
知道电磁感应现象的应用及其对现代社会的影响。
4.通过实验,了解电磁波,知道电磁场的物质性。
了解电磁波的应用及其带来的影响。
5.知道光是一种电磁波。
知道光的能量是不连续的。
初步了解微观世界的量子化特征。
第1节磁场及其描述核心素养物理观念科学思维科学态度与责任1.通过实验,认识磁场2.了解磁感应强度3.会用磁感线描述磁场4.会判断通电直导线和通电线圈周围的磁场用磁感线描绘通电直导线和通电线圈周围的磁场,体会物理模型在探索自然规律中的作用。
1.能列举磁现象在生产生活中的应用。
2.了解我国古代磁现象的研究成果及其对人类文明的影响。
3.关注与磁相关的现代科技的发展。
[观图助学]1.磁场(1)磁体和电流周围的空间存在一种特殊的物质——磁场。
磁场能够对磁体产生力的作用。
(2)磁场有方向,人们把磁场中某点小磁针静止时北极的指向规定为该点磁场的方向。
(3)磁场还有强弱,在磁场中的不同位置,其强弱不尽相同。
磁极:磁体上磁性最强的区域。
①北极:自由转动的磁体,静止时指北的磁极,又叫N极。
②南极:自由转动的磁体,静止时指南的磁极,又叫S极。
③性质:同名磁极相互排斥,异名磁极相互吸引。
2.磁感应强度(1)电流元:在物理学中,把很短一段通电导线中的电流I与导线长度l的乘积Il叫做电流元。
(2)磁感应强度:将电流元Il垂直放入磁场,它受到的磁场力F与Il的比值叫做磁感应强度。
①定义式B=FIl。
②磁感应强度的单位:在国际单位制中的单位是特斯拉,简称特,符号是T。
1 T=1 NA·m。
(3)磁感应强度的方向小磁针静止时N极所指的方向规定为该点的磁感应强度的方向,简称磁场的方向。
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
2023年电磁场与电磁波第2版(陈抗生著)课后
习题答案下载
电磁场与电磁波第2版(陈抗生著)课后答案下载
本书以“麦克斯韦”作为主线,从一般到具体(由静到动、由无界到有界、由无源到有源),系统地阐述了电磁场与电磁波的基本理论和分析方法,重点突出电磁场的传输特性。
本书主要内容包括电磁理论必要的`数学基础、电磁场的基本问题、静态场、时变电磁场、平面电磁波、导行电磁波、电磁波的辐射。
各章例题具体实用,并配有习题和参考答案。
本书可作为高等院校通信与电子信息类及相关专业本科生的教材,也可供从事电磁场理论、微波技术、天线领域的工程技术人员学习和参考。
电磁场与电磁波第2版(陈抗生著):内容简介
第0章绪论
第1章矢量分析与场论
第2章基本电磁场
第3章静态场
第4章时变场的基本问题
第5章均匀平面电磁波的传播
第6章平面电磁波的反射与折射
第7章导行电磁波
第8章电磁波的辐射
部分习题参考答案
电磁场与电磁波第2版(陈抗生著):图书目录
点击此处下载电磁场与电磁波第2版(陈抗生著)课后答案。
平面电磁波1 时变电磁场以电磁波的形式存在于时间和空间这个统一的物理世界。
2 研究某一具体情况下电磁波的激发和传播规律,从数学上讲就是求解在这具体条件下Maxwell equations 或wave equations 的解。
3 在某些特定条件下,Maxwell equations 或wave equations 可以简化,从而导出简化的模型,如传输线模型、集中参数等效电路模型等等。
4 最简单的电磁波是平面波。
等相面(波阵面)为无限大平面电磁波称为平面波。
如果平面波等相面上场强的幅度均匀不变,则称为均匀平面波。
5 许多复杂的电磁波,如柱面波、球面波,可以分解为许多均匀平面波的叠加;反之亦然。
故均匀平面波是最简单最基本的电磁波模式,因此我们从均匀平面波开始电磁波的学习。
§ 6.1 波动方程1 电场波动方程:ερμμε∇+∂∂=∂∂-∇t J t E E ρρρ222磁场波动方程 J t H H ρρρ⨯-∇=∂∂-∇222με 2 如果媒质导电(意味着损耗),有E J ρρσ=代入上面,则波动方程变为ερμεμσ∇=∂∂-∂∂-∇222t E t E E ρρρ0222=∂∂-∂∂-∇tHt H H ρρρμεμσ 如果是时谐电磁场,用场量用复矢量表示,则ερμεωωμσ&&ρ&ρ&ρ∇=+-∇E E j E 22 022=+-∇H H j H &ρ&ρ&ρμεωωμσ采用复介电常数,εμωωεσμεωωμσμεω&222)1(=-=-jj ,上面也可写成 3 在线性、均匀、各向同性非导电媒质的无源区域,波动方程成为齐次方程。
0222=∂∂-∇t EE ρρμε0222=∂∂-∇tHH ρρμε 4在线性、均匀、各向同性、导电媒质的无源区域,波动方程成为齐次方程。
0222=∂∂-∂∂-∇tEt E E ρρρμεμσ0222=∂∂-∂∂-∇tHt H H ρρρμεμσ 如果是时谐电磁场,用场量用复矢量表示,并采用复介电常数,εμωωεσμεωωμσμεω&222)1(=-=-j j ,上面也可写成 022=+∇E E &ρ&&ρεμω022=+∇H H &ρ&&ρεμω注意,介电常数是复数代表有损耗。