电磁场与电磁波(第5章时变电磁场)
- 格式:ppt
- 大小:1.47 MB
- 文档页数:26
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。
电磁场与电磁波第二版(周克定著)课后
习题答案下载
电磁场与电磁波第二版(周克定著)课后答案下载
第一章矢量分析
第二章静电场
第三章恒定电流的电场和磁场
第四章静态场的解
第五章时变电磁场
第六章平面电磁波
第七章电磁波的辐射
第八章导行电磁波
附录一重要的矢量公式
附录二常用数学公式
附录三量和单位
电磁场与电磁波第二版(周克定著):内容提要
全书共分八章,内容包括:矢量分析、静电场、恒定电流的`电场和磁场、静电场的解、时变电磁场、平面电磁波、电磁波的辐射及导行电磁波。
本书内容精练,概念清晰,语言流畅,注重实践性与新颖性。
为便于学习使用,书中安排有较
多的例题。
本书可作为高等学校本科相关专业“电磁场与电磁波”课程的教材,也可作为有关科技人员的自学参考书。
电磁场与电磁波第二版(周克定著):图书目录
点击此处下载电磁场与电磁波第二版(周克定著)课后答案。
第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。
解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。
计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。
解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。
由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。
由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。
将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。
由此可见,空腔内的磁场是均匀的。
5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。
dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。
第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。
但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。
说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。
讲解恒定磁场时,应与静电场进行对比。
例如,静电场是无散场,而恒定磁场是无旋场。
在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。
重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(30 r r r r r J r B πμ 毕奥─萨伐定律。
3,I ⎰=⋅ll B 0d μ安培环路定律。
面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0 r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇矢量磁位微分方程的解: V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:面积元:,体积元:(2)柱坐标系长度元:,面积元,体积元:(3)球坐标系长度元:,面积元:,体积元:2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系(2)直角坐标系与球坐标系的关系(3)柱坐标系与球坐标系的关系3、梯度(1)直角坐标系中:(2)柱坐标系中:(3)球坐标系中:4。
散度(1)直角坐标系中:(2)柱坐标系中:(3)球坐标系中:5、高斯散度定理:,意义为:任意矢量场的散度在场中任意体积内的体积分等于矢量场在限定该体积的闭合面上的通量。
6,旋度(1)直角坐标系中:(2)柱坐标系中:(3)球坐标系中:两个重要性质:①矢量场旋度的散度恒为零,②标量场梯度的旋度恒为零,7、斯托克斯公式:第二章静电场和恒定电场1、静电场是由空间静止电荷产生的一种发散场。
描述静电场的基本变量是电场强度、电位移矢量和电位。
电场强度与电位的关系为:。
2、电场分布有点电荷分布、体电荷分布、面电荷分布和线电荷分布.其电场强度和电位的计算公式如下:(1)点电荷分布(2)体电荷分布(3)面电荷分布(4)线电荷分布3、介质中和真空中静电场的基本方程分别为在线性、各向同性介质中,本构方程为:4、电介质的极化(1)极化介质体积内的极化体电荷密度为:。
(2)介质表面的极化面电荷密度为:5、在均匀介质中,电位满足的微分方程为泊松方程和拉普拉斯方程,即6、介质分界面上的边界条件(1)分界面上的边界条件(为分界面上的自由电荷面密度),当分界面上没有自由电荷时,则有:,它给出了的法向分量在介质分界面两侧的关系:(I)如果介质分界面上无自由电荷,则分界面两侧的法向分量连续;(II)如果介质分界面上分布电荷密度,的法向分量从介质1跨过分界面进入介质2时将有一增量,这个增量等于分界面上的面电荷密度。
用电位表示:(2)分界面上的边界条件(切向分量),电场强度的切向分量在不同的分界面上总是连续的.由于电场的切向分量在分界面上总连续,法向分量有限,故在分界面上的电位函数连续,即.电力线折射定律:。
《电磁场与电磁波》测验试卷﹙一﹚一、 填空题1、在国际单位制中,电场强度的单位是________;电通量密度的单位是___________;磁场强度的单位是____________;磁感应强度的单位是___________;真空中介电常数的单位是____________。
2、静电场→E 和电位Ψ的关系是→E =_____________。
→E 的方向是从电位_______处指向电位______处。
3、位移电流与传导电流不同,它与电荷___________无关。
只要电场随__________变化,就会有位移电流;而且频率越高,位移电流密度___________。
位移电流存在于____________和一切___________中。
4、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =________;而磁场→B 的法向分量B 1n -B 2n=_________;电流密度→J 的法向分量J 1n -J 2n =___________。
5、沿Z 轴传播的平面电磁波的复数表示式为:_____________________=→E , ____________________=→H 。
二、计算题1、(15分)在真空中,有一均匀带电的长度为L 的细杆, 其电荷线密度为τ。
求在其横坐标延长线上距 杆端为d 的一点P 处的电 场强度E P 。
2、(10分)已知某同轴电容器的内导体半径为a ,外导体的内半径为c ,在a ﹤r ﹤b (b ﹤c)部分填充电容率为ε的电介质,求其单位长度上的电容。
3、(10分)一根长直螺线管,其长度L =1.0米,截面积S =10厘米2,匝数N 1=1000匝。
在其中段密绕一个匝数N 2=20匝的短线圈,请计算这两个线圈的互感M 。
4、(10分)某回路由两个半径分别为R 和r 的半圆形导体与两段直导体组成,其中通有电流I 。
求中心点O 处的磁感应强度→B 。
时变电磁场1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。
由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。
2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。
2)电场和磁场共存,不可分割。
3)电力线和磁力线相互环绕。
3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。
第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。
然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。
第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。
第八章介绍了电磁波的产生-天线。
4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。
2)基本方法:复矢量§5.1时变电磁场方程及边界条件1 1)因为t∂∂不为零,电场和磁场相互耦合,不能分开研究。
其基本方程就是Maxwell 方程。
微分形式:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∂∂-=⋅∇=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇t J B D t BE t DJ H ρρ0 积分形式⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∂∂-=⋅=⋅=⋅⋅∂∂-=⋅⋅∂∂+=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰sV ss Vc s c sdV t s d J s d B dV s d D sd t B l d E s d t D J l d H ρρ)(2)物质(本构)方程: 在线性、各向同性媒质中HB E D με== 其它媒质有:非线性,各向异性,双各向异性,负相对电导率、负相对磁导率媒质等人工媒质。
这些媒质在微波、光学、隐身、伪装方面有很多应用。
3)上面的电流J 包括传导电流E J c σ=和运移电流v J vρ= 2 边界条件:§5.2 时变电磁场的唯一性定理1 如果1)一个区域内0=t 时,每一点的电场强度和磁场强度的初始值已知,2)区域边界面上电场强度的切向分量或磁场强度的切向分量已知,则该区域内每一点0>t 时Maxwell 方程组有唯一的确定解。