山东省滕州市2015届高三上学期定时练习数学(文)试题 扫描版含答案
- 格式:doc
- 大小:680.50 KB
- 文档页数:10
山东省滕州第七中学2015届高三11月考数学(文)试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的1.已知α是第二象限角,sin α=513,则cos α=( )A .-1213B .-513C .513D .12132.已知双曲线x 225-y 29=1的左、右焦点分别为F 1、F 2,若双曲线的左支上有一点M 到右焦点F 2的距离为18,N 是MF 2的中点,O 为坐标原点,则|NO |等于( )A .23B .1C .2D .43.下列说法正确的是A .样本10,6,8,5,6的标准差是3.3.B .“p q ∨为真”是“p q ∧为真”的充分不必要条件;C .已知点()2,1A -在抛物线()220y px p =>的准线上,记其焦点为F ,则直线AF 的斜率等于4-D .设有一个回归直线方程为ˆ2 1.5y x =-,则变量x 每增加一个单位,ˆy 平均减少1.5个单位;4.已知抛物线24y x =的准线与x 轴的交点为A ,焦点为F ,l 是过点A 且倾斜角为3π的直线,则点F 到直线l 的距离等于A .1BC .2D .5.函数2()2log 3x f x x =+-在区间(1,2)内的零点个数是A .0B .1C .2D .36.一个几何体的三视图如图所示,其中正视图和侧视图均是边长为2的等边三角形,则该几何体的表面积是A .3B .C .12D .37.运行如图所示的流程图,则输出的结果n a 是A .1B .1-C .4-D .5-8.函数112211()tan()log ()|tan()log ()|4242f x x x x x ππ=+----在区间1(,2)2上的图象大致为ABCD9.在锐角ABC ∆中,三个内角,,A B C 满足:2sin ()cos()B C A B +=-,则角A 与角B 的大小关系是A .23A B π+=B .A B <C .A B =D .A B >10.如图,已知,B C 是以原点O 为圆心,半径为1的圆与x 轴的交点,点A 在劣弧PQ (包含端点)上运动,其中60POx ∠=,OP OQ ⊥,作AH B C ⊥于H .若记AH xAB yAC =+,则xy 的取值范围是A .1(0,]4B .11[,]164C .13[,]1616D .31[,]164二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应的位置上 11.若i 为虚数单位,则复数31ii+=- . 12.在[3,3]-上随机取一个数x ,则(1)(2)0x x +-≤的概率为 .13.满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x 的变量,x y 使得230x y a ++≥恒成立,则实数a 的最小值为 .14.已知点P 是双曲线2219y x -=上的一点,12,F F 是双曲线的左右焦点,且12120PF PF <>=︒,,则12=PF PF + .15.已知正项等差数列{}n a 的前n 项和为n S ,9=2S ,,*p q N ∈,且18p q +=,则p q S S ⋅的最大值为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤 16.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)已知正项等比数列{}n a 满足:3454,24a a a =+=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若(1)2nn na b n n =⋅+⋅,求数列}{n b 的前n 项和n S .17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)某工厂对一批产品的质量进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图.已知样本中产品净重在[70,75)克的个数是8个。
2014-2015学年度山东省滕州市第二中学高三第一学期期末考试数学文试题全卷共150分,考试时间为120分钟一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合要求的.) 1.设复数+=1z i2(其中i 为虚数单位),则3z z +的虚部为A .4iB .4C .4i -D .4-2.设集合{}{}|,|5,,A x x k N B x x x Q ==∈=≤∈则A B 等于( )A .{1,2,5}B .{l, 2,4, 5}C .{1,4, 5}D .{1,2,4}3.已知3ln ,2log ,521===-z y e x ,则( )A .z y x <<B .y x z <<C .x z y <<D .z x y <<4.下列有关命题的说法正确的是( )A .命题“若1,12==x x 则”的否命题为:“若1,12≠=x x 则”.B .“1-=x ”是“0652=--x x ”的必要不充分条件.C .命题“01,2<-+∈∃x x R x 使得”的否定是:“01,2>-+∈∀x x R x 均有”.D .命题“若y x y x sin sin ,==则”的逆否命题为真命题. 5.一个棱锥的三视图如图所示,则它的体积为( )A .12B .32C .1D .136.执行如图所示的程序框图,则输出的S 值为 ( )A .3B .6C .7D .107.若实数x ,y 满足⎪⎩⎪⎨⎧≤+≥≥,1234,0,0y x y x 则13++=x y z 的取值范围是( )A .)7,43(B .⎥⎦⎤⎢⎣⎡5,32C .⎥⎦⎤⎢⎣⎡7,32D .⎥⎦⎤⎢⎣⎡7,438.函数)22,0(),sin(2)(πϕπωϕω<<->+=x x f 的图象如图所示,AB ·BD =( )A .8B .-8C .288π- D .288π-+9.已知点P 是椭圆()2210,0168x y x y +=≠≠上的一动点,12,F F 为椭圆的两个焦点,O 是坐标原点,若M 是12F PF ∠的角平分线上的一点,且10F M PM ⋅=,则||OM 的取值范围为( )A .[)0,3B.(0, C.)⎡⎣D .[]0,410.如图,三棱锥P ABC -的底面是正三角形,各条侧棱均相等,60APB ∠<︒.设点D 、E 分别在线段PB 、PC 上,且//DE BC ,记PD x =,ADE ∆周长为y ,则()y f x =的图象可能是( )A B C D二、填空题(本大题共5小题,每小题5分,共25分)11.若))3((.2),1(1,2,2)(21f f x x g x e x f x 则⎪⎩⎪⎨⎧≥+<=-的值为 . 12.等比数列{}n a 中,已知1,214321=+=+a a a a ,则87a a +的值为 . 13.定义在R 上的函数||)1ln(2x x y ++=,满足)1()12(+-x f x f >,则x 的取值范围是 .14.若函数()() y f x x R =∈满足(2)()f x f x -=,且[]1,1x ∈-时,()21f x x =-,函数()()()lg 010x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[5,6]-内的零点的个数为____. 15.关于x 的不等式5|1||3|x x a a+--≤-的解集不为空集,则实数a 的取值范围是 . 三、解答题(本大题共6小题,共75分,解答应写出必要的文字说明、证明过程及演算步骤.) 16.(本小题满分12分)在ABC ∆中,角A ,B,C 所对的边分别为,,,a b c 且2cos =3A . (1)求()2B+C2sin+cos2B+C 2; (2)若a =求ABC ∆面积的最大值. 17.(本小题满分12分)一汽车厂生产A,B,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位:辆),若按A,B,C 三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆.(1)求下表中z 的值;(2)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个得分数a .记这8辆轿车的得分的平均数为x ,定义事件E ={0.5a x -≤,且函数()22.31f x ax ax =-+没有零点},求事件E 发生的概率.18.(本小题满分12分)四边形A BCD 与A'ABB'都是边长为a 的正方形,点E 是A'A 的中点,AA 'ABCD ⊥平面.(1)求证:A 'C //BDE 平面; (2)求证:平面A 'AC BDE ⊥平面; (3)求三棱锥A —BDE 的体积. 19.(本题满分12分)已知公差不为0的等差数列{}n a 的前3项和3S =9,且125,,a a a 成等比数列. (1)求数列{}n a 的通项公式和前n 项和n S ; (2)设n T 为数列11{}n n a a +的前n 项和,若1n n T a λ+≤对一切n N *∈恒成立,求实数λ的最小值.20.(本小题满分13分)已知中心在原点,焦点在坐标轴上的双曲线C 经过(7,5)A -、(1,1)B --两点.(1)求双曲线C 的方程;(2)设直线:l y x m =+交双曲线C 于M 、N 两点,且线段MN 被圆E :2212=0x y x n n R +-+∈()三等分,求实数m 、n 的值. 21.(本小题满分14分)已知函数x b x f ln )(=,)()(2R a x ax x g ∈-=.(1)若曲线)(x f 与)(x g 在公共点)0,1(A 处有相同的切线,求实数a 、b 的值; (2)当1=b 时,若曲线)(x f 与)(x g 在公共点P 处有相同的切线,求证:点P 唯一; (3)若0>a ,1=b ,且曲线)(x f 与)(x g 总存在公切线,求正实数a 的最小值.2014-2015学年度山东省滕州市第二中学高三第一学期期末考试数学文试题参考答案选择题(本大题共10小题,每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案BBDDADDCBC填空题(本大题共5小题,每小题5分,共25分)11.2; 12.4; 13.x>2或x<0 ; 14. 9; 15.[)[)1,5,0+∞⋃- 解答题(本大题共6小题,共75分,解答应写出必要的文字说明、证明过程及演算步骤。
2014-2015学年度山东省滕州市善国中学高三第一学期期中考试数学(文)试题1.已知集合{}{}2104M x x ,N x x ,=+≥=<则M N = ( )A .(],1-∞-B .(]1,2-C .[)1,2-D .()2,+∞2.若sin 601233,log cos 60,log tan 30a b c ===,则A .a b c >>B .b c a >>C .c b a >>D .b a c >>3.已知,a b 为单位向量,且夹角为23π,则向量2a b + 与a 的夹角大小是A .23πB .2πC .3πD .6π4.若点),4(a 在21x y =的图像上,则π6tana的值为A .0B .33 C .1D .35."6"πα=是"212cos "=α的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.函数()xx x f 2log 12-=定义域为A .()+∞,0B .()+∞,1C .()1,0D .()()+∞,11,0 7.在△ABC 中,a b c 、、分别是三内角A B C 、、的对边, ︒=︒=45,75C A ,2b =,则此三角形的最小边长为A .46B .322 C .362 D .428.命题“∈∃x R ,0123=+-x x ” 的否定是A .∈∃x R ,0123≠+-x xB .不存在∈x R ,0123≠+-x xC .∈∀x R , 0123=+-x xD .∈∀x R , 0123≠+-x x9.要得到函数)32sin(π-=x y 的图像,只需将函数x y 2sin =的图像A .向左平移12π个单位 B .向右平移12π个单位 C .向左平移6π个单位 D .向右平移6π个单位10.函数x xx f 2log 1)(+-=的一个零点落在下列哪个区;间A .(0,1)B .(1,2)C .(2,3)D .(3,4)11.等差数列{}n a 中,已知112a =-,130S =,使得0n a >的最小正整数n 为A .7B .8C .9D .1012.函数)4cos()4sin(2x x y -+=ππ图象的一条对称轴是A .8π=xB .4π=xC .2π=xD .π=x13.已知{}n a 等比数列,41,252==a a ,则=++++13221n n a a a a a a A .)41(16n -- B .)21(16n-- C .)41(332n -- D .)21(332n -- 14.在△ABC 中,内角A,B,C 对边的边长分别为,,,a b c A 为锐角,lg b +lg(c1)=lgsin A =-lg 2,则△ABC 为 A .等腰三角形 B .等边三角形C .直角三角形D .等腰直角三角形15.若实数,a b 满足2,a b +=则33ab+的最小值是A .18B .6C .D .44216.在数列{}n a 中,13a =, 11ln(1)n n a a n+=++,则n a =A .3ln n +B .3(1)ln n n +-C .3ln n n +D .1ln n n ++17.在△ABC 中,若2,AB AB AC BA BC CA CB =⋅+⋅+⋅则△ABC 是A .等边三角形B .锐角三角形C .钝角三角形D .直角三角形18.函数sin xy x=,(,0)(0,)x ππ∈- 的图象可能是下列图象中的二、填空题(5分4⨯)19.ABC ∆中,如果bc a c b c b a 3))((=-+++,那么A 等于 20.已知sin π 0()(-1)+1 >0x x f x f x x ≤⎧=⎨⎩,则5()6f 的值为21.若曲线x y ln =的一条切线与直线y x =-垂直,则该切线方程为22.1111447(32)(31)n n +++=⨯⨯-+ 三、解答题23.(12分)已知向量()()2sin ,cos m x x π=--,,2sin()2n x x π⎫=-⎪⎭ ,函数()1f x m n =-⋅.(1)求函数()f x 的解析式;(2)求()f x 的单调递增区间.24.(14分)已知数列{}n a ,当2≥n 时满足n n n a a S -=--11, (1)求该数列的通项公式;(2)令n n a n b )1(+=,求数列{}n b 的前n 项和n T .25.(14分)已知函数()f x xlnx =, (1)求()f x 的最小值;(2)若对所有1x ≥都有()1f x ax ≥-,求实数a 的取值范围.2014-2015学年度山东省滕州市善国中学高三第一学期期中考试数学(文)试题参考答案一、选择题CADDA DCDDB BBCDB ADC 二、填空题3π12 10x y --= 31n n +三、解答题23.(1)∵)2sin(cos 2cos 3)sin(2x x x x n m -+--=⋅ππ12cos 2sin 3cos 2cos sin 322++-=+-=x x x x x ∴ x x n m x f 2cos 2sin 31)(-=⋅-=, ∴)62sin(2)(π-=x x f(2)由)(226222Z k k x k ∈+≤-≤+-πππππ解得)(36Z k k x k ∈+≤≤+-ππππ∴)(x f 的单调递增区间为)(3,6Z k k k ∈⎥⎦⎤⎢⎣⎡++-ππππ24.解:(1) 当2≥n 时,n n n a a S -=--11,则111n n n S a a ++-=-, 作差得:1112n n n n a a a a +-+=-+,112n n a a -∴=. 又212121211112S a a a a a a a -=---=-⇒=即,知0n a ≠,112n n a a -∴=, ∴{}n a 是首项为12,公比为12的等比数列,1111222n n n a -∴=⋅=().(2)由(1)得: 12n n n b +=,1231234122222n n n n n T -+∴=+++++ ,234112*********n n n n n T ++∴=+++++23411111111222222n n n n T ++∴=+++++- ,11111133422122212n n n n n ++-⋅++=+-=--,332n n n T +∴=-.25.解:(1)()f x 的定义域为()0,+∞, ()f x 的导数()1ln f x x '=+.令()0f x '>,解得1x e >;令()0f x '<,解得10x e<<.从而()f x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增. 所以,当1x e =时,()f x 取得最小值11()f e e=-. (2)依题意,得()1f x ax ≥-在[)1,+∞上恒成立,即不等式1ln a x x≤+对于[)1,x ∈+∞恒成立 .令1()ln g x x x =+, 则21111()1g x x x x x ⎛⎫'=-=- ⎪⎝⎭.当1x >时,因为11()10g x x x ⎛⎫'=-> ⎪⎝⎭, 故()g x 是()1,+∞上的增函数, 所以()g x 的最小值是(1)1g =, 所以a 的取值范围是(],1-∞.。
山东省滕州第七中学2015届高三11月考(文)数学试题(文史类)共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡相应的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的1.已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C .513 D .12132.已知双曲线x 225-y 29=1的左、右焦点分别为F 1、F 2,若双曲线的左支上有一点M 到右焦点F 2的距离为18,N 是MF 2的中点,O 为坐标原点,则|NO |等于( )A .23B .1C .2D .43.下列说法正确的是A .样本10,6,8,5,6的标准差是3.3.B .“p q ∨为真”是“p q ∧为真”的充分不必要条件;C .已知点()2,1A -在抛物线()220y px p =>的准线上,记其焦点为F ,则直线AF 的斜率等于4-D .设有一个回归直线方程为ˆ2 1.5y x =-,则变量x 每增加一个单位,ˆy 平均减少1.5个单位;4.已知抛物线24y x =的准线与x 轴的交点为A ,焦点为F ,l 是过点A 且倾斜角为3π的直线,则点F 到直线l 的距离等于A .1BC .2D .5.函数2()2log 3x f x x =+-在区间(1,2)内的零点个数是A .0B .1C .2D .36.一个几何体的三视图如图所示,其中正视图和侧视图均是边长为2的等边三角形,则该几何体的表面积是A B . C .12 D 7.运行如图所示的流程图,则输出的结果n a 是A .1B .1-C .4-D .5-8.函数112211()tan()log ()|tan()log ()|4242f x x x x x ππ=+----在区间1(,2)2上的图象大致为A B C D9.在锐角ABC ∆中,三个内角,,A B C 满足:2sin ()cos()B C A B +=-,则角A 与角B 的大小关系是A .23AB π+= B .A B <C .A B =D .A B >10.如图,已知,B C 是以原点O 为圆心,半径为1的圆与x 轴的交点,点A 在劣弧PQ (包含端点)上运动,其中60POx ∠=,OP OQ ⊥,作A H B C ⊥于H .若记AH xAB yAC =+,则xy 的取值范围是A .1(0,]4 B .11[,]164 C .13[,]1616 D .31[,]164二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应的位置上11.若i 为虚数单位,则复数31i i+=-. 12.在[3,3]-上随机取一个数x ,则(1)(2)0x x +-≤的概率为.13.满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x 的变量,x y 使得230x y a ++≥恒成立,则实数a 的最小值为.14.已知点P 是双曲线2219y x -=上的一点,12,F F 是双曲线的左右焦点,且12120PF PF <>=︒,,则12=PF PF +.15.已知正项等差数列{}n a 的前n 项和为n S ,9=2S ,,*p q N ∈,且18p q +=,则p q S S ⋅的最大值为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤16.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)已知正项等比数列{}n a 满足:3454,24a a a =+=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若(1)2n n na b n n =⋅+⋅,求数列}{n b 的前n 项和n S .17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)某工厂对一批产品的质量进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图.已知样本中产品净重在[70,75)克的个数是8个。
2015年山东省滕州市第三中学第一学期高三第四次月考数学(文)试题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={1,2},B={x|(x-2)(x-3)=0},则A ∪B=( )A .{2},B .{1,2,3},C .{1,3},D .{2,3} 2.若向量BA =(1,2),CA =(4,5),则BC =( )A .(5,7),B .(-3,-3),C .(3,3),D .(-5,-7)3. 某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为( )A .15,B .20,C .25,D .304.已知3sin cos ,cos sin 842ππααααα=<<-且,则的值是A .12B .12-C .14-D .12±5.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2等于A .-10B .-8C .-6D .-46.下列命题错误的是 A .命题“21,11x x <<<若则-”的逆否命题是若1x ≥或1x ≤-,则12≥x B .“22am bm <”是”a b <”的充分不必要条件C .命题p :存在R x ∈0,使得01020<++x x ,则p ⌝:任意R x ∈,都有012≥++x xD .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题7.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为A .4B .2C .2D8.为了在一条河上建一座桥,施工前在河两岸打上两个桥位桩,A B (如图),要测算,A B 两点的距离,测量人员在岸边定出基线BC ,测得50BC m =,105,45ABC BCA ∠=∠=,就可以计算出,A B 两点的距离为A .mB .mC .mD 9.已知函数()y xf x '=-的图象如图(其中()f x '是函数()f x 的导函数),下面四个图象中,()y f x =的图象可能是10.已知直线,l m ,平面,αβ,且,l m αβ⊥⊂,给出四个命题:①若α∥β,则l m ⊥; ②若l m ⊥,则α∥β;③若αβ⊥,则l ∥m ;④若l ∥m ,则αβ⊥.其中真命题的个数是A .4B .3C .2D .111.已知函数⎪⎩⎪⎨⎧<-≥-=2,1)21(2,)2()(x x x a x f x 满足对任意的实数21x x ≠都有0)()(2121<--x x x f x f 成立,则实数a 的取值范围为A .)2,(-∞B .]813,(-∞ C .]2,(-∞ D .)2,813[12.已知[1,1]x ∈-,则方程2cos 2πxx -=所有实数根的个数为A .2B .3C .4D .5第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分,共20分.13.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1y z x +=的最小值为 .14.已知0,0x y >>,若2282y x m m x y+>+恒成立,则实数m 的取值范围是 . 15.已知三棱柱111ABC A B C -的侧棱垂直底面,所有顶点都在球面上,21==AA AB AC=1,oBAC 60=∠,则球的表面积为_________. 16.下面四个命题:①已知函数(),0,,0,x f x x =<≥ 且()()44f a f +=,那么4a =-;②要得到函数sin 23y x π⎛⎫=+⎪⎝⎭的图象,只要将sin 2y x =的图象向左平移3π单位;③若定义在()∞+∞,- 上的函数)(-1()(x f x f x f =+)满足,则)(x f 是周期函数;④已知奇函数()f x 在(0,)+∞为增函数,且(1)0f -=,则不等式()0f x <的解集{}1x x <-.其中正确的是__________________.三、解答题:本大题共5小题,共计70分。
二〇一五届高三定时训练数学文科试题参考答案及评分标准 2014.11一、选择题(每小题5分,共50分)二、填空题(每小题5分,共25分) 11.e312.1-=x y 13.4 14.83π 15.75 三、解答题(共75分)(注意:答案仅提供一种解法,学生的其他正确解法应依据本评分标准,酌情赋分.) 16.解:(1)在△ABC 中,由正弦定理得sin sin sin cos 0A B B A +=,………………………2分 即sin (sin cos )0B A A +=,又角B 为三角形内角,sin 0B ≠所以sin cos 0A A +=)04A π+=, …………………………………4分又因为(0,)A π∈,所以34A π=. …………………………………6分 (2)在△ABC 中,由余弦定理得:2222cos a b c bc A =+-⋅,则2512(c c =+-⋅……………………………8分即240c -=,解得c =-或c =10分又1sin 2S bc A =,所以111222S =⨯=. ………………………………12分 17.解:设函数()m x m x x x g --⎪⎭⎫ ⎝⎛+=-+=412122,所以()x g 在[1,2]上是增函数,其最小值为()m g -=21,由20x x m +->在[1,2]x ∈上恒成立,因此只要20m ->即可,所以2m <. ………………………………3分又因为2y x =在[0,)+∞上是增函数,1y x =-在(,0)-∞上也是增函数,且10-<,所以()f x 在R 上是增函数,由2()(2)f m f m >+可得22m m >+,解得2m >或1m <-. ……………………………………6分 若p q ∨为真,p q ∧为假,所以p 与q 一真一假 …………………………………7分 若p 真q 假,应有2,12,m m <⎧⎨-≤≤⎩所以12m -≤<; …………………………………9分若p 假q 真,应有2,21,m m m ≥⎧⎨><-⎩或所以2m >; ………………………………11分因此m 的范围是1m ≥-且2m ≠. ……………………………………12分18.解:(1)由已知得=)(x f a ⋅b x x x x cos sin 32sin cos 22+-==cos 222sin(2)6x x x π+=+, ……………………………………3分)(x f 的最小正周期ππ==22T . ……………………………………4分 令226222πππππ+≤+≤-k x k ,Z ∈k ,可得63ππππ+≤≤-k x k (Z ∈k ),则)(x f 的单调递增区间为]6,3[ππππ+-k k (Z ∈k ).………………………6分(2)由1310)(=x f 得5sin(2)613x π+=, ……………………………………7分 由,46x ππ⎡⎤∈-⎢⎥⎣⎦,可得]2,3[62πππ-∈+x ,所以1312)62(sin 1)62cos(2=+-=+ππx x , ………………………………9分 sin 2sin(2)sin(2)cos cos(2)sin 666666x x x x ππππππ=+-=+-+=51211213213226⨯-⨯=. ……………………………………12分19.解:(1)当800<<x ,*N ∈x 时,2504031250)(50)(2-+-=--=x x x C x x L ,……………………………………2分 当80≥x ,*N ∈x 时,)100001200250)(50)(xx x C x x L +-=--=(,……………………………………4分 所以⎪⎪⎩⎪⎪⎨⎧∈≥+-∈<<-+-=.,80 )10000(1200,,800 2504031)(**2N N x x x x x x x x x L ,, ………………………6分(2)当800<<x ,*N ∈x 时,9506031)(2+--=)(x x L此时,当60=x 时,)(x L 取得最大值950)60(=L ,………………………………8分当80≥x ,*N ∈x 时,由,20010000≥+xx 当且仅当100=x 时取等号; 此时1000)(≤x L ,即当100=x 时,)(x L 取得最大值1000)100(=L ,………10分 因为,9501000>所以年产量为100千件时,最大利润是1000万元. ………………………………12分 20. 解:(1)设等差数列{}n a 的公差为,d则()n d a n d d n n na S n ⎪⎭⎫ ⎝⎛-+=-+=2221121,又,q pn n S n ++=2 所以0,2,121==-=q p da d ,可得0,1,21=-==q a p d ,又532,,a a a 成等比数列,所以5223a a a =,即()()()8241121++=+a a a ,解得01=a ,所以1-=p .………………………6分(2)由(1)知22-=n a n ,又,log log 22n n b n a =+则142-⋅=⋅=n a n n n b n,………………………………8分所以12021443424-⋅++⨯+⨯+=+++=n n n n b b b T 则n n n T 443424432⋅++⨯+⨯+= , 两式相减可得()31431444443121--=⋅-++++=--n nn n n n T ,所以()[]141391+-=n n n T . ………………………………13分 21.解:(1) 当1-=a 时,()x x x f ln +-=,定义域为()∞+,0, ()xxx x f -=+-='111, ………………………………1分 令()0>'x f ,得10<<x ;令()0<'x f ,得1>x . ………………………………2分 所以)(x f 在()1,0上是增函数,在()∞+,1上是减函数. ………………………………3分 (2) 由已知得()(]e x x a x f ,0,1∈+=',1x ∈1,e ⎡⎫+∞⎪⎢⎣⎭,……………………………4分 ① 若1a e≥-,则(),0≥'x f 从而)(x f 在(]e ,0上为增函数,此时,)(x f 的最大值为(),01≥+=ae e f 不合题意.………………………………6分 ② 若1a e <-,由(),0>'x f 得10x a <<-,由0)(<'x f 得1x e a-<<, 从而)(x f 在10,a ⎛⎫-⎪⎝⎭上为增函数,在1,e a ⎛⎫- ⎪⎝⎭上为减函数, 此时,)(x f 的最大值为)1ln(1)1(aaf -+-=-,……………………………………8分 令3)1ln(1-=-+-a ,得2)1ln(-=-a ,21-=-e a,2e a -=, 又2e -<1e-,所以2a e =-. ………………………………………………9分 (3) 由(1)知当1-=a 时,)(x f 的最大值为()11-=f ,所以1|)(|≥x f , ………………………10分令21ln )(+=x x x g ,2ln 1)('x xx g -=, …………………………………………11分 令()0>'x g ,得e x <<0,()x g 在()e ,0单调递增;令()0>'x g ,得e x >,()x g 在()+∞,e 单调递减. …………………………… 12分 ()x g 的最大值为1211)(<+=e e g ,即()1<x g . ………………………………13分 因此()()x g xf > ,即21ln |)(|+>x x x f , 从而方程21ln |)(|+=x x x f 没有实数解. ……………………………………14分。
2015届山东省滕州市第三中学高三高考适应性训练数学文试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|03},{|540}M x x N x x x =<<=-+≥,则MN =A .{|01}x x <≤B .{|13}x x ≤<C .{|04}x x <≤D .{|0x x <或4}x ≥2.下列命题中的假命题是A .0,32x x x ∀>>B .()0,,1x x e x ∀∈+∞>+C .000sin ),,0(x x x <+∞∈∃D .00,lg 0x R x ∃∈<3.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =A .2744n n+ B .2533n n+ C .2324n n+ D .2n n +4.函数3()f x ax bx =+在1ax =处有极值,则ab 的值为( ).A .3B .3-C .0D .15.已知ABC ∆的三顶点坐标为(3,0)A ,(0,4)B ,(0,0)C ,D 点的坐标为(2,0),向ABC ∆内部投一点P ,那么点P 落在ABD ∆内的概率为( ).A .13B .12C .14D .166.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是( ) A .①和②B .②和③C .③和④D .②和④7.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2cm 的圆(包括圆心),则该零件的体积是( )A .4π33cm B .8π3 3cm C .4π 3cm D .20π33cm 8.函数()sin()6f x A x πω=+(0)ω>的图像与x 轴的交点的横坐标构成一个公差为2π的等差数列,要得到函数()cos g x A x ω=的图像只需将()f x 的图像( )A .向左平移6π B .向右平移3π C .向左平移23π D .向右平移23π 9.已知点F 1、F 2分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,A 、B 是以O (O 为坐标原点)为圆心、|OF 1|为半径的圆与该椭圆左半部分的两个交点,且△F 2AB 是正三角形,则此椭圆的离心率为( )A B C 1- D 110.已知函数4()f x x=与3()g x x t =+,若()f x 与()g x 的交点在直线y x =的两侧,则实数t 的取值范围是 ( )A .(6,0]-B .(6,6)-C .(4,)+∞D .(4,4)-第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横在线. 11.已知复数(),,21,,z x yi x y R z x y =+∈-=且则满足的轨迹方程是 ; 12.已知如下算法语句输入t;If t<5 Then y=t 2+1; Else if t<8 Then y=2t-1;Else y=1; End If End if 输出y若输入t=8,则下列程序执行后输出的结果是 . 13.观察下列各式:2233441,3,4,7,a b a b a b a b +=+=+=+=5511......a b +=则1010a b +=___________.14.已知变数,x y 满足约束条件340210,380x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.15.选做题:(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分.)A .(不等式选作题)若不等式|2||3|x x a -++<的解集为∅,则a 的取值范围为________;B .(几何证明选做题)如图,已知⊙O的直径AB =,C 为⊙O 上一点,且BC =过点B 的⊙O 的切线交AC 延长线于点D ,则DA =________;C .(坐标系与参数方程选做题)在极坐标系中,圆2ρ=上的点到直线(cos )6ρθθ=的距离的最小值为________.三、解答题 本大题共6小题,共75分.16.(本小题满分12分)如图所示的长方体1111ABCD A B C D -中,底面ABCD 是边长为2的正方形,O 为AC 与BD的交点,1BB =M 是线段11B D 的中点.(1)求证://BM平面1D AC ;(2)求三棱锥11D AB C -的体积.17.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,点(,)a b 在直线(sin sin )sin sin x A B y B c C -+=上.(1)求角C 的值; (2)若222cos2sin 222A B -=,且A B <,求c a . 18.(本小题满分12分)已知等差数列{}n a 的首项11a =,公差0d >,且第2项、第5项、第14项分别是等比数列{}n b 的第2项、第3项、第4项.(1)求数列{}n a ,{}n b 的通项公式; (2)若数列{}n c 对任意*n N ∈,均有12112......n n nc c c a b b b ++++=成立. ①求证:()22nnc n b =≥; ②求122014......c c c +++. 19.(本小题满分12分)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:某市2013年3月8日—4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如下条形图:(1)估计该城市一个月内空气质量类别为良的概率;(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.20.(本小题满分13分)如图,已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,其上顶点为.A 已知12F AF ∆是边长为2的正三角形.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一动直线l 交椭圆C 于,M N 两点,记MQ QN λ=⋅.若在线段MN 上取一点R ,使得MR RN λ=-⋅,当直线l 运动时,点R 在某一定直线上运动,求出该定直线的方程.21.(本小题满分14分)已知函数ln ()1xf x x=-. (1)试判断函数()f x 的单调性;(2)设0m >,求()f x 在[,2]m m 上的最大值; (3)试证明:对任意*n N ∈,不等式11ln()e n nn n++<都成立(其中e 是自然对数的底数).2015届山东省滕州市第三中学高三高考适应性训练数学文试题参考答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A 2.C 3.A 4.B 5. A 6.D 7.C 8.A 9.D 10.B第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上.11.()2221x y -+= 12. 9 13. 123 14. 1(,)3+∞15.A .(,5]-∞ B . 3 C .1三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)解:(1)由题得()sin sin sin sin a A B b B c C -+=,由正弦定理sin sin sin a b c A B C==得()22a a b b c -+=,即222a b c ab +-=. 由余弦定理得2221cos 22a b c C ab +-==, 结合0C π<<,得3C π=.(2)因为222cos2sin cos cos 22A BA B -=+ )32cos(cos A A -+=π23)6sin(sin 23cos 21=+=+=πA A A 因为23A B π+=,且A B <所以0,366263A A A ππππππ<<∴<+<∴+=所以,,,,623cA B C aπππ===∴=17.(本小题满分12分) 解:(1)连结1D O ,如图,∵O 、M 分别是BD 、11B D 的中点,11BD D B 是矩形, ∴四边形1D OBM 是平行四边形, ∴1//DO BM . --------2分 ∵1D O ⊂平面1D AC ,BM ⊄平面1D AC , ∴//BM 平面1D AC .-------------------6分(2)解法1 连结1OB ,∵正方形ABCD 的边长为2,1BB =11B D =12OB =,12D O =,则2221111OB DO B D +=,∴11OB DO ⊥. --------------------------------------------------------8分 又∵在长方体1111ABCD A BC D -中,AC BD ⊥,1AC D D ⊥,且1BD D D D =,∴AC ⊥平面11BDD B ,又1D O ⊂平面11BDD B , ∴1AC D O ⊥,又1ACOB O =,∴1D O ⊥平面1ABC ,即1D O 为三棱锥11D AB C -的高. ----------10分∵1111222AB C S AC OB ∆=⋅⋅=⨯=12D O =∴111111233D AB C AB C V S D O -∆=⋅⋅=⨯=. --------------------------------12分 解法2: 三棱锥11D AB C -是长方体1111ABCD A BC D -割去三棱锥1D DAC -、三棱锥1B BAC -、三棱锥111A A B D -、三棱锥111C C B D -后所得,而三棱锥1D DAC -、1B BAC -、111A A B D -、111C C B D -是等底等高,故其体积相等.11111114D AB C ABCD A B C D B BACV V V ---∴=-1122422323=⨯⨯⨯⨯⨯⨯⨯. 18.(本小题满分12分) 解:(1)25141,14,113,a d a d a d =+=+=+ 2(14)(1)(113),d d d ∴+=++解得2(0)d d =>1(1)22 1.n a n n ∴=+-⨯=- 又22533,9b a a b ====所以,等比数列{}n b 的公比213223.3n n n b q b b q b --==∴== (2)①证明:12112......n n n c c c a b b b ++++= ∴当2n ≥时,112121......n n n c c ca b b b --+++= 两式相减,得12(2)nn n nc a a n b +=-=≥ . ②由①得1223(2)n n n c b n -==⨯≥当1n =时,1211,3c a c b =∴=不满足上式 故13,1.232n n n c n -=⎧=⎨⨯≥⎩ 201312201320142014122014663......32323 (23)3333313c c c -⨯∴+++=+⨯+⨯++⨯=+=-+=-19.(本小题满分12分)(1)由条形监测图可知,空气质量级别为良的天数为16天,所以此次检测结果中空气质量为良的概率为1583016= (2)样本中空气质量级别为三级的有4天,设其编号为a ,b ,c ,d ;样本中空气质量级别为四级的有2天,设其编号为,。
山东省滕州市2015届高三数学上学期定时练习试题文(扫描版)二〇一五届高三定时训练数学文科试题参考答案及评分标准 2014.11 一、选择题(每小题5分,共50分) 题号 1 2 3 4 5 6 7 8 9 10 答案BCBDACBADA11.e 312.1-=x y 13.4 14.83π 15.75三、解答题(共75分)(注意:答案仅提供一种解法,学生的其他正确解法应依据本评分标准,酌情赋分.) 16.解:(1)在△ABC 中,由正弦定理得sin sin sin cos 0A B B A +=,………………………2分即sin (sin cos )0B A A +=,又角B 为三角形内角,sin 0B ≠所以sin cos 0A A +=,2sin()04A π+=, (4)分又因为(0,)A π∈,所以34A π=. (6)分(2)在△ABC 中,由余弦定理得:2222cos a b c bc A =+-⋅,则22512()c c =+-⋅- (8)分即2240c c +-=,解得22c =-(舍)或2c =………………………………10分又1sin 2S bc A=,所以1211222S =⨯⨯⨯=. ………………………………12分17.解:设函数()mx m x x x g --⎪⎭⎫ ⎝⎛+=-+=412122,所以()x g 在[1,2]上是增函数,其最小值为()m g -=21, 由20x x m +->在[1,2]x ∈上恒成立,因此只要20m ->即可,所以2m <. ………………………………3分又因为2y x =在[0,)+∞上是增函数,1y x =-在(,0)-∞上也是增函数,且10-<,所以()f x 在R 上是增函数,由2()(2)f m f m >+可得22m m >+, 解得2m >或1m <-. ……………………………………6分若p q ∨为真,p q ∧为假,所以p 与q 一真一假 …………………………………7分若p 真q 假,应有2,12,m m <⎧⎨-≤≤⎩所以12m -≤<; …………………………………9分若p 假q 真,应有2,21,m m m ≥⎧⎨><-⎩或所以2m >; (11)分因此m 的范围是1m ≥-且2m ≠. ……………………………………12分18.解:(1)由已知得=)(x f a ⋅b x x x x cos sin 32sin cos 22+-==cos 2322sin(2)6x x x π+=+, ……………………………………3分)(x f 的最小正周期ππ==22T . ……………………………………4分令226222πππππ+≤+≤-k x k ,Z ∈k ,可得63ππππ+≤≤-k x k (Z ∈k ), 则)(x f 的单调递增区间为]6,3[ππππ+-k k (Z ∈k ) (6)分(2)由1310)(=x f 得5sin(2)613x π+=, ……………………………………7分由,46x ππ⎡⎤∈-⎢⎥⎣⎦,可得]2,3[62πππ-∈+x , 所以1312)62(sin 1)62cos(2=+-=+ππx x , (9)分sin 2sin(2)sin(2)cos cos(2)sin 666666x x x x ππππππ=+-=+-+=51211213213226⨯-⨯=. ……………………………………12分19.解:(1)当800<<x ,*N ∈x 时,2504031250)(50)(2-+-=--=x x x C x x L , (2)分当80≥x ,*N ∈x 时,)100001200250)(50)(x x x C x x L +-=--=(, (4)分所以⎪⎪⎩⎪⎪⎨⎧∈≥+-∈<<-+-=.,80 )10000(1200,,800 2504031)(**2N N x x x x x x x x x L ,, (6)分(2)当800<<x ,*N ∈x 时,9506031)(2+--=)(x x L此时,当60=x 时,)(x L 取得最大值950)60(=L ,………………………………8分当80≥x ,*N ∈x 时,由,20010000≥+x x 当且仅当100=x 时取等号;此时1000)(≤x L ,即当100=x 时,)(x L 取得最大值1000)100(=L ,………10分因为,9501000>所以年产量为100千件时,最大利润是1000万元. ………………………………12分20. 解:(1)设等差数列{}n a 的公差为,d则()n d a n d d n n na S n ⎪⎭⎫ ⎝⎛-+=-+=2221121,又,q pn n S n ++=2所以0,2,121==-=q p da d ,可得0,1,21=-==q a p d , 又532,,a a a 成等比数列,所以5223a a a =, 即()()()8241121++=+a a a ,解得01=a ,所以1-=p (6)分(2)由(1)知22-=n a n , 又,log log 22n n b n a =+则142-⋅=⋅=n a n n n b n , (8)分所以12021443424-⋅++⨯+⨯+=+++=n n n n b b b T ΛΛ则nn n T 443424432⋅++⨯+⨯+=Λ,两式相减可得()314314444431210--=⋅-++++=--n nn n n n T Λ,所以()[]141391+-=n n n T . ………………………………13分解:(1) 当1-=a 时,()x x x f ln +-=,定义域为()∞+,0,()x xx x f -=+-='111, ………………………………1分令()0>'x f ,得10<<x ;令()0<'x f ,得1>x . (2)分所以)(x f 在()1,0上是增函数,在()∞+,1上是减函数. ………………………………3分(2) 由已知得()(]e x x a x f ,0,1∈+=',1x ∈1,e ⎡⎫+∞⎪⎢⎣⎭, (4)分① 若1a e ≥-,则(),0≥'x f 从而)(x f 在(]e ,0上为增函数,此时,)(x f 的最大值为(),01≥+=ae e f 不合题意.………………………………6分② 若1a e <-,由(),0>'x f 得10x a <<-,由0)(<'x f 得1x ea -<<,从而)(x f 在10,a ⎛⎫- ⎪⎝⎭上为增函数,在1,e a ⎛⎫- ⎪⎝⎭上为减函数, 此时,)(x f 的最大值为)1ln(1)1(a a f -+-=-,……………………………………8分令3)1ln(1-=-+-a ,得2)1ln(-=-a ,21-=-e a ,2e a -=,又2e -<1e -,所以2a e =-. (9)分(3) 由(1)知当1-=a 时,)(x f 的最大值为()11-=f ,所以1|)(|≥x f , ………………………10分令21ln )(+=x x x g ,2ln 1)('x xx g -=, …………………………………………11分令()0>'x g ,得e x <<0,()x g 在()e ,0单调递增;令()0>'x g ,得e x >,()x g 在()+∞,e 单调递减. (12)分()x g 的最大值为1211)(<+=e e g ,即()1<x g . (13)分因此()()x g x f > ,即21ln |)(|+>x x x f ,从而方程21ln |)(|+=x x x f 没有实数解. (14)分。
2015年山东省滕州市第二中学第一学期高三期中考试数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填写在答题卷上的相应题目的答题区域内.1. (2015•惠州模拟)已知集合A={y|y=|x|-1,x ∈R},B={x|x ≥2},则下列结论正确的是( ) A .-3∈A, B .3∉B, C .A∩B=B, D .A ∪B=B2. (2014•山东)已知函数f (x )=丨x-2丨+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12), B .(12,1), C .(1,2), D .(2,+∞) 3. (2015•惠州模拟)下列函数在定义域内为奇函数的是( ) A .y=x+1x, B .y=xsinx, C .y=|x|-1, D .y=cosx 4. (2015•惠州模拟)某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为( )A .15,B .20,C .25,D .305.若sin 601233,log cos 60,log tan 30a b c ===,则A .a b c >>B .b c a >>C .c b a >>D .b a c >>6.已知,,l m n 是三条不同的直线,,αβ是两个不同的平面,下列命题为真命题的是 A .若l m ⊥,l n ⊥,m α⊂,n α⊂,则l α⊥ B .若l α⊥,α∥β,m β⊂,则l m ⊥ C .若l ∥m ,m α⊂,则l ∥αD .若l α⊥,αβ⊥,m β⊂,则l ∥m7.将函数()sin 2f x x =的图象向右平移6π个单位,得到函数()y g x =的图象,则它的一个对称中心是A .(,0)2π-B .(,0)6π-C .(,0)6πD .(,0)3π8.已知函数22,1,()45,1,x x f x x x x ≤⎧=⎨-+>⎩若()1f a ≥,则实数a 的取值范围为A .[]0,1B .[)1,+∞C .[]0,3D .[)0,+∞9.如图所示,在边长为2的菱形ABCD 中,60ABC ∠= ,对角线相交于点,O P 是线段BD 的一个三等分点,则⋅等于A . 1B .2C .3D .410.已知函数()sin f x x x =的图象是下列两个图象中的一个,请你选择后再根据图象做出下面的判断:若12,(,)22x x ππ∈-,且12()()f x f x <,则A .12x x >B .120x x +=C .12x x <D .2212x x <第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分.在答题卷上的相应题目的答题区域内作答.11.命题:“∀x R ∈, 0122≥++x x .”的否定是 .12.等差数列{}n a 中,683=+a a ,则10122log (222)a a a ⋅⋅⋅⋅=___________. 13.已知角α的终边上一点的坐标为55(sin ,cos )66P ππ,则角α的最小正值为_________.14.已知0,0a b >>,且21a b +=,则ba 11+的最小值为_____ ______.15.某三棱锥的三视图如下图所示,则该三棱锥最长棱的棱长为___ ________.16.记123k k k k k S n =++++ ()*n N ∈,当123k ,,,=L 时,观察下列等式: 2111,22S n n =+ 322111,326S n n n =++4323111,424S n n n =++54341115230S n n An n =++-,654251156212S n n n Bn =+++,L ,可以推测,A B +=___________.三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 是各项均为正数的等差数列,11=a ,且2a ,13+a ,6a 成等比数列. (1)求数列{}n a 的通项公式;(2)设)(2))(1(3+∈++=N n a n b n n ,求数列{}n b 的前n 项和n S .18.(本小题满分12分)换题,变第18题已知向量(cos sin ,2cos ),(cos sin ,sin ),a x x x b x x x =+=- 函数()f x a b =⋅(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[0,]4π上的最大值和最小值.19.(本小题满分12分)如图所示,三棱锥A BCD 中,AB ⊥平面BCD ,CD ⊥BD . (1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A MBC -的体积.20.(本小题满分12分)如图所示,某海滨城市位于海岸A 处,在城市A 的南偏西20°方向有一个海面观测站B ,现测得与B 处相距31海里的C 处,有一艘豪华游轮正沿北偏西40°方向,以40海里/小时的速度向城市A 直线航行,30分钟后到达D 处,此时测得B 、D 间的距离为21海里. (1)求 sin BDC ∠的值;(2)试问这艘游轮再向前航行多少分钟方可到达城市A ?21.(本小题满分14分)如图所示,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB ,将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF .(1)求证:NC ∥平面MFD ;(2)若3EC =,求证:FC ND ⊥;(3)求四面体NFEC 体积的最大值.22.(本小题满分14分) 已知R a ∈,函数x ax x f ln 21)(2-=. (1)当1=a 时,求曲线)(x f y =在点))1(1(f ,处的切线的斜率; (2)讨论)(x f 的单调性;(3)是否存在a 的值,使得方程2)(=x f 有两个不等的实数根?若存在,求出a 的取值范围;若不存在,说明理由.2015年山东省滕州市第二中学第一学期高三期中考试数学(文)试题参考答案一、选择题:每小题5分,共50分.CACDA BCDBD二、填空题:每小题4分,共24分.11.2000,210x R x x ∃∈++< (写成 2,210x R x x ∃∈++<也给分)12.30 13.53π 14.3+ 16.14三、解答题:本大题共6个小题,共76分.17.解:(1)由题意6223)1(a a a =+, .............................................2分 即)51)(1()22(2d d d ++=+,解得3=d 或1-=d (4)分由已知数列{}n a 各项均为正数,所以3=d ,故23-=n a n (6)分(2)111)1(1)2)(1(3+-=+=++=n n n n a n b n n ………………………………10分111111...31212111+-+--++-+-=∴n n n n S n ………………………………11分11-1+=∴n S n 1n n =+ ……………………………………12分18.(1)()(cos sin )(cos sin )2cos sin f x a b x x x x x x =⋅=+-+-------------------2分22cos sin 2sin cos cos 2sin 2)4x x x x x x x π=-+=+=+,------------5分∴函数()f x 的最小正周期为22T ππ==.----------------------------------------6分 (2)令24t x π=+,∵[0,]4x π∈, ∴32[,]444x πππ+∈,-----------------------------------8分 即3[,]34t ππ∈,∴sin t 在[,]42t ππ∈上是增函数,在3[,]24t ππ∈上是减函数,-----10分∴当2t π=,即242x ππ+=,8x π=时,max())28f x π==----------------11分当4t π=或34π,即0x =或4π时,min()(0)()14f x f f π===.---------------------12分19.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB⊥CD又∵CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,∴CD⊥平面ABD.…(每个条件1分)…………6分(2)由AB⊥平面BCD,得AB⊥BD.∵AB=BD=1,∴S△ABD=12.∵M是AD的中点,∴S△ABM=12S△ABD=14.-----------8分由(1)知,CD⊥平面ABD,∴三棱锥C ABM的高h=CD=1,--------------10分因此三棱锥A MBC的体积V A MBC=V C ABM=13S△ABM·h=112.--------------12分方法二:(1)同方法一.(2)由AB⊥平面BCD,得平面ABD⊥平面BCD.且平面ABD∩平面BCD=BD.如图所示,过点M作MN⊥BD交BD于点N,则MN ⊥平面BCD ,且MN =12AB =12.又CD ⊥BD ,BD =CD =1,∴S △BCD =12.∴三棱锥A MBC 的体积V A MBC =V A BCD -V M BCD=13AB ·S △BCD -13MN ·S △BCD =112. --------------12分 20.解:(1)由已知,140202CD =⨯=. ------------------------------------2分在△BCD 中,据余弦定理,有2222120311cos 221207BDC +-∠==-⨯⨯.----4分所以sin BDC ∠== ------------------------6分(2)由已知可得,204060,BAD ∠=+=所以3s i 7AB ∠=.----8分 在△ABD 中,根据正弦定理,有sin sin AD BDABD BAD=∠∠,又BD=21,则21sin 15sin BD ABDAD BAD⨯∠===∠.-----------------------10分 所以156022.540t =⨯=(分钟). -----------------------------------------12分答:这艘游轮再向前航行22.5分钟即可到达城市A .21.解:(1)证明:因为四边形MNEF ,EFDC 都是矩形, 所以 MN ∥EF ∥CD ,MN EF CD ==.所以 四边形MNCD 是平行四边形,……………2分 所以 NC ∥MD , ………………3分 因为 NC ⊄平面MFD ,所以 NC ∥平面MFD .4分 (2)证明:连接ED ,设ED FC O = .因为平面⊥MNEF 平面ECDF ,且EF NE ⊥, 所以 ⊥NE 平面ECDF …5分所以 FC NE ⊥.又 EC CD =, 所以四边形ECDF 为正方形,所以 FC ED ⊥. 所以 ⊥FC 平面NED , 所以 FC ND ⊥. …………8分 (3)解:设x NE =,则x EC -=4,其中04x <<.由(Ⅰ)得⊥NE 平面FEC ,所以四面体NFEC 的体积为11(4)32NFEC EFC V S NE x x ∆=⋅=-.所以 21(4)[]222NFEC x x V +-≤=. 当且仅当x x -=4,即2=x 时,四面体NFEC 的体积最大. …………12分22.解:(1)当1=a 时,01)(>-='x xx x f , 0)1(='=∴f k所以曲线y=f (x )在点))1(1(f ,处的切线的斜率为0. …………………………3分(2)011)(2>-=-='x x ax x ax x f , …………………………………………4分①当)0()(,0)(0∞+<'≤,在时,x f x f a 上单调递减; ………………………6分 ②当aax x f a =='>解得时,令,0)(0.0)()(0)()0(>'∞+∈<'∈x f aax x f a a x 时,,;当时,,当.内单调递增,内单调递减;在,在函数)()0()(∞+∴aaa a x f ………………8分(3)存在)0(3e a ,∈,使得方程2)(=x f 有两个不等的实数根. ………………9分理由如下:由(1)可知当)0()(,0)(0∞+<'≤,在时,x f x f a 上单调递减, 方程2)(=x f 不可能有两个不等的实数根; ………………………11分由(2)得, 内单调递增,,内单调递减,在,在函数)()0()(∞+a aa a x f 使得方程2)(=x f 有两个不等的实数根,等价于函数)(x f 的极小值2)(<aaf ,即2ln 2121)(<+=a a a f ,解得30e a << 所以a 的取值范围是)0(3e , …………………………14分。
山东省滕州市实验中学2015届高三上学期12月质检考数学〔文〕试题第I 卷〔选择题,共50分〕一、选择题:本大题10个小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合M={}032≤-x x ,如此如下关系式正确的答案是A .0⊆MB .∉0MC .∈0MD .∈3M 2.命题“,20xx R ∃∈≥〞的否认是 A .不,20xx R ∃∈≥B .,2xx R ∃∈<0 C .,20xx R ∀∈≥D .,2xx R ∀∈<03.函数e ,0,()ln ,0,x x f x x x ⎧<=⎨>⎩如此1[()]e f f =〔 〕A .1eB .e -C .eD .1e-4.执行如如下图所示的程序框图,假设输入的x 的值为2,如此输出的x 的值为A .3B .126C .127D .1285.在ABC ∆中,内角A ,B ,C所对的边长分别为,,,a b c 1sin cos sin cos 2a B C c B Ab a b +=<∠,且,则B=A .6πB .3πC .23πD .56π6.函数()sin ln f x x x =⋅的局部图象为7.设0,1a b >>,假设3121a b a b +=+-,则的最小值为 A .2.3B .8C .3D .423+8.如下说法正确的答案是A .样本10,6,8,5,6的标准差是3.3.B .“p q ∨为真〞是“p q ∧为真〞的充分不必要条件;C .点()2,1A -在抛物线()220y px p =>的准线上,记其焦点为F ,如此直线AF 的斜率等于4-D .设有一个回归直线方程为ˆ2 1.5y x =-,如此变量x 每增加一个单位,ˆy平均减少1.5个单位;9.将函数()()sin 222f x x ππθθ⎛⎫=+-<< ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,假设()(),f x g x 的图象都经过点30,2P ⎛ ⎝⎭,如此ϕ的值可以是A .53πB .56π C .2π D .6π 10.双曲线221x y m-=的离心率2e =,如此以双曲线的两条渐近线与抛物线2y mx =的交点为顶点的三角形的面积为A 3B .93C .3D .3第2卷〔非选择题 共100分〕二、填空题:本大题共5小题,每一小题5分,共25分,把答案填在横线上. 11.在区间[]2,3-上随机选取一个数X ,如此1X ≥的概率等于__________.12.假设实数,x y 满足24010,1x y x y x y x +-≤⎧⎪--≤+⎨⎪≥⎩则的取值范围为____________.13.某三棱锥的主视图与俯视图如下列图,如此其左视图的面积为___________.14.圆O 过椭圆22162x y +=的两焦点且关于直线10x y -+=对称,如此圆O 的方程为_________. 15.定义在R上的奇函数()()()[]()402f x f x f x f x +==满足,且在,上()1,01294146sin ,12x x x f f x x π⎧-≤≤⎪⎛⎫⎛⎫+=⎨⎪ ⎪<≤⎝⎭⎝⎭⎪⎩,则_______. 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.〔本小题总分为12分〕函数()()4cos sin 04f x x x πωωω⎛⎫=⋅+> ⎪⎝⎭的最小正周期为π. 〔I 〕求ω的值;〔II 〕讨论()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的单调性. 17.〔本小题总分为12分〕参加市数学调研抽测的某高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见局部信息如下,据此解答如下问题:〔I 〕求参加数学抽测的人数n 、抽测成绩的中位数与分数分别在[)80,90,[]90,100内的人数;〔II 〕假设从分数在[]80,100内的学生中任选两人进展调研谈话,求恰好有一人分数在[]90,100内的概率.18.〔本小题总分为12分〕等差数列{}n a 的前n 项和为n S ,且248,40a S ==.数列{}n b 的前n 项和为*230n n n T T b n N -+=∈且,.〔I 〕求数列{}{},n n a b 的通项公式;〔II 〕设n n na n cb n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前21n +项和21n P +.19.〔本小题总分为12分〕如图几何体中,四边形ABCD为矩形,36,2,AB BC BF CF DE EF ======4,//EF AB ,G 为FC 的中点,M 为线段CD 上的一点,且2CM =.〔I 〕证明:AF//面BDG ; 〔II 〕证明:面BGM ⊥面BFC ; 〔III 〕求三棱锥F BMC -的体积V .20.〔本小题总分为13分〕函数()1ln 1.a f x x ax x+=++-〔I 〕当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; 〔II 〕当102a -≤≤时,讨论()f x 的单调性. 21.〔本小题总分为12分〕椭圆()2222:10x y C a b a b +=>>的离心率为12,右焦点2F 到直线1:340l x y +=的距离为35. 〔I 〕求椭圆C 的方程;〔II 〕过椭圆右焦点2F 斜率为()0k k ≠的直线l 与椭圆C 相交于E 、F 两点,A 为椭圆的右顶点,直线AE ,AF 分别交直线3x =于点M ,N ,线段MN 的中点为P ,记直线2PF 的斜率为k ',求证:k k '⋅为定值.参考答案一、选择题〔每一小题5分,共50分〕 1-10CDACA ADDBC二、填空题〔每一小题5分,共25分〕 11.2512.[1,3]13.2 14.22(1)5x y +-=15.516三、解答题:16.〔本小题总分为12分〕解:〔Ⅰ〕2()4cos sin()cos 4f x x x x x x πωωωωω=⋅+=⋅+2cos 2)x x ωω=+2sin(2)4x πω=++3分因为()f x 的最小正周期为π,且0ω>, 从而有22ππω=,故1ω=.………………………6分〔Ⅱ〕由〔Ⅰ〕知,()2sin(2)4f x x π=+,,时,当]45,4[)42(]2,0[ππππ∈+∈x x ………………………8分 当2442x πππ≤+≤,即08x π≤≤时,()f x 单调递增;当52244x πππ≤+≤,即82x ππ≤≤时,()f x 单调递减.……………11分综上可知,上单调递减,上单调递增;在在]28[]8,0[)(πππx f .………………12分 17.〔本小题总分为12分〕解:〔Ⅰ〕分数在[)50,60内的频数为2,由频率分布直方图可以看出,分数在[]90,100内同样有2人.……………………………………………2分,由2100.008n=⨯,得25n =,……………………………………………3分 茎叶图可知抽测成绩的中位数为73 . …………………………………4分∴分数在[)80,90之间的人数为()25271024-+++=……………………5分参加数学竞赛人数25n =,中位数为73,分数在[)80,90、[]90,100内的人数分别为4人、2人.………………………………………6分〔Ⅱ〕设“在[]80,100内的学生中任选两人,恰好有一人分数在[]90,100内〞为事件M , 将[)80,90内的4人编号为a b c d ,,,;[]90,100内的2人编号为A B ,, 在[]80,100内的任取两人的根本事件为:,,ab ac ad aA aB ,,,bc bd ,,,bA bB ,cd cA cB dA dB AB,,,,,共15个,…………………………………………9分其中,恰好有一人分数在[]90,100内的根本事件有,aA aB ,,bA bB ,,cA cB dA ,,dB ,共8个,故所求的概率得()8=15P M ,…………………11分 答:恰好有一人分数在[]90,100内的概率为815. (12)18.〔本小题总分为12分〕 解:〔Ⅰ〕由题意,1184640a d a d +=⎧⎨+=⎩,得14,44n a a n d =⎧∴=⎨=⎩. ………3分230n n T b -+=,113n b ∴==当时,,…………4分112230n n n T b --≥-+=当时,,两式相减,得12,(2)n n b b n -=≥数列{}n b 为等比数列,132n n b -∴=⋅. ………7分〔Ⅱ〕14 32n n nn c n -⎧=⎨⋅⎩为奇数为偶数 , 211321242()()n n n P a a a b b b ++=+++++++…………9分[44(21)]6(14)(1)214n n n ++-=⋅++-……………10分 2122482n n n +=+++…………12分19.〔本小题总分为12分〕解:〔Ⅰ〕连接AC 交BD 于O 点,如此O 为AC 的中点,连接OG ,因为点G 为CF 中点,所以OG 为AFC ∆的中位线,所以//OG AF ,……2分AF ⊄面BDG , OG ⊂面BDG ,∴//AF 面BDG ……………………………………5分〔Ⅱ〕连接FM ,2BF CF BC ===,G 为CF 的中点,BG CF ∴⊥,2CM =,4DM ∴=,//EF AB ,ABCD 为矩形,………………7分//EF DM ∴,又4EF =,EFMD ∴为平行四边形,………………8分2FM ED ∴==,FCM ∴∆为正三角形 MG CF ∴⊥, MGBG G =CF ∴⊥面BGM ,CF ⊂面BFC ,∴面BGM ⊥面BFC .…………………………10分〔Ⅲ〕11233F BMC F BMG C BMG BMG BMG V V V S FC S ---=+=⨯⨯=⨯⨯,因为GM BG ==BM =,所以112BMG S =⨯=,所以233F BMC BMC V S -=⨯=.…………………………12分 20.〔本小题总分为13分〕解:〔Ⅰ〕当1=a 时,12ln )(-++=x x x x f ,此时2211)('xx x f -+=, …………2分142121)2('=-+=f ,又22ln 12222ln )2(+=-++=f , 所以切线方程为:2)22(ln -=+-x y ,整理得:02ln =+-y x ; …………………………5分〔Ⅱ〕2222)1)(1(111)('xx a ax x a x ax x a a x x f -++=--+=+-+=, …6分 当0=a 时,21)('xx x f -=,此时,在(0,1)上)('x f <0,,)(x f 单调递减, 在(1,)+∞上)('x f >0,)(x f 单调递增; …………………… 8分当021<≤-a 时,2)1)(1()('x x a a x a x f -++=, 当a a +-1=1,即21-=a 时02)1()('22≤-=x x x f 在),0(+∞恒成立, 所以)(x f 在),0(+∞单调递减; ………………………10分 当021<<-a 时,aa +-1>1,此时在1(0,1),(,)aa +-+∞上)('x f <0,)(x f 单调递减, )(x f 在1(1,)aa+-上)('x f >0,单调递增; ……………………12分综上所述:当0=a 时,)(x f 在)1,0(单调递减,)(x f 在),1(+∞单调递增;当021<<-a 时,)(x f 在)1,0(,),1(+∞+-a a 单调递减,)(x f 在)1,1(aa+-单调递增;当21-=a 时)(x f 在),0(+∞单调递减. ……………………………13分21.〔本小题总分为14分〕解:〔Ⅰ〕由题意得21==a c e35=,……………………………2分 所以1c =,2=a ,所求椭圆方程为13422=+y x .…………………… 4分〔Ⅱ〕设过点()21,0F 的直线l 方程为:)1(-=x k y ,设点),(11y x E ,点),(22y x F ,…………………………………5分将直线l 方程)1(-=x k y 代入椭圆134:22=+y x C , 整理得:01248)34(2222=-+-+k x k x k ………………………………… 6分 因为点2F 在椭圆内,所以直线l 和椭圆都相交,0∆>恒成立,且3482221+=+k k x x 341242221+-=⋅k k x x …………………………8分直线AE 的方程为:)2(211--=x x y y ,直线AF 的方程为:)2(222--=x x y y 令3=x ,得点11(3,)2y M x -,22(3,)2yN x -, 所以点P 的坐标12121(3,())222y y x x +--,…………………………………10分 直线2PF 的斜率为)22(41130)22(21'22112211-+-=---+-=x y x yx y x y k4)(24)(32414)(2)(241212121212121211212++-++-⋅=++-+-+=x x x x k x x k x kx x x x x y y y x x y ,……… 12分将34124,34822212221+-=+=+k k x x k k x x 代入上式得:222222224128234134343'412844244343k k k k k k k k k k kk k -⋅-⋅+++=⋅=---+++,所以'k k ⋅为定值43-.………………………………… 14分。
2014~2015学年度第一学期第一次单元检测高三数学(文)试卷(时间:120分钟 满分:150分)一、选择题:本题共10小题,每小题5分,共50分。
1. 设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}2.函数()f x 在0x x =处导数存在,若/0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件3.设向量,a b满足a b += a b -= a b ⋅ =( )1 B.2 C.3 D.4.在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若,3,6)(22π=+-=C b a c 则ABC ∆的面积是( ) A.3 B.239 C.233 D.33 5已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A. 3-B. 1-C. 1D. 36.设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB ( ) A. B. 21 C. 21D.7. 已知函数)0,0)(sin()(>>+=ωϕωA x A x f 的部分图象如图所示,则)(x f y =的图象可由函数x x g sin )(=的图象(纵坐标不变)变换如下( ) A.先把各点的横坐标缩短到原来的21倍,再向右平移12π个单位 B.先把各点的横坐标伸长到原来的2倍,再向右平移12π个单位C.先把各点的横坐标缩短到原来的21倍,再向左平移6π个单位 D.先把各点的横坐标伸长到原来的2倍,再向左平移6π个单位 8. 当a > 0时,函数2()(2)x f x x ax e =-的图象大致是()9.若函数()f x kx lnx =-在区间()1,+∞单调递增,则k 的取值范围是( ) A.(],2-∞- B.(],1-∞- C.[)2,+∞ D.[)1,+∞10.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞- 二、填空题:本大题共5小题,每小题5分,共25分. 11. 已知31)tan(,41tan =-=βαα,则=βtan ________. 12.设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.13.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m.14.在平面直角坐标系xoy 中,若曲线2by ax x=+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += .15.对于函数2()2cos 2sin cos 1()f x x x x x R =+-∈,给出下列命题: ①()x f 的最小正周期为π2; ②()x f 在区间⎥⎦⎤⎢⎣⎡85,2ππ上是减函数; ③直线8π=x 是f (x )的图像的一条对称轴;④()x f 的图像可以由函数x y 2sin 2=的图像向左平移4π而得到. 其中正确命题的序号是________(把你认为正确的都填上).三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16. (本小题满分12分)(1)已知集合A {}0652=+-=x x x ,B={}01=+mx x ,且A B A = ,求实数m 的值组成的集合。
2015年山东省滕州市第二中学第一学期高三期中考试数学(文)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填写在答题卷上的相应题目的答题区域内.1. (2015•惠州模拟)已知集合A={y|y=|x|-1,x ∈R},B={x|x ≥2},则下列结论正确的是( ) A .-3∈A, B .3∉B, C .A∩B=B, D .A ∪B=B2. (2014•山东)已知函数f (x )=丨x-2丨+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A .(0,12), B .(12,1), C .(1,2), D .(2,+∞) 3. (2015•惠州模拟)下列函数在定义域内为奇函数的是( ) A .y=x+1x, B .y=xsinx, C .y=|x|-1, D .y=cosx 4. (2015•惠州模拟)某学校高一、高二、高三年级的学生人数分别为900、900、1200人,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取的学生人数为( )A .15,B .20,C .25,D .305.若sin 601233,log cos 60,log tan 30a b c ===,则A .a b c >>B .b c a >>C .c b a >>D .b a c >>6.已知,,l m n 是三条不同的直线,,αβ是两个不同的平面,下列命题为真命题的是A .若l m ⊥,l n ⊥,m α⊂,n α⊂,则l α⊥B .若l α⊥,α∥β,m β⊂,则l m ⊥C .若l ∥m ,m α⊂,则l ∥αD .若l α⊥,αβ⊥,m β⊂,则l ∥m7.将函数()sin 2f x x =的图象向右平移6π个单位,得到函数()y g x =的图象,则它的一个对称中心是A .(,0)2π-B .(,0)6π-C .(,0)6πD .(,0)3π8.已知函数22,1,()45,1,x x f x x x x ≤⎧=⎨-+>⎩若()1f a ≥,则实数a 的取值范围为A .[]0,1B .[)1,+∞C .[]0,3D .[)0,+∞9.如图所示,在边长为2的菱形ABCD 中,60ABC ∠=,对角线相交于点,O P 是线段BD 的一个三等分点,则⋅等于A . 1B .2C .3D .410.已知函数()sin f x x x =的图象是下列两个图象中的一个,请你选择后再根据图象做出下面的判断:若12,(,)22x x ππ∈-,且12()()f x f x <,则A .12x x >B .120x x +=C .12x x <D .2212x x <第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分.在答题卷上的相应题目的答题区域内作答.11.命题:“∀x R ∈, 0122≥++x x .”的否定是 .12.等差数列{}n a 中,683=+a a ,则10122log (222)a a a ⋅⋅⋅⋅=___________. 13.已知角α的终边上一点的坐标为55(sin ,cos )66P ππ,则角α的最小正值为_________.14.已知0,0a b >>,且21a b +=,则ba 11+的最小值为_____ ______.15.某三棱锥的三视图如下图所示,则该三棱锥最长棱的棱长为___ ________.16.记123k k k k k S n =++++()*n N ∈,当123k ,,,=L 时,观察下列等式:2111,22S n n =+ 322111,326S n n n =++4323111,424S n n n =++54341115230S n n An n =++-,654251156212S n n n Bn =+++,L ,可以推测,A B +=___________.三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 是各项均为正数的等差数列,11=a ,且2a ,13+a ,6a 成等比数列. (1)求数列{}n a 的通项公式;(2)设)(2))(1(3+∈++=N n a n b n n ,求数列{}n b 的前n 项和n S .18.(本小题满分12分)换题,变第18题 已知向量(cos sin ,2cos ),(cos sin ,sin ),a x x x b x x x =+=-函数()f x a b =⋅(1)求函数()f x 的最小正周期;(2)求函数()f x 在区间[0,]4π上的最大值和最小值.19.(本小题满分12分)如图所示,三棱锥A BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A MBC-的体积.20.(本小题满分12分)如图所示,某海滨城市位于海岸A处,在城市A的南偏西20°方向有一个海面观测站B,现测得与B处相距31海里的C处,有一艘豪华游轮正沿北偏西40°方向,以40海里/小时的速度向城市A直线航行,30分钟后到达D处,此时测得B、D间的距离为21海里.(1)求sin BDC∠的值;(2)试问这艘游轮再向前航行多少分钟方可到达城市A?21.(本小题满分14分)如图所示,矩形ABCD中,3BC.E,F分别在线段BC和AD上,=AB=,4EF∥AB,将矩形ABEF沿EF折起.记折起后的矩形为MNEF,且平面⊥MNEF平面ECDF.(1)求证:NC∥平面MFD;(2)若3ND⊥;EC=,求证:FC(3)求四面体NFEC 体积的最大值.22.(本小题满分14分) 已知R a ∈,函数x ax x f ln 21)(2-=. (1)当1=a 时,求曲线)(x f y =在点))1(1(f ,处的切线的斜率; (2)讨论)(x f 的单调性;(3)是否存在a 的值,使得方程2)(=x f 有两个不等的实数根?若存在,求出a 的取值范围;若不存在,说明理由.2015年山东省滕州市第二中学第一学期高三期中考试数学(文)试题参考答案一、选择题:每小题5分,共50分.CACDA BCDBD二、填空题:每小题4分,共24分.11.2000,210x R x x ∃∈++< (写成 2,210x R x x ∃∈++<也给分)12.30 13.53π 14.3+ 15.14三、解答题:本大题共6个小题,共76分.17.解:(1)由题意6223)1(a a a =+, ………………………………………2分即)51)(1()22(2d d d ++=+,解得3=d 或1-=d ……………………4分由已知数列{}n a 各项均为正数,所以3=d ,故23-=n an…………………6分(2)111)1(1)2)(1(3+-=+=++=n n n n a n b n n (10)分111111...31212111+-+--++-+-=∴n n n n S n ………………………………11分11-1+=∴n S n 1n n =+ ……………………………………12分18.(1)()(cos sin )(cos sin )2cos sin f x a b x x x x x x =⋅=+-+-------------------2分22cos sin 2sin cos cos 2sin 2)4x x x x x x x π=-+=+=+,------------5分∴函数()f x 的最小正周期为22T ππ==.----------------------------------------6分 (2)令24t x π=+,∵[0,]4x π∈, ∴32[,]444x πππ+∈,-----------------------------------8分 即3[,]34t ππ∈,∴sin t 在[,]42t ππ∈上是增函数,在3[,]24t ππ∈上是减函数,-----10分∴当2t π=,即242x ππ+=,8x π=时,max ()()8f x f π==.----------------11分 当4t π=或34π,即0x =或4π时,min()(0)()14f x f f π===.---------------------12分 19.解:方法一:(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB⊥CD又∵CD⊥BD,AB∩BD=B,AB⊂平面ABD,BD⊂平面ABD,∴CD⊥平面ABD.…(每个条件1分)…………6分(2)由AB⊥平面BCD,得AB⊥BD.∵AB=BD=1,∴S△ABD=12.∵M是AD的中点,∴S△ABM=12S△ABD=14.-----------8分由(1)知,CD⊥平面ABD,∴三棱锥C ABM的高h=CD=1,--------------10分因此三棱锥A MBC的体积V A MBC=V C ABM=13S△ABM·h=112.--------------12分方法二:(1)同方法一.(2)由AB⊥平面BCD,得平面ABD⊥平面BCD.且平面ABD∩平面BCD=BD.如图所示,过点M作MN⊥BD交BD于点N,则MN⊥平面BCD,且MN=12AB=12.又CD⊥BD,BD=CD=1,∴S△BCD=1 2.∴三棱锥A MBC的体积V A MBC=V A BCD-V M BCD=13AB ·S △BCD -13MN ·S △BCD =112. --------------12分 20.解:(1)由已知,140202CD =⨯=. ------------------------------------2分 在△BCD 中,据余弦定理,有2222120311cos 221207BDC +-∠==-⨯⨯.----4分所以sin BDC ∠== ------------------------6分(2)由已知可得,204060,BAD ∠=+=所以411sin sin(60)()27ABD BDC ∠=∠-=--=----8分在△ABD 中,根据正弦定理,有sin sin AD BDABD BAD=∠∠,又BD=21,则21sin 15sin BD ABDAD BAD⨯∠===∠.-----------------------10分 所以156022.540t =⨯=(分钟). -----------------------------------------12分答:这艘游轮再向前航行22.5分钟即可到达城市A .21.解:(1)证明:因为四边形MNEF ,EFDC 都是矩形, 所以 MN ∥EF ∥CD ,MN EF CD ==.所以 四边形MNCD 是平行四边形,……………2分 所以 NC ∥MD , ………………3分 因为 NC ⊄平面MFD ,所以 NC ∥平面MFD .4分 (2)证明:连接ED ,设EDFC O =.因为平面⊥MNEF 平面ECDF ,且EF NE ⊥, 所以 ⊥NE 平面ECDF …5分所以 FC NE ⊥.又 EC CD =, 所以四边形ECDF 为正方形,所以 FC ED ⊥. 所以 ⊥FC 平面NED , 所以 FC ND ⊥. …………8分 (3)解:设x NE =,则x EC -=4,其中04x <<.由(Ⅰ)得⊥NE 平面FEC ,所以四面体NFEC 的体积为11(4)32NFEC EFC V S NE x x ∆=⋅=-.所以 21(4)[]222NFEC x x V +-≤=. 当且仅当x x -=4,即2=x 时,四面体NFEC 的体积最大. …………12分22.解:(1)当1=a 时,01)(>-='x xx x f , 0)1(='=∴f k所以曲线y=f (x )在点))1(1(f ,处的切线的斜率为0. …………………………3分(2)011)(2>-=-='x x ax x ax x f , (4)分①当)0()(,0)(0∞+<'≤,在时,x f x f a 上单调递减; ………………………6分 ②当aax x f a =='>解得时,令,0)(0. 0)()(0)()0(>'∞+∈<'∈x f aax x f a a x 时,,;当时,,当.内单调递增,内单调递减;在,在函数)()0()(∞+∴aaa a x f ………………8分(3)存在)0(3e a ,∈,使得方程2)(=x f 有两个不等的实数根. (9)分 理由如下:由(1)可知当)0()(,0)(0∞+<'≤,在时,x f x f a 上单调递减,方程2)(=x f 不可能有两个不等的实数根; ………………………11分由(2)得,内单调递增,,内单调递减,在,在函数)()0()(∞+a a a a x f 使得方程2)(=x f 有两个不等的实数根,等价于函数)(x f 的极小值2)(<aaf ,即2ln 2121)(<+=a a a f ,解得30e a << 所以a 的取值范围是)0(3e , …………………………14分。
滕州一中期末通练文科数学试题一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,那么()A B =ðU(A) {}0,1 (B) {}2,3 (C) {}0,1,4 (D) {}0,1,2,3,4【答案】C考点:集合的运算2..是虚数单位,若11z i =-,则z =( )(A)12(B) 2(D) 2【答案】B 【解析】试题分析:由题根据所给复数化简求解即可;11,122i z z i +==∴=--. 考点:复数的运算3.某算法的程序框图如图所示,如果输出的结果为26,则判断框内的条件应为( )(A) 5?k ≤ (B) 4?k >(C) 3?k >(D) 4?k ≤【答案】C 【解析】考点:程序框图4.若“﹁p ∨q ”是假命题,则( ) (A) p 是假命题(B) ﹁q 是假命题(C) p ∨q 是假命题 (D) p ∧q 是假命题 【答案】D 【解析】试题分析:由题根据命题的关系不难判断所给命题p,q 的真假;由于p q ⌝∨ 是假命题,则p ⌝是假命题或q 是假命题,所以p 是真命题,q 是假命题,所以p ∧q 是假命题,p ∨q 是真命题,⌝ q 是真命题,故选D . 考点:复合命题的真假5.已知向量,则“2k =”是“”的( ) (A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件【答案】A 【解析】试题分析:根据向量垂直的充要条件,可知若a b ⊥则两个向量的数量积等于0,再用向量的数量积的坐标公式计算即可;22()211112a a b k b a b a k =+=-∴+-=--(,),(,),=(,),当k=2时,1221()120b a b a a b a b ∴+-=-∴=⨯--⨯=∴⊥⋅=(,),(),,如果a b ⊥,()()2211200a b k k ⋅∴⨯-⨯-∴=-==.∴当k=2是a b ⊥的充分不必要条件.故选A . 考点:判断两个向量的垂直关系6.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )(A) (B) (C) (D)【答案】A考点:简单几何体的三视图7.过抛物线24y x =焦点的直线交抛物线于,A B 两点,若10AB =,则AB 的中点到y 轴的距离等于( ) (A) 1 (B) 2 (C) 3 (D) 4【答案】D 【解析】试题分析:设AB 的中点为 E ,过 A 、E 、B 分别作准线的垂线,垂足分别为 C 、F 、D ,如图所示,由EF 为直角梯形的中位线及抛物线的定义求出 EF ,则 EH=EF-1 为所求.抛物线24y x = 焦点(1,0),准线为 l :x=-1,设AB 的中点为 E ,过 A 、E 、B 分别作准线的垂线,垂足分别为 C 、F 、D ,EF 交纵轴于点H ,如图所示:则由EF 为直角梯形的中位线知,514222AC BD AF FB ABEF EH EF ++====∴=-=,,则AB 的中点到y 轴的距离等于4.故选D .考点:抛物线的简单性质8.函数的图象(部分)大致是(A) (B)(C)(D)【答案】C考点:函数图像和性质9.过双曲线22221(0,0)x y C a b a b-=>>:的右顶点作x 轴的垂线与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过,A O 两点(O 为坐标原点),则双曲线C 的方程为( ) (A) 112422=-y x (B) 19722=-y x (C) 18822=-y x (D) 141222=-y x【答案】A【解析】考点:双曲线的简单性质10.己知定义在R 上的函数()f x 的导函数为()f x ',满足()()f x f x '<,()()22f x f x +=-,()41f =,则不等式()x f x e <的解集为( )(A) ()2,-+∞ (B) ()0,+∞(C) ()1,+∞(D) ()4,+∞【答案】B考点:利用导数研究函数的单调性,导数的运算第II卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.a=,则________.11.在等差数列{}n a中,,2566【答案】99考点:等差数列性质a b c,若,则角B等于.12.在△ABC中,角A,B,C所对的边分别为,,【答案】考点:正弦定理13.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴都相切,则该圆的标准方程是________.【答案】22211x y -+-=()() 【解析】试题分析:依据条件确定圆心纵坐标为1,又已知半径是1,通过与直线4x-3y=0相切,圆心到直线的距离等于半径求出圆心横坐标,写出圆的标准方程.∵圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,∴半径是1,圆心的纵坐标也是1,设圆心坐标(a ,1),1 02a a ∴=∴=>,,∴该圆的标准方程是22211x y -+-=()() ; 考点:圆的标准方程,圆的切线方程14.设,x y 满足约束条件210,0,0,0,x y x y x y --≤⎧⎪-≥⎨⎪≥≥⎩若目标函数的最大值为1,则的最小值为_________.【答案】9考点:简单线性规划15.给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.对于三次函数()()320=+++≠f x ax bx cx d a ,有如下真命题:任何一个三次函数都有唯一的“拐点”,且该“拐点”就是()f x 的对称中心.给定函数()3211533212f x x x x =-+-,请你根据上面结论,计算12201420152016201620162016f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【答案】2015考点:导数的运算,函数的性质三、解答题:本大题共6小题,共75分.16.(本小题满分12分)某网站针对“2015年春节放假安排”开展网上问卷调查,提出了A,B两种放假方案,调查结果如下表(单位:万人):【解析】试题分析:(Ⅰ)根据分层抽样时,各层的抽样比相等,结合已知构造关于n的方程,解方程可得n值.(Ⅱ)支持A方案的有4(人),分别记为1,2,3,4,支持B方案”的有2人,记为a,b,列举出所有的基本事件,再找到满足条件的基本事件,代入古典概率概率计算公式,可得答案.考点:列举法计算事件的概率,分层抽样17.已知函数()f x =22sin cos x x x ωωω+0ω>)的最小正周期是π.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)将函数()f x 的图象向左平移3π个单位,再向上平移1个单位,得到函数()y g x =的图象 求()y g x =的解析式及其在02π⎡⎤⎢⎥⎣⎦,上的值域.【答案】(Ⅰ)5,,k Z 1212k k ππππ⎡⎤-+∈⎢⎥⎣⎦; (Ⅱ)]1⎡-⎣考点:三角恒等变换,三角函数图像性质18.(本小题满分12分)在如图所示的几何体中,四边形ABED 是矩形,四边形ADGC 是梯形,AD ⊥平面,DEFG EF //DG ,120EDG ︒∠=,1AB AC EF ===,2DG =.(Ⅰ)求证:AE //平面BFGC ;(Ⅱ)求证:FG ⊥平面ADF .【答案】(Ⅰ)略;(Ⅱ)略.【解析】试题分析:(Ⅰ)连接CF ,只要证明AE ∥FC ,利用线面平行的判定定理即可证明;(Ⅱ)连接DF ,AF ,作DG 的中点为H ,连接EH ,只要证明FG 垂直DF ,AD ,利用线面垂直的判定定理. 试题解析:证明:(Ⅰ)连接CF .因为AC //DG ,EF //DG所以AC //EF又=AC EF 所以四边形AEFC 是平行四边形 所以AE //FC又AE ⊄平面BFGC ,FC ⊂平面BFGC 所以AE //平面BFGC .19.(本小题满分12分)已知数列{}n a 中,111,()3n n n a a a n a *+==∈+N . (Ⅰ)求证:112n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式n a ; (Ⅱ)设(31)2n n n n n b a =-⋅⋅,记其前n 项和为n T ,若不等式1122n n n T n λ--<+对一切n *∈N 恒成立,求λ的取值范围.【答案】;(Ⅱ)2λ<【解析】由此能求出不等式1122n n n T n λ--+< 对一切*n N ∈ 恒成立的λ的取值范围. 试题解析:由111,()3n n n a a a n N a *+==∈+知,11111322n n a a +⎛⎫+=+ ⎪⎝⎭又111322a +=,所以112n a ⎧⎫+⎨⎬⎩⎭是以32为首项,3为公比的等比数列 所以111333222n n n a -+=⨯=故231n n a =-考点:数列与不等式的综合应用,数列求和,等比数列性质20.(本小题满分14分)已知函数()ln ,()x f x x g x e ==.(Ⅰ)求函数()y f x x =-的单调区间;(Ⅱ)若不等式()g x <在()0,+∞上有解,求实数m 的取值菹围; (Ⅲ)证明:函数()y f x =和()y g x =在公共定义域内,.【答案】(Ⅰ)()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减;(Ⅱ)0m <;(Ⅲ)略.【解析】()()2g x f x ->试题分析:(Ⅰ)先求f (x )=lnx 的定义域为(0,+∞),再求导1()11,(0)y f x x x ''=-=-> );从而判断函数的单调区间;(Ⅱ)化简得x e<(0,+∞)上有解,即e x m <- x ∈(0,+∞)有解即可;设()11x x h x e e '=-=- ),从而由导数求解;(Ⅲ)先求公共定义域为0+∞(,) ,再构造x x g x f x e lnx e x lnx x -=-=---()()()() ;设0x m x e x x =-∈+∞(),(,);设0n x lnx x x =-∈+∞(),(,);从而证明.方法二:()f x 与()g x 的公共定义域为(0,)+∞,令()()()ln x G x g x f x e x =-=-,则1()x G x e x'=-设1()0x G x e x'=-=的解为00(0)x x >,则当0(0,)x x ∈时,()0G x '<,()G x 单调递减, 当0(,)x x ∈+∞时,()0G x '>,()G x 单调递增;所以()G x 在0x 处取得最小值000001()ln x G x e x x x =-=+, 显然00x >且01x ≠,所以 , 所以0()()2G x G x ≥>,故在函数()y f x =和()y g x =公共定义域内,()()2g x f x ->﹒考点:利用导数研究函数的性质,不等式的解法21.(本小题满分13分) 设12,F F 是椭圆C :2222+1x y a b =(0a b >>)的左右焦点,过2F 作倾斜角为π3的直线与椭圆交于,A B 两点,1F 到直线AB 的距离为3,连接椭圆的四个顶点得到菱形面积为4.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过椭圆C 的左焦点P 作直线1l 交椭圆C 于另一点Q .(1)若点(0,t)N 是线段PQ 的垂直平分线上的一点,且满足4NP NQ ⋅=,求实数t 的值.(2)过P 作垂直于1l 的直线2l 交椭圆于另一点G ,当直线1l 的斜率变化时,直线GQ 是否过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.(Ⅱ)(1)设11(,)Q x y ,如何根据1l 斜率存在与否,结合不同的性质联立方程根据根浴系数关系及向量有关指数进行求解即可;(2)由题设GQ 的方程为y kx m =+,设2233(,),(,)G x y Q x y 如何联立直线与椭圆方程根据韦达定理结合有关条件进行求解即可得m 值,然后得到直线方程,求得恒过点坐标.0012x x +>试题解析:(Ⅰ)设焦距为2c,过右焦点倾斜角为π3的直线方程为330x y c--=,由题意得222|3c03c|31324aba b c⎧---=⎪+⎪⎪=⎨⎪=+⎪⎪⎩,解得213abc⎧=⎪=⎨⎪=⎩椭圆的方程为2214xy+=.(Ⅱ)(1)设11(,)Q x y(i)当1l斜率不存在时,(2,0),(2,0),(2,t),(2,t)P Q NP NQ-=--=-244NP NQ t⋅=-=,22t=±(2)设GQ的方程为y kx m=+,设2233(,),(,)G x y Q x y22440y kx mx y=+⎧⎨+-=⎩消去x得222(14)8440k x kmx m+++-=则23222328144414kmx xkmx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩2223232322222222222222()4484414141414y y k x x kb x x bk b k k b k b b b kk k k k=+++-+-=-+=++++因为12l l⊥,所以0PG PQ⋅=22332323232222222222(2,)(2,)2()44416412165(2)(65)401414141414PG PQ x y x y x x x x y y m km m k k km m k m k m k k k k k ⋅=+⋅+=++++----+--=+++===+++++ 解得2m k =(舍)或65k m = 所以GQ 的方程为65k y kx =+,即6()5y k x =+,过定点6(,0)5- 当GQ 的斜率不存在时,经计算知也过6(,0)5-,故过定点6(,0)5-. 考点:椭圆的几何性质,直线与圆锥曲线的综合应用,平面向量的坐标运算。
山东省滕州市第二中学2015届高三上学期期末考试数学文试题选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 是虚数单位,则ii+-221等于( ) A .iB .i -54C .i 5354- D .i -2.命题p :1a ≥;命题q :关于x 的实系数方程20x a -+=有虚数解,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.把函数f (x )的图象向右平移一个单位长度,所得图象恰与函数x y e =的反函数图像重合,则f (x )A .ln 1x -B .ln 1x +C .ln(1)x -D .ln(1)x +4.已知函数2()f x x bx c =++,其中04b ≤≤,04c ≤≤,记函数()f x 满足条件:12)2(≤f 为事件A ,则事件A 发生的概率为.A .14 B .21 C .38 D .43 5.在ABC ∆中,D 是BC 的中点,AD=3,点P 在AD 上且满足,3AP AD =则=+⋅)(PC PB DAA .6B .6-C .-12D . 126.某几何体的三视图如下图所示,则它的表面积是A .π524+B .π-24C .()π1524-+D .()π1520-+7.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭⎪⎭⎫ ⎝⎛∈3,0πα则⎪⎭⎫ ⎝⎛+πα125sin 的是A .BC .1027 D .1527 8.阅读下侧程序框图,输出的结果s 的值为A .0B .23C .3D .23-9.已知双曲线C 的方程为)0,0(12222>>=-b a by a x ,它的左、右焦点分别21,F F ,左右顶点为21,A A ,过焦点2F 先作其渐近线的垂线,垂足为P ,再作与x 轴垂直的直线与曲线C 交于点R Q ,,若1212,,QF A A PF 依次成等差数列,则离心率e=A .2B .5C .2或5D .215+ 10.如图放置的边长为1的正方形PABC 沿x 轴正方向滚动.设顶点(),P x y 的轨迹方程是()x f y =,设()y f x =在其两个相邻零点间的图象与x 轴所围区域为S,则直线t x =从40==t t 到所匀速移动扫过区域S 的面积D 与t 的函数图象大致为.二、填空题:本大题共5小题,每小题5分,共25分。
二〇一五届高三定时训练
数学文科试题参考答案及评分标准 2014.11
一、选择题(每小题5分,共50分)
二、填空题(每小题5分,共25分) 11.e
3
12.1-=x y 13.4 14.
83π 15.7
5 三、解答题(共75分)
(注意:答案仅提供一种解法,学生的其他正确解法应依据本评分标准,酌情赋分.) 16.解:(1)在△ABC 中,由正弦定理得sin sin sin cos 0A B B A +=,………………………2分
即sin (sin cos )0B A A +=,又角B 为三角形内角,sin 0B ≠
所以sin cos 0A A +=,)04
A π
+=
, …………………………………4分
又因为(0,)A π∈,所以34
A π
=. …………………………………6分
(2)在△ABC 中,由余弦定理得:
2
2
2
2cos a b c bc A =+-⋅,则2
512(2
c c =+-⋅-……………………………8分
即2
40c -=,解得c =-或c =
10分
又1sin 2S bc A =,所以11
1222
S =⨯=. ………………………………12分
17.解:设函数()m x m x x x g --⎪⎭⎫ ⎝
⎛
+=-+=41212
2
,
所以()x g 在[1,2]上是增函数,其最小值为()m g -=21, 由2
0x x m +->在[1,2]x ∈上恒成立,
因此只要20m ->即可,所以2m <. ………………………………3分
又因为2
y x =在[0,)+∞上是增函数,1y x =-在(,0)-∞上也是增函数,且
10-<,
所以()f x 在R 上是增函数,由2()(2)f m f m >+可得2
2m m >+,
解得2m >或1m <-. ……………………………………6分
若p q ∨为真,p q ∧为假,所以p 与q 一真一假 …………………………………7分
若p 真q 假,应有2,
12,
m m <⎧⎨-≤≤⎩所以12m -≤<; (9)
分
若p 假q 真,应有2,
21,
m m m ≥⎧⎨><-⎩或所以2m >; (11)
分
因此m 的范围是1m ≥-且2m ≠. ……………………………………12分
18.解:(1)由已知得=)(x f a ⋅b x x x x cos sin 32sin cos 2
2+-=
=cos 222sin(2)6
x x x π
+=+, (3)
分
)(x f 的最小正周期ππ
==2
2T . ……………………………………4分
令2
26
22
2π
ππ
π
π+
≤+
≤-
k x k ,Z ∈k ,
可得6
3
π
ππ
π+
≤≤-
k x k (Z ∈k ),
则)(x f 的单调递增区间为]6
,3
[π
ππ
π+
-k k (Z ∈k ) (6)
分
(2)由1310)(=x f 得5sin(2)613
x π+=, ……………………………………7分 由,46x ππ⎡⎤
∈-
⎢⎥⎣⎦
,可得]2,3[62πππ-∈+x ,
所以13
12
)62(sin 1)62cos(2=+-=+ππ
x x , ………………………………9分
sin 2sin(2)sin(2)cos cos(2)sin 666666
x x x x π
π
π
π
π
π
=+
-=+-+
=512113132-⨯=
. ……………………………………12分
19.解:(1)当800<<x ,*
N ∈x 时,
250403
1250)(50)(2
-+-=--=x x x C x x L ,……………………………………2分
当80≥x ,*
N ∈x 时,
)10000
1200250)(50)(x
x x C x x L +-
=--=(,……………………………………4分
所以⎪⎪⎩
⎪⎪⎨⎧∈≥+-∈<<-+-=.
,80 )10000(1200,,800 250403
1)(**2N N x x x x x x x x x L ,, (6)
分
(2)当800<<x ,*
N ∈x 时,950603
1)(2+--=)(x x L
此时,当60=x 时,)(x L 取得最大值950)60(=L ,………………………………8分
当80≥x ,*
N ∈x 时,由,20010000
≥+
x
x 当且仅当100=x 时取等号;
此时1000)(≤x L ,即当100=x 时,)(x L 取得最大值1000)100(=L ,………10分
因为,9501000>
所以年产量为100千件时,最大利润是1000万元. ………………………………12分
20. 解:(1)设等差数列{}n a 的公差为,d 则()n d a n d d n n na S n ⎪⎭⎫ ⎝
⎛
-+=-+=2221121,又,
q pn n S n ++=2 所以
0,2
,121==-=q p d
a d , 可得0,1,21=-==q a p d ,
又532,,a a a 成等比数列,所以522
3a a a =,
即()()()824112
1++=+a a a ,解得01=a ,所以1-=p (6)
分
(2)由(1)知22-=n a n ,
又,log log 22n n b n a =+则142-⋅=⋅=n a n n n b n
, (8)
分
所以12021443424-⋅++⨯+⨯+=+++=n n n n b b b T 则n n n T 443424432⋅++⨯+⨯+= , 两式相减可得()3
1
4314
444431
2
1
--=⋅-++++=--n n
n n n n T ,
所以()[]
14139
1
+-=
n n n T . ………………………………13分 21.解:(1) 当1-=a 时,()x x x f ln +-=,定义域为()∞+,0, ()x
x
x x f -=+
-='111, ………………………………1分 令()0>'x f ,得10<<x ;令()0<'x f ,得1>x . ………………………………2分
所以)(x f 在()1,0上是增函数,在()∞+,1
上是减函数. ………………………………3分
(2) 由已知得()(]e x x a x f ,0,1∈+
=',1x ∈1,e ⎡⎫
+∞⎪⎢⎣⎭
, (4)
① 若1a e
≥-,则(),0≥'x f 从而)(x f 在(]e ,0上为增函数,
此时,)(x f 的最大值为(),01≥+=ae e f 不合题意.………………………………6分
② 若1a e <-,由(),0>'x f 得10x a <<-,由0)(<'x f 得1
x e a
-<<, 从而)(x f 在10,a ⎛
⎫-
⎪⎝⎭上为增函数,在1,e a ⎛⎫- ⎪⎝⎭
上为减函数, 此时,)(x f 的最大值为)1ln(1)1
(a
a
f -+-=-,……………………………………8分
令3)1ln(1-=-+-a ,得2)1ln(-=-a ,21
-=-e a
,2e a -=, 又2e -<1e
-,所以2
a e =-. ………………………………………………9分
(3) 由(1)知当1-=a 时,)(x f 的最大值为()11-=f ,
所以1|)(|≥x f , ………………………10分
令21ln )(+=x x x g ,2ln 1)('x
x
x g -=, …………………………………………11分
令()0>'x g ,得e x <<0,()x g 在()e ,0单调递增;
令()0>'x g ,得e x >,()x g 在()+∞,e 单调递减. …………………………… 12分
()x g 的最大值为12
1
1)(<+=e e g ,即()1<x g . ………………………………13分
因此()()x g x f > ,即2
1
ln |)(|+>x x x f , 从而方程2
1
ln |)(|+=x x x f 没有实数解. ……………………………………14分。