人教版数学七年级下8.3《实际问题与二元一次方程组》复习巩固练习
- 格式:docx
- 大小:112.88 KB
- 文档页数:13
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组和差倍分问题 专题练习题1. 已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x °,∠2=y °,则x ,y 满足的方程组为( )A .⎩⎨⎧x +y =90x =3y +20B .⎩⎨⎧x +y =90y =3x +20C .⎩⎨⎧x +y =180x =3y +20D .⎩⎨⎧x +y =180y =3x +20 2.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .⎩⎨⎧5x +4y =1482x +5y =100B .⎩⎨⎧4x +5y =1482x +5y =100C .⎩⎨⎧5x +4y =1485x +2y =100D .⎩⎨⎧4x +5y =1485x +2y =1003.一篮水果分给一群小孩,若每人分8个,则差3个水果;若每人分7个,则多4个水果,在这个问题中,有小孩____人,水果____个.4.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.5.一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,下面所列方程组正确的是( )A .⎩⎨⎧x +y =8xy +18=yxB .⎩⎨⎧x +y =810(x +y )+18=yx C .⎩⎨⎧x +y =810x +y +18=yx D .⎩⎨⎧x +y =8x +10y +18=10x +y6.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.7.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .⎩⎨⎧x +y =602×200x =50yB .⎩⎨⎧x +y =60200x =50yC .⎩⎨⎧x +y =60200x =2×50yD .⎩⎨⎧x +y =5050x =200y8.家具厂生产方桌,按设计1立方米木材可制作50个桌面或300个桌腿,现有10立方米木材,怎样分配木材才能使生产的桌面和桌腿恰好配套,并指出共可生产多少张方桌?(一张方桌按1个桌面4条桌腿配置)9.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人,则1艘大船和1艘小船一次可以载乘客的人数分别是( )A .18人,7人B .17人,8人C .15人,7人D .16人,8人10.某校举行安全知识竞赛,其评分规则如下:答对一题得5分,答错一题得-5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格,则小明答对____道题,答错____道题.11.某芒果种植基地去年结余为500万元,估计今年能结余960万元,并且今年的收入比去年高15%,支出比去年低10%,则去年的收入是____________万元,支出是____________万元.12.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40千克,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各为多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”求诗句中谈到的鸦的只数,树的棵数.14.一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时你才1岁,你到我这么大时,我已经37岁了.”请问老师、学生今年分别多大了?15.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少元?方法技能:1.审题时要弄清题意和题目中的数量关系,找出问题中的所有相等关系.2.设未知数可直接设,也可间接设,力求简洁.3.检验所得的解是否符合题意和实际意义,不符合的解要舍去.4.设未知数及作答时要注意单位名称统一.易错提示:注意配套问题中的数量关系.答案:1. C2. A3. 7 534. 205. D6. 解:设这个两位数十位上的数为x ,个位上的数为y ,则有⎩⎨⎧10x +y =x +y +9,10y +x =10x +y +27,解得⎩⎨⎧x =1,y =4,∴这个两位数为14 7. C8. 解:设分配x 立方米木材生产桌面,y 立方米木材生产桌腿,根据题意得⎩⎨⎧x +y =10,50x ×4=300y ,解得⎩⎨⎧x =6,y =4,则共可生产方桌为50x =300张 9. A10. 17 111. 2040 154012. 解:(1)设采摘黄瓜x 千克,茄子y 千克,根据题意得⎩⎨⎧x +y =40,x +1.2y =42,解得⎩⎨⎧x =30,y =10,则采摘的黄瓜和茄子分别为30千克、10千克(2)30×(1.5-1)+10×(2-1.2)=23(元),则这些采摘的黄瓜和茄子可赚23元13. 解:设有x 只鸦,y 棵树,则有⎩⎨⎧3y =x -5,5(y -1)=x ,解得⎩⎨⎧x =20,y =5,则鸦的只数为20,树的棵数为514. 解:设老师今年x 岁,学生今年y 岁,则有⎩⎨⎧x -y =y -1,37-x =x -y ,解得⎩⎨⎧x =25,y =13,则老师今年25岁,学生今年13岁15. 解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得⎩⎨⎧x +y =105,8x +12y =1500-418,解得⎩⎨⎧x =44.5,y =60.5,显然书的本数应为整数,不能为小数,不合题意,故一定是搞错了 (2)设笔记本的单价为a 元,根据题意得⎩⎨⎧x +y =105,8x +12y +a =1500-418,可得y =242-a 4,要使y 为整数,则a 首先必须为偶数,又是小于5元的整数,故a 只能为2,4.当a=2时,y=60;当a=4时,y=59.5(不合题意舍去).综上所述,笔记本的单价可能为2元。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55cm,此时木桶中水的深度是()cm.A.50 B.40 C.30 D.20【答案】D【解析】【分析】设较长铁棒的长度为xcm,较短铁棒的长度为ycm,根据等量关系,列出二元一次方程组,即可求解.【详解】设较长铁棒的长度为xcm,较短铁棒的长度为ycm,由题意得:5511(1)(1)35x yx y+=-=-⎧⎪⎨⎪⎩,解得:3025xy==⎧⎨⎩,∴此时木桶中水的深度为:30×(1-13)=20cm.故选D.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出二元一次方程组,是解题的关键.12.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17 D .18【答案】B 【解析】 【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩,∴阴影部分面积223()310300=-=⨯=a b , 整个图形的面积304304151800=⨯=⨯⨯=a ,∴阴影部分面积与整个图形的面积之比3001 18006 ==,故选B.【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.13.《九章算术》是我国古代数学的经典著作,奠定了中国传统数学的基本框架书中记载了一道有趣的数学问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问:金、银一枚各重几何?”意思是:甲袋中有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同)称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计)问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.9,(10)(8)13.x yy x x y=⎧⎨+-+=⎩B.119,(8)(10)13.x yx y y x=⎧⎨+-+=⎩C.911,(10)(8)13.x yy x x y=⎧⎨+-+=⎩D.911,(8)(10)13.x yx y y x=⎧⎨+-+=⎩【答案】C 【解析】【分析】设每枚黄金重x两,每枚白银重y两,根据黄金9枚和白银11枚重量相同可得911x y=,根据两袋互相交换1枚后,甲袋比乙袋轻了13两可得(10)(8)13y x x y+-+=,据此可得方程组.【详解】解:设每枚黄金重x两,每枚白银重y两,由题意得:911(10)(8)13x yy x x y=⎧⎨+-+=⎩,故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组,解题的关键是正确找出题中的等量关系,属于基础题型.14.如图,周长为68cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.40cm2B.128cm2C.280cm2D.140cm2【答案】C【解析】【分析】根据2x=5y结合长方形的周长为68cm,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再利用长方形的面积公式即可求出长方形ABCD 的面积.【详解】解:根据题意:有255268x y y x y x x y =⎧⎨+++++=⎩, 解得:104x y =⎧⎨=⎩,∴S=2x •(x+y )=2×10×(10+4)=280. ∴长方形ABCD 的面积为280平方厘米. 故选:C . 【点睛】本题考查了二元一次方程组的应用,解题的关键是:根据长方形的对边相等找出2x=5y ;找准等量关系,正确列出二元一次方程组.15.一个长方形的长的2倍比宽的5倍还多1cm ,宽的3倍又比长多1cm ,求这个长方形的长与宽.设长为xcm ,宽为ycm ,则下列方程组中正确的是()A .25131x y x y -=⎧⎨-=⎩B .52131x y y x -=⎧⎨-=⎩C .25131x y y x -=⎧⎨-=⎩D .52131x y x y -=⎧⎨-=⎩【答案】C 【解析】 【分析】根据长方形的长的2倍比宽的5倍还多1cm ,可得方程251x y -=;根据宽的3倍又比长多1cm ,可得方程31y x -=,即可得方程组.【详解】∵长方形的长的2倍比宽的5倍还多1cm ,∴251x y -=,∵宽的3倍又比长多1cm , ∴31y x -=,∴可得方程组25131x y y x -=⎧⎨-=⎩,故选:C . 【点睛】本题考查列二元一次方程组.解题的关键是准确理解题意,由实际问题抽象出二元一次方程,再根据二元一次方程列出二元一次方程组.16.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A 【解析】 【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y ,根据题意有2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯=,故选:A.【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.17.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是().A.22753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x-=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【答案】B【解析】【分析】根据图示可得:大矩形的宽可以表示为x+2y,宽又是75厘米,故x+2y =75,大矩形的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得,2753x yx y+=⎧⎨=⎩故选:B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.18.若关于,x y 的方程组2315x y a x y +=-⎧⎨-=⎩的解满足3,x y +=则a 的值是 ( )A .4B .1-C .2D .1【答案】D 【解析】 【分析】①2⨯+②得21x y a +=+,再根据3x y +=,即可求出a 的值. 【详解】2315x y a x y +=-⎧⎨-=⎩①② ①2⨯+②得3363x y a +=+21x y a +=+ ∵3,x y += ∴1a = 故答案为:D . 【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.19.现用186张铁皮做盒子,每张铁皮可做8个盒身或15个盒底,且一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可得方程组()A.1868215x yx y+=⎧⎨=⨯⎩B.1862815x yx y+=⎧⎨⨯=⎩C.8151862x yx y+=⎧⎨=⎩D.8151862x yx y+=⎧⎨=⎩【答案】B【解析】【分析】此题中的等量关系有:①共有186张铁皮;②做的盒底数等于盒身数的2倍时才能正好配套.【详解】根据共有186张铁皮,得方程x+y=186;根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=15y.列方程组为186 2815x yx y+=⎧⎨⨯=⎩.故选:B.【点睛】找准等量关系是解应用题的关键,寻找第二个相等关系是难点.20.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是()A.106cm B.110cm C.114cm D.116cm【答案】A【解析】【分析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解.【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则29714x yx y+=⎧⎨+=⎩,解得17xy=⎧⎨=⎩则99x+y=99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm.故选:A.【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm当作3个纸杯的高度,把14cm当作8个纸杯的高度.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)缉私艇与走私艇相距120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?【答案】走私艇的速度是25海里/时,缉私艇的速度是35海里/时【解析】【分析】设走私艇的速度是x 海里/时,缉私艇的速度是y 海里/时,根据题意可得等量关系:①(走私艇的速度+缉私艇的速度)×2=120海里;②(缉私艇的速度-走私艇的速度)×12=120海里,根据等量关系列出方程组即可.【详解】解:设走私艇的速度是x 海里/时,缉私艇的速度是y 海里/时,由题意得: ()()212012120x y y x =,=⎧+⎪⎨-⎪⎩2535x y ⎧⎨⎩=,=答:走私艇的速度是25海里/时,缉私艇的速度是35海里/时.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.72.小明购买A ,B 两种商品,每次购买同一种商品的单价相同,具体信息如下表:根据以上信息解答下列问题:(1)求A ,B 两种商品的单价; (2)若第三次购买这两种商品共12件,且A 种商品的数量不少于B 种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.【答案】(1)A 种商品的单价为20元,B 种商品的单价为15元;(2) 当a=8时所花钱数最少,即购买A 商品8件,B 商品4件.【解析】【分析】(1)列二元一次方程组,用代入法或加减法解方程即可;(2)将题目转化为一元一次不等式,利用一元一次不等式解即可.【详解】解:(1)设A 种商品的单价为x 元,B 种商品的单价为y 元,根据题意可得: 255365x y x y +=⎧⎨+=⎩, 解得:2015x y =⎧⎨=⎩, 答:A 种商品的单价为20元,B 种商品的单价为15元;(2)设第三次购买商品A种a件,则购买B种商品()12a-件,根据题意可得:()212a a-,得:812a,()2015125180m a a a=+-=+∴当8a=时所花钱数最少,即购买A商品8件,B商品4件.【点睛】本题考查了二元一次方程组的解法以及不等式的相关知识,解题的关键是掌握消元思想与解二元一次方程组的方法步骤.三、填空题73.若方程组233x yx y+=*⎧⎨-=⎩的解为3#xy=⎧⎨=⎩,则“*”“#”的值分别为________.【答案】7,3【解析】【分析】根据二元一次方程组的解的定义,把x=2代入3x-y=3求得y的值,再把x,y的值代入2x+y求值.【详解】解:把x=2代入3x-y=3,得6-y=3,即y=3;把x=2,y=3代入2x+y=7,即被遮盖的两个数分别为7和3.【点睛】所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值.74.《九章算术》中记载了一个这样的问题:“五只雀、六只燕,共重1斤(古代一斤等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的质量各为多少?”如果设雀重x 两,燕重y 两,根据题意列出方程组得_______.【答案】561645x y x y y x +=⎧⎨+=+⎩【解析】【分析】题目已经设了未知量,根据五只雀、六只燕,共重1斤和互换其中一只,恰好一样重两中情况列出方程组即可.【详解】设雀重x 两,燕重y 两, 五只雀、六只燕,共重1斤; 互换其中一只,恰好一样重.列方程:561645x y x y y x +=⎧⎨+=+⎩故答案为561645x y x y y x +=⎧⎨+=+⎩【点睛】此题重点考察学生对列二元一次方程组的认识,理清题目中数量关系是解题的关键.75.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2019根火柴棍,并且正三角形的个数比正六边形的个数少3个,那么能连续搭建正三角形的个数是________.【答案】286【解析】【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2019根火柴棍,并且三角形的个数比正六边形的个数少3个,列方程组求解.【详解】设连续搭建三角形x个,连续搭建正六边形y个,由题意,得21512019{3x yy x+++-==,解得:286{289xy==.故答案为:286.【点睛】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.76.一项工作,甲先完成全部工作的12,然后乙完成余下部分,两人共用25天;若甲先完成全部工作的15,然后乙完成余下部分,两人共用28天,则甲单独完成此项工作需__________天.【答案】20【分析】设甲单独完成此项工作需x 天,乙单独完成此项工作需y 天,甲的效率为1x,乙的效率为1y,根据题意可列出二元一次方程组即可解得x ,y 的值. 【详解】设甲单独完成此项工作需x 天,乙单独完成此项工作需y 天, 根据题意得1111+2522y 1141+2855yx x ⎧÷÷=⎪⎪⎨⎪÷÷=⎪⎩, 解得2030x y =⎧⎨=⎩故甲单独完成此项工作需20天.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题中的等量关系列出方程组进行求解.77.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.【答案】2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.78.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.则1辆大货车与1辆小货车一次可以运货__吨.【答案】6.5【解析】【分析】设大货车一次运x 吨,小货车一次运y 吨,根据两种运货情况各列一个方程,组成方程组求解即可.设大货车一次运x 吨,小货车一次运y 吨,依题意有2315.55635x y x y +=⎧⎨+=⎩①②, ②-①得3x +3y =19.5,∴x +y =4+6.5=6.5(吨).故答案为:6.5.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.79.一条船顺流航行每小时行40km ,逆流航行每小时行32km ,设该船在静水中的速度为每小时xkm ,水流速度为每小时ykm ,则可列方程组为______.【答案】4032x y x y +=⎧⎨-=⎩【解析】【分析】设该船在静水中的速度为每小时xkm ,水流速度为每小时ykm ,根据该船顺流速度=船在静水中的速度+水流速度,逆流速度=船在静水中的速度-水流速度,即可得出关于x 、y 的二元一次方程组.【详解】解:设该船在静水中的速度为每小时xkm ,水流速度为每小时ykm ,根据题意得:4032x y x y +=⎧⎨-=⎩故答案为4032x yx y+=⎧⎨-=⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.80.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需_____元.【答案】12【解析】【分析】本题中因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元,所以买4支圆珠笔、4本日记本需4×3=12元.【详解】解:因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元.所以买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元,所以买4支圆珠笔、4本日记本需4×3=12元.答:买4支圆珠笔、4本日记本需12元.故答案为12.【点睛】此题可说是一道发散性的题目,既可利用方程组解决问题,也可通过适当的推理来解决问题.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案)我国古代数学专著《九章算术》中记载了一道题,今有牛五、羊二,直金十两.牛二、羊五直金八两.问牛羊各直金几何?大意是:已知买五头牛和两头羊,需花费十两黄金;买两头牛,五头羊需花费八两黄金.若设买一头牛需花费x 两黄金,买一只羊需要花费y 两黄金,那么可列方程组为_____.【答案】5210258x y x y +=⎧⎨+=⎩【解析】【分析】根据“买五头牛和两头羊,需花费十两黄金;买两头牛,五头羊需花费八两黄金”,得到等量关系,即可列出方程组.【详解】设买一头牛需花费x 两黄金,买一只羊需要花费y 两黄金,那么可列方程组为:5210258x y x y +=⎧⎨+=⎩. 故答案为:5210258x y x y +=⎧⎨+=⎩. 【点睛】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.82.如图,长方形ABCD 被分成若干个正方形,已知21.5AB cm =,则长方形的另一边AD =____cm .【答案】12【解析】【分析】设最小的正方形边长为x ,第二小的正方形边长为y ,根据21.5AB DC cm ==列出二元一次方程组进行求解.【详解】设最小的正方形边长为x ,第二小的正方形边长为y ,由图形知,64321.52521.5y x y x x y -+-=⎧⎨+=⎩, 解得,x =2cm ,y =3.5cm ,∴长方形的另一边44 3.5212AD y x =-=⨯-=cm ,故答案为:12.【点睛】本题考查二元一次方程组的应用,巧设未知数,根据矩形的对边相等列出方程组是解题的关键.83.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,6661116÷=,所以(123)6F =.(1)计算:(127)F =____.(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (19x ≤≤,19y ≤≤,x ,y 都是正整数),规定:()()F s k F t =,当()()18F s F t +=时,求k 的最小值是____. 【答案】1012. 【解析】【分析】 (1)根据“相异数”的定义列式计算即可;(2)由s =100x +32,t =150+y 结合()()18F s F t +=,即可得出关于x 、y 的二元一次方程,解之即可得出x 、y 的值,再根据“相异数”的定义结合()F n 的定义式,即可求出()F s 、()F t 的值,将其代入()()F s k F t =中,即可求出最小值. 【详解】解:(1)根据“相异数”的定了可得127的三个新三位数为:217,721,172,∴(127)(217721172)11111101110=++÷=÷=F ,故答案为:10;(2)∵s ,t 都是“相异数”,其中s =100x +32,t =150+y ,∴()(3021023010023)1115=+++++÷=+F s x x x x ,()(5101005110510)1116=+++++÷=+F t y y y y ,∵()()18F s F t +=,∴561118x y x y +++=++=,∴7x y +=,∵19x ≤≤,19y ≤≤,x ,y 都是正整数,∴=16x y ⎧⎨=⎩或=25x y ⎧⎨=⎩或=34x y ⎧⎨=⎩或=43x y ⎧⎨=⎩或=52x y ⎧⎨=⎩或=61x y ⎧⎨=⎩, ∵s 是“相异数”,∴2x ≠且3x ≠,∵t 是“相异数”,∴1y ≠且5y ≠,∴=16x y ⎧⎨=⎩或=43x y ⎧⎨=⎩或=52x y ⎧⎨=⎩, ①当1,6x y ==时,()56()612,=+==+=F s x F t y ,则()6()2112===F s k F t , ②当4,3x y ==时,()59()69,=+==+=F s x F t y ,则()1()99===F s k F t , ③当5,2x y ==时,()510()68,=+==+=F s x F t y ,则()(10584)===F s k F t , ∴当1,6x y ==时,k 取得最小值为12, 故答案为:12. 【点睛】 本题考查了新定义运算和二元一次方程的应用,解题的关键是根据新定义列式计算和列出关于未知数的方程.84.如图①,在第一个天平上,砝码A 的质量等于砝码B 加上砝码C 的质量;如图①,在第二个天平上,砝码A 加上砝码B 的质量等于3个砝码C 的质量.请你判断:1个砝码A 与____个砝码C 的质量相等.【答案】2【解析】【分析】【详解】由图一可列方程:A=B+C (1),可变化为B=A-C (2).由图二可列方程:A+B=C+C+C (3).将(2)式代入(3)式,可消去B ,得到 A+A-C=C+C+C,化简得到A=2C85.已知方程组21x y m x y m +=⎧⎨+=+⎩中的x 、y 相等,则m =______. 【答案】2【解析】【分析】根据题意得到y=x ,代入方程组求出m 的值即可.【详解】解:把y=x 代入方程组得:21x x m x x m +=⎧⎨+=+⎩, 解得:12x m =⎧⎨=⎩, 故答案为:2【点睛】此题考查了二元一次方程组的解,方程组的解 即为能使方程组中两方程都成立的未知数的值.86.假设某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为90%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,6小时车库恰好停满;如果开放3个进口和2个出口,3小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,因为车库改造,只能开放1个进口和1个出口,则从早晨7点开始经过______小时车库恰好停满. 【答案】203【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,根据题意列出方程组求得用a 表示的x 、y ,进一步计算即可.【详解】解:设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得:()()62390%33290%x y a x y a ⎧-=⎪⎨-=⎪⎩, 解得:3253100x a y a ⎧=⎪⎪⎨⎪=⎪⎩, 332060%251003a a a , 即从早晨7点开始经过203小时车库恰好停满, 故答案为:203. 【点睛】此题考查二元一次方程组的实际运用,找出题目蕴含的等量关系列出方程组是解决问题的关键.87.定义一种关于非零常数a ,b 的新运算“*”,规定a *b=ax+by ,例如3*2=3x+2y .若2*1=8,4*(-1)=10,则x -y 的值是__________.【答案】1【解析】【分析】根据a*b=ax+by ,可得方程组,根据加减消元法,可得答案.【详解】解:∵2*1=8,4* (-1)=10,∴28410x y x y +=⎧⎨-=⎩, 解得:32x y =⎧⎨=⎩, ∴321x y -=-=;故答案为:1.【点睛】本题考查了新定义的运算法则,以及解二元一次方程组,解题的关键是熟练掌握新定义,正确求出二元一次方程组的解.88.若关于x ,y 的二元一次方程组010x y mx y -=⎧⎨+=⎩的解均为正整数,m 也是正整数,则满足条件的所有m 值分别为________.【答案】1,4,9【解析】【分析】先求出x 的值,用m 表示,再根据x 、m 的值均为正数,退出满足所有满足条件的m 的值即可得到答案.【详解】解:根据二元一次方程组010x y mx y -=⎧⎨+=⎩得到:x=y (即x 为正整数的时候y 也是正整数)再把两个方程相加得到:(1)10m x +=, 即:101x m =+, ∵10的因式只有1,2,5,10当m=1时,10511x y ===+; 当m=2时,1010213x y ===+; 当m=3时,105312x y ===+; 当m=4时,10241x y ===+;当m=5时,105513x y ===+; 当m=6时,1010617x y ===+; 当m=7时,105714x y ===+; 当m=8时,1010819x y ===+; 当m=9时,10191x y ===+; 当m=10时,101010111x y ===+, 因此当m 再增大式,x 和y 不是正整数了,故符合条件m 值有:1、4、9;故答案为:1、4、9;【点睛】本题只要考查了解方程组和正整数的概念,会解方程组是解题的关键.89.已知关于,x y 的二元次方程组3212343x y a x y a+=-⎧⎨+=-⎩的解满足1,x y +<则a 的取值范围____________.【答案】1a >-【解析】【分析】先把两式相加,再根据x+y <1求出a 的取值范围即可.【详解】解:3212343x y a x y a +=-⎧⎨+=-⎩①②, ①+①得,5(x+y )=3-2a ,即x+y=15(3-2a ), ①x+y <1,①15(3-2a)<1,解得a>-1,故答案为a>-1.【点睛】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.90.甲、乙两人同解方程组51542ax yx by+=⎧⎨=-⎩①②时,甲看错了方程①中的a,解得31xy=-⎧⎨=-⎩,乙看错了②中的b,解得54xy=⎧⎨=⎩,则2007200610ba⎛⎫+-⎪⎝⎭的值为_________.【答案】0【解析】【分析】根据甲看错了方程①中的a,将31xy=-⎧⎨=-⎩代入②中可求得b的值,根据乙看错了②中的b,将54xy=⎧⎨=⎩代入①中可求得a的值,由此可求得2007200610ba⎛⎫+-⎪⎝⎭的值.【详解】解:把31xy=-⎧⎨=-⎩代入方程②,得4×(-3)=b•(-1)-2,解得b=10;把54xy=⎧⎨=⎩代入方程①,得5a+5×4=15,解得a=-1.所以200720072006200610(1)1(1)01010ba⎛⎫⎛⎫+-=-+-=+-=⎪ ⎪⎝⎭⎝⎭.故答案为:0.【点睛】本题考查二元一次方程组的解,乘方的符号规律.理解方程组的解是同时满足方程组中两个方程的未知数的值是解决此题的关键.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案)为准备母亲节礼物,同学们委托小明用其支付宝余额团购鲜花或礼盒.每束鲜花的售价相同,每份礼盒的售价也相同.若团购15束鲜花和18份礼盒,余额差80元;若团购18束鲜花和15份礼盒,余额剩70元.若团购19束鲜花和14份礼盒,则支付宝余额剩_______元.【答案】120【解析】【分析】设团购鲜花的单价为x元/束,团购礼盒的单价为y元/份,支付宝余额原有a元,根据“若团购15束鲜花和18份礼盒,余额差80元;若团购18束鲜花和15份礼盒,余额剩70元”,即可得出关于x,y的二元一次方程组,用(①-②)÷3可得出y-x=50,结合方程①可得出19x+14y=a-120,此题得解.【详解】设团购鲜花的单价为x元/束,团购礼盒的单价为y元/份,支付宝余额原有a元,依题意,得:151880 181570x y ax y a++⎧⎨+-⎩=①=②,(①-②)÷3,得:y-x=50,∴19x+14y=15x+18y-4(y-x)=a+80-200=a-120.∴若团购19束鲜花和14份礼盒,余额剩120元.故答案为:120.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.82.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为_____.【答案】10【解析】【分析】设“△”的质量为x ,“□”的质量为y ,由题意列出方程:628x y x y +=⎧⎨+=⎩,解得:42x y =⎧⎨=⎩,得出第三个天平右盘中砝码的质量210x y =+=. 【详解】解:设“△”的质量为x ,“□”的质量为y ,由题意得:628x y x y +=⎧⎨+=⎩, 解得:42x y =⎧⎨=⎩, ∴第三个天平右盘中砝码的质量224210x y =+=⨯+=;故答案为:10.【点睛】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.83.用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A 、B 两种型号的钢板共______块.【答案】11【解析】【分析】设需用A 型钢板x 块,B 型钢板y 块,根据“用1块A 型钢板可制成4件甲种产品和1件乙种产品;用1块B 型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x ,y 的二元一次方程组,用()5÷①+②可求出x y +的值,此题得解.【详解】设需用A 型钢板x 块,B 型钢板y 块,依题意,得:4337218x y x y +=⎧⎨+=⎩①②, ()5÷①+②,得:11x y +=.故答案为:11.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.84.如果关于x 、y 的方程组2322x y k x y k -=-⎧⎨+=+⎩的解满足x -2y =-1,则k =____. 【答案】23【解析】【分析】把k 看做已知数求出方程组的解,再代入已知方程计算即可求出k 值.【详解】2322x y k x y k -=-⎧⎨+=+⎩①②, ①+②得:3x=5+k ,解得:x=53k +, 代入②得:53k ++y=2+2k , 解得:y=513k +, ∴x-2y=53k +-2×513k +=-1, 解得:k=23. 故答案为:23 【点睛】本题考查二元一次方程组的解,把k 看做已知数求出方程组的解是解题关键.85.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程______________. 【答案】110(10)2x y -=+ 【解析】【分析】本题的等量关系有:甲队调出10人到乙队,则乙队人数是甲队人数的2倍,可以列出方程.【详解】根据已知,从甲队调10人至乙队,可得甲队人数为(10)x -,乙队人数为(10)y +,又因为此时甲队人数是乙队人数的一半,故答案为:110(10)2x y -=+. 【点睛】此题考查二元一次方程,解题的关键是读懂题意,熟练掌握二元一次方程.86.某活动小组购买4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 ______.【答案】454664x y x y +=⎧⎨-=⎩. 【解析】【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价-足球的单价=4元,根据等量关系列出方程组即可.【详解】设篮球的单价为x 元,足球的单价为y 元,由题意得:454664x y x y +=⎧⎨-=⎩故答案为:454664x y x y +=⎧⎨-=⎩. 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.87.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重x两,每枚白银重y两,根据题意可列方程组为____.【答案】911(10)(8)13 x yy x x y=⎧⎨+-+=⎩【解析】【分析】根据题意甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同.故可得911x y=,再根据两袋互相交换1枚后,甲袋比乙袋轻了13两,可得(10)(8)13y x x y+-+=,因此可得二元一次方程组.【详解】根据题意可得甲袋中的黄金9枚和乙袋中的白银11枚质量相等,可得911x y=,再根据两袋互相交换1枚后,甲袋比乙袋轻了13两.故可得(10)(8)13y x x y+-+=.因此911(10)(8)13 x yy x x y=⎧⎨+-+=⎩所以答案为911(10)(8)13 x yy x x y=⎧⎨+-+=⎩【点睛】本题主要考查二元一次方程组的应用,关键在于理解题意,这是中考的必考题,必须熟练掌握.88.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____.【答案】8374x y x y -=⎧⎨+=⎩【解析】【分析】根据每人出8钱,多余3钱,每人出7钱,还缺4钱可得8374x y x y -=⎧⎨+=⎩. 【详解】解:由题意可得,8374x y x y -=⎧⎨+=⎩, 故答案为:8374x y x y -=⎧⎨+=⎩. 【点睛】考核知识点:根据题意列二元一次方程组.理解题意是关键.89.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A、B两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.【答案】320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a和x的取值范围确定a和x的值,从而得到植树的数量。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习试题(含答案)春节是一年中水果卖的最火的时候,某水果商今年春节主打销售:砂糖桔、瓯柑、车厘子、火龙果四种水果,销售1千克的砂糖桔和1千克的火龙果共获利2.5元;销售3千克的砂糖桔和2千克的火龙果共获利6元;瓯柑每千克的利润是1.5元;车厘子每千克的利润是6元.(1)分别求出每千克砂糖桔和火龙果的利润.(2)若在春节期间,该水果商销售了6000千克水果获利9200元,其中瓯柑和火龙果共销售了2200千克,求砂糖橘销售了多少千克?(3)若该水果商共销售了m 千克水果,其中砂糖桔和车厘子所获利润恰好相等,所有水果的销售总利润为10000元,设车厘子销售了a 千克,求a 与m 的数量关系.【答案】(1)每千克砂糖桔和火龙果的利润分别为1元/千克和1.5元/千克;(2)砂糖橘共销售了3380千克;(3)3320000a m +=【解析】【分析】(1)设砂糖桔的利润为x 元/千克,火龙果的利润y 元/千克,根据“销售1千克的砂糖桔和1千克的火龙果共获利2.5元;销售3千克的砂糖桔和2千克的火龙果共获利6元”,列出二元一次方程组,即可求解;(2)设砂糖橘共销售了b 千克,根据“该水果商销售了6000千克水果获利9200元”,列出一元一次方程,即可求解;(3)由题意得:砂糖桔销售了6a 千克,瓯柑和火龙果共销售了(7)m a -千克,根据“所有水果的销售总利润为10000元”,列出方程,即可得到结论.【详解】(1)设砂糖桔的利润为x 元/千克,火龙果的利润y 元/千克,由题意得: 2.5326x y x y +=⎧⎨+=⎩,解得:11.5x y =⎧⎨=⎩, 答: 每千克砂糖桔和火龙果的利润分别为1元/千克和1.5元/千克;(2)设砂糖橘共销售了b 千克,1.522006(60002200)9200b b +⨯+--=,解得:3380b =,答:砂糖橘共销售了3380千克;(3)∵ 车厘子销售了a 千克,砂糖桔和车厘子所获利润恰好相等∴ 砂糖桔销售了6a 千克,∴ 瓯柑和火龙果共销售了(7)m a -千克,由题意可得:12 1.5(7)10000a m a +-=,化简可得:3320000a m +=.【点睛】本题主要考查一元一次方程与二元一次方程组的实际应用,找出等量关系,列出方程或方程组,是解题的关键.52.工厂准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元;(2)工厂准备购进这两种型号的节能灯共50只,且A 型节能灯的数量不多于B 型节能灯数量的4倍,如何购买A 、B 型节能灯,可以使总费用最少,且总费用最少是多少.【答案】(1)A 型5元,B 型7元;(2)A 型40只,B 型10只,总费用270元.【解析】【分析】(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据:“1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元”列方程组求解即可;(2)首先根据“A 型节能灯的数量不多于B 型节能灯数量的4倍”确定自变量的取值范围,然后得到有关总费用和A 型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【详解】解:(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据题意,得:3263229x y x y +=⎧⎨+=⎩,解得:57x y =⎧⎨=⎩, (2)设购进A 型节能灯a 只,则购进B 型节能灯(50-a)只,总费用为:()57502350a a a +-=-+,∵且A 型节能灯的数量不多于B 型节能灯数量的4倍,即()450a a ≤-, 解得:40a ≤ ,而a 为正整数,∴当a=40时,总费用最少,总费用为:-80+350=270元,∴购进B 型节能灯(50-a)=50-40=10只.【点睛】此题主要考查了二元一次方程组的应用以及不等式的应用等知识,根据题意得出正确的等量关系是解题关键.53.为庆祝国庆节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5000元.(1)甲、乙两所学校各有多少学生准备参加演出?(2)如果甲、乙两所学校联合起来购买服装,那么比各自购买服装共可以节省多少钱?【答案】(1)甲学校有52人,乙校有40人;(2)联合起来比各自购买节省1320元.【解析】【分析】(1)根据题意判断出甲校的学生46>,乙校的学生46<,从而根据两所学校分别单独购买服装,一共应付5000元,可得出方程,解出即可;(2)计算出联合起来购买需付的钱数,然后即可得出节省的钱数.【详解】解:(1)∵甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人),∴46<甲校的学生90<,乙校的学生<46,设甲校学生x 人,乙校学生()92x ﹣人, 由题意得,()5060925000x x +=﹣, 解得:52x =,925240=﹣(人),即甲学校有52人,乙校有40人.(2)联合起来购买需要花费:92403680⨯=元,节省钱数500036801320=﹣=元. 答:联合起来比各自购买节省1320元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是判断出两学校的人数范围,有一定难度.54.某厂计划一个月安装新式儿童小机器人玩具480台.由于熟练工不够,工厂决定招聘一些新工人,新工人经过培训后上岗.调研部门发现:1名熟练工和2名新工人每天可安装16台小机器人玩具;3名熟练工和4名新工人每天可安装40台小机器人玩具.(1)每名熟练工和新工人每天分别可以安装多少台小机器人玩具?(2)如果工厂招聘()010n n <<名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一个月的安装任务,那么工厂有哪几种新工人的招聘方案?【答案】(1)每名熟练工和新工人每天分别可以安装8、4台小机器人玩具;(2)工厂有4种新工人的招聘方案:①招聘新工人8人,抽调熟练工4人;②招聘新工人6人,抽调熟练工5人;③招聘新工人4人,抽调熟练工6人;④招聘新工人2人,抽调熟练工7人.【解析】【分析】(1)设每名熟练工和新工人每天分别可以安装x、y台小机器人玩具,根据等量关系,列出关于x,y的二元一次方程组,即可求解;(2)设工厂抽调a名熟练工,“招聘的新工人和抽调的熟练工刚好能完成一个月的安装任务”,列出关于a,n的二元一次方程,进而即可得到结论.【详解】(1)设每名熟练工和新工人每天分别可以安装x、y台小机器人玩具.根据题意,得:2163440x yx y+=⎧⎨+=⎩,解得:84xy=⎧⎨=⎩.答:每名熟练工和新工人每天分别可以安装8、4台小机器人玩具;(2)设工厂抽调a名熟练工,根据题意,得:30(8a+4n)=480,2a+n=16,n=16-2a,∵a,n都是正整数,0<n<10,∴n=8,6,4,2.即工厂有4种新工人的招聘方案:①n=8,a=4,即招聘新工人8人,抽调熟练工4人;②n =6,a=5,即招聘新工人6人,抽调熟练工5人;③n =4,a=6,即招聘新工人4人,抽调熟练工6人;④n =2,a =7,即招聘新工人2人,抽调熟练工7人.【点睛】本题主要考查二元一次方程(组)的实际应用,根据等量关系,列出二元一次方程(组),是解题的关键.55.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm 的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?【答案】(1)5040a b ;(2)竖式无盖礼品盒200个,横式无盖礼品盒400个.【解析】【分析】(1)由图示利用板材的长列出关于a 、b 的二元一次方程组求解;(2)根据已知和图示计算出两种裁法共产生A 型板材和B 型板材的张数,然后根据竖式与横式礼品盒所需要的A 、B 两种型号板材的张数列出关于x 、y 的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:310200330200a b a b ,解得:5040a b ,答:图甲中a 与b 的值分别为:50、40;(2)由图示裁法一产生A 型板材为:3×625=1875,裁法二产生A 型板材为:1×125=125,所以两种裁法共产生A 型板材为1875+125=2000(张),由图示裁法一产生B 型板材为:1×625=625,裁法二产生A 型板材为,3×125=375,所以两种裁法共产生B 型板材为625+375=1000(张),设裁出的板材做成的竖式有盖礼品盒有x 个,横式无盖礼品盒有y 个, 则A 型板材需要(4x+3y )个,B 型板材需要(x+2y )个,则有43200021000x y x y ,解得200400x y.【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a 、b 的值,根据图示列出算式以及关于x 、y 的二元一次方程组.+ 56.已知22x y m =⎧⎨=⎩,23x n y =⎧⎨=⎩都是关于x ,y 的二元一次方程y x b =+的解,且2112m n b b -=+-,求b 的值. 【答案】b =【解析】【分析】将方程的解代入方程,得到关于m 、n 的方程的方程组,从而得到m-n=2b-1,结合已知条件列出关于b 的方程求解即可.【详解】解:∵22x y m ,23x n y 都是关于x ,y 的二元一次方程y x b =+的解, ∴将22x y m,23x n y 代入y x b =+得:2232m b n b , ∴12m n b , 又∵2112m n b b -=+-, ∴2111=-22b b b .化简得25b =,解得:b =【点睛】本题主要考查的是二元一次方程的解和解一元二次方程,列出关于b 的一元二次方程是解题的关键.57.某工厂去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,支出比去年减少了10%,今年的利润为810万元,去年的总产值、总支出各是多少万元?【答案】去年的总产值是1800万元,总支出各是1500万元.【解析】【分析】分别根据:去年总产值-去年总支出=300和今年增加后的总产值-今年减少后的总支出=810,可列方程组.【详解】解:设去年的总产值x 万元,总支出y 万元,根据题意可列方程组:300120%110%810x y x y , 解之得:18001500x y答:去年的总产值是1800万元,总支出各是1500万元.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是根据题意找到蕴含的相等关系.58.在等式y kx b =+中,当6x =时,2y =;当3x =时,3y =.求当3x =-时,y 的值.【答案】5【解析】【分析】把6x =,2y =和3x =,3y =代入等式y kx b =+得到方程组,求出k ,b ,然后将3x =-代入求出方程的解即可.【详解】解:把6x =,2y =和3x =,3y =代入等式y kx b =+得:6233kb k b , 解得:13k =-,4b =,∵等式为:143y x =-+ ∴当3x =-时,1341453y.【点睛】 本题主要考查对解二元一次方程组的理解和掌握,能得到关于k 和b 的方程组是解此题的关键.59.某铁件加工厂用如图所示的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图.所示的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工竖式铁容器与横式铁容器各 1 个,则共需要长方形铁片 张,正方形铁片 张.(2)现 有长方形铁片 2017 张,正方形铁片 1178 张,如果加工成这两种铁容器,刚好铁片全部用完,那加工的竖式铁容器、横式铁容器各有多少个?(3)把长方体铁容器加盖可以加工成为铁盒.现用 35 张铁板做成长方形铁片和正方形铁片,已知每张铁板可做成 3 个长方形铁片或 4 个正方形铁片,也可以将一张铁板裁出 1 个长方形铁片和 2 个正方形铁片.若充分利用这些铁板加工成铁盒,则最多可以加工成多少个铁盒?【答案】(1)7,3 (2)加工的竖式铁容器有100个,横式铁容器各有539个 (3)最多可加工铁盒19个【解析】【分析】(1)如图得加工1个竖式铁容器需要长方形铁片4张,正方形铁片1 张;加工1个横式铁容器需要长方形铁片3张,正方形铁片2 张,即可求解.(2)设加工的竖式铁容器有x 个,横式铁容器各有y 个,根据题意列出方程组求解即可.(3)设做长方形铁片的铁板m 张,做正方形铁片的铁板n 张,根据题意列出方程组求解即可.【详解】(1)如图,加工1个竖式铁容器需要长方形铁片4张,正方形铁片1 张;加工1个横式铁容器需要长方形铁片3张,正方形铁片2 张.故如果加工竖式铁容器与横式铁容器各 1 个,则共需要长方形铁片7张,正方形铁片3 张.(2)设加工的竖式铁容器有x 个,横式铁容器各有y 个,由题意得 43201721178x y x y +=⎧⎨+=⎩解得100539x y =⎧⎨=⎩故加工的竖式铁容器有100个,横式铁容器各有539个.(3)设做长方形铁片的铁板m 张,做正方形铁片的铁板n 张,由题意得 35324m n m n +=⎧⎨=⨯⎩解得525116911m n ⎧=⎪⎪⎨⎪=⎪⎩∴在这35张铁板中,25张做长方形铁片可做25375⨯=(片),9张做正方形铁片可做9436⨯=(片),剩1张可裁出1个长方形铁片和2个正方形铁片共可做长方形铁片75+176=(片),正方形铁片36238+=(片)∴可做铁盒76419÷=(个)答:最多可加工铁盒19个.【点睛】本题考查了二元一次方程组的实际应用,掌握解二元一次方程的方法是解题的关键.60.已知:如图所示,在△ABO 中,∠AOB=90°,AO=6cm ,BO=8cm ,AB=10cm .且两直角边落在平面直角坐标系的坐标轴上.(1)如果点P 从A 点开始向O 以1cm/s 的速度移动,点Q 从点O 开始向B 以2cm/s 的速度移动.P ,Q 分别从A ,O 同时出发,那么几秒后,△POQ 为等腰三角形?(2)若M ,N 分别从A ,O 出发在三角形的边上运动,若M 点运动的速度是xcm/s ,N 点运动的速度是ycm/s ,当M ,N 相向运动时,2s 后相遇,当M ,N 都沿着边逆时针运动时9s 后相遇.求M 、N 的速度.【答案】(1)P,Q分别从A,O同时出发,那么2秒后,△POQ为等腰三角形;(2)M点运动的速度是116cm/s,N点运动的速度是76cm/s.【解析】【分析】(1)设P,Q分别从A,O同时出发,那么t秒后,△POQ为等腰三角形,根据PO=OQ,列出方程,即可解答;(2)根据当M,N相向运动时,2s后相遇,当M,N都沿着边逆时针运动时9s后相遇,列出方程组,即可解答.【详解】解:(1)设P,Q分别从A,O同时出发,那么t秒后,△POQ为等腰三角形,根据题意得:6﹣t=2t,解得,t=2,答:P,Q分别从A,O同时出发,那么2秒后,△POQ为等腰三角形;(2)根据题意得:226 996 x yx y+=⎧⎨=+⎩解得:.11676 xy⎧=⎪⎪⎨⎪=⎪⎩故M点运动的速度是116cm/s,N点运动的速度是76cm/s.【点睛】本题考查了二元一次方程组的应用,解决本题的关键是根据题目中的等量关系,列出方程组.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?【答案】(1)超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)该顾客混合的糖果中甲种糖果最少10千克.【解析】(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元,依题意得:,(2分)解得.(3分)答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,依题意得:10a+14(20﹣a)≤240,(6分)解得a≥10,即a最小值=10.(7分)答:该顾客混合的糖果中甲种糖果最少10千克.92.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为多少.【答案】18.【解析】设小长方形的长为x,宽为y 。
49234{xy x y y +=+-=, 51{x y ==阴影面积为(4+3)*9-9*5*1=18.93.如下图,在长10 m ,宽8 m 的长方形空地上,沿平行于长方形各边的方向分割出三个大小相同的长方形花圃,求长方形花圃的长和宽.【答案】小矩形花圃的长和宽分别是4 m 和2 m.【解析】试题分析:设小长方形花圃的长为xm ,小长方形花圃的宽为ym ,根据大长方形的长与宽的长度即可得出关于x 、y 的二元一次方程组,解之即可得出结论.试题解析:设小长方形花圃的长为xm ,小长方形花圃的宽为ym ,根据题意得:210{28x y x y ++==,解得:4{2xy==.答:小长方形花圃的长为4m,小长方形花圃的宽为2m.【点睛】本题考查了二元一次方程组的应用,根据大长方形长与宽的长度列出关于x、y的二元一次方程组是解题的关键.94.已知关于x,y的方程组260250 x yx y mx+-=⎧⎨-++=⎩(1)请直接写出方程x+2y-6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值时,方程x-2y+mx+5=0总有一个固定的解,求出这个解.(4)若方程组的解中x恰为整数,m也为整数,求m的值.【答案】(1)22xy=⎧⎨=⎩,41xy=⎧⎨=⎩(2)m=136-(3)2.5xy=⎧⎨=⎩(4)1-3m=-或【解析】【分析】(1)先对方程变形为x=6-2y,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m的值;(3)方程整理后,根据无论m如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;(4)先把m当做已知求出x、y的值,然后再根据整数解进行判断即可.【详解】(1)22x y =⎧⎨=⎩ 41x y =⎧⎨=⎩(2)0260x y x y +=⎧⎨+-=⎩ 解得66x y =-⎧⎨=⎩把66x y =-⎧⎨=⎩代入250x y mx -++=,解得m=136- (3)02.5x y =⎧⎨=⎩(4)260250x y x y mx +-=⎧⎨-++=⎩①② ①+②得:()2+1m x = 解得12x m=+, ∵x 恰为整数,m 也为整数,∴2+m=1或2+m=-1,解得1-3m =-或95.某学校组织学生到富阳春游,需要乘船到达目的地,有大小两种船,705班共有学生51人,如果租用大船4艘,小船1艘,则有3位同学没有座位;如果租用大船3艘,小船3艘,则有3个座位空余。
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组和差倍分问题 专题练习题1. 已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x °,∠2=y °,则x ,y 满足的方程组为( )A .B .C .D . {x +y =90x =3y +20){x +y =90y =3x +20){x +y =180x =3y +20){x +y =180y =3x +20)2.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .B .C .D . {5x +4y =1482x +5y =100){4x +5y =1482x +5y =100){5x +4y =1485x +2y =100){4x +5y =1485x +2y =100)3.一篮水果分给一群小孩,若每人分8个,则差3个水果;若每人分7个,则多4个水果,在这个问题中,有小孩____人,水果____个.4.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.5.一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,下面所列方程组正确的是( )A .B . {x +y =8xy +18=yx ){x +y =810(x +y )+18=yx)C . D . {x +y =810x +y +18=yx ){x +y =8x +10y +18=10x +y)6.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.7.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .B .C .D . {x +y =602×200x =50y ){x +y =60200x =50y ){x +y =60200x =2×50y ){x +y =5050x =200y)8.家具厂生产方桌,按设计1立方米木材可制作50个桌面或300个桌腿,现有10立方米木材,怎样分配木材才能使生产的桌面和桌腿恰好配套,并指出共可生产多少张方桌?(一张方桌按1个桌面4条桌腿配置)9.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人,则1艘大船和1艘小船一次可以载乘客的人数分别是( )A .18人,7人B .17人,8人C .15人,7人D .16人,8人10.某校举行安全知识竞赛,其评分规则如下:答对一题得5分,答错一题得-5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格,则小明答对____道题,答错____道题.11.某芒果种植基地去年结余为500万元,估计今年能结余960万元,并且今年的收入比去年高15%,支出比去年低10%,则去年的收入是____________万元,支出是____________万元.12.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40千克,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各为多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”求诗句中谈到的鸦的只数,树的棵数.14.一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时你才1岁,你到我这么大时,我已经37岁了.”请问老师、学生今年分别多大了?15.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少元?方法技能:1.审题时要弄清题意和题目中的数量关系,找出问题中的所有相等关系.2.设未知数可直接设,也可间接设,力求简洁.3.检验所得的解是否符合题意和实际意义,不符合的解要舍去.4.设未知数及作答时要注意单位名称统一.易错提示:注意配套问题中的数量关系.答案:1.C 2.A 3.7 534.20 5. D 6. 解:设这个两位数十位上的数为x ,个位上的数为y ,则有解得{10x +y =x +y +9,10y +x =10x +y +27,)∴这个两位数为14 {x =1,y =4,)7. C8. 解:设分配x 立方米木材生产桌面,y 立方米木材生产桌腿,根据题意得解得则共可生产方桌为50x =300张 {x +y =10,50x ×4=300y ,){x =6,y =4,)9. A10. 17 111. 2040 154012. 解:(1)设采摘黄瓜x 千克,茄子y 千克,根据题意得解得则{x +y =40,x +1.2y =42,){x =30,y =10,)采摘的黄瓜和茄子分别为30千克、10千克(2)30×(1.5-1)+10×(2-1.2)=23(元),则这些采摘的黄瓜和茄子可赚23元13. 解:设有x 只鸦,y 棵树,则有解得则鸦的只数为20,树的{3y =x -5,5(y -1)=x ,){x =20,y =5,)棵数为514. 解:设老师今年x 岁,学生今年y 岁,则有解得则老师今年25{x -y =y -1,37-x =x -y ,){x =25,y =13,)岁,学生今年13岁15. 解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得解得显然书的本数应为整数,不能为小数,不合题意,{x +y =105,8x +12y =1500-418,){x =44.5,y =60.5,)故一定是搞错了 (2)设笔记本的单价为a 元,根据题意得可得y {x +y =105,8x +12y +a =1500-418,)=,要使y 为整数,则a 首先必须为偶数,又是小于5元的整数,故a 只能为2,4.当242-a 4a =2时,y =60;当a =4时,y =59.5(不合题意舍去).综上所述,笔记本的单价可能为2元。
人教版七年级下册数学8.3 实际问题与二元一次方程组课后巩固练习(带解析)一、单选题1.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.602412x yx y+=⎧⎨=⎩B.601224x yx y+=⎧⎨=⎩C.6022412x yx y+=⎧⎨⨯=⎩D.6024212x yx y+=⎧⎨=⨯⎩2.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是A.x y10{y3x2+==+B.x y10{y3x2+==-C.x y10{x3y2+==+D.x y10{x3y2+==-3.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩4.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()5.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A.14和6B.24和16C.28和12D.30和106.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个7.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是()A.61B.16C.52D.258.鸡兔同笼问题是我国古代著名趣题之一,大约在1500 年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有35 个头;从下面数,有94 只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡20 只,兔15 只B.鸡12 只,兔23 只C.鸡15 只,兔20 只D.鸡23 只,兔12 只9.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是()A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本10.根据如图给出的信息,计算放入体积相同的大球、体积相同的小球各2个,水面将上升到()A.35 cm B.36 cm C.37 cm D.39 cm二、填空题11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x,乙持钱数为y,可列方程组为________.12.结合下面图形列出关于未知数x,y的方程组为_____.13.某活动小组购买4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y 元,依题意,可列方程组为______.14.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.15.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺.三、解答题16.甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩的路程是乙到A地所剩路程的2倍,试求甲、乙两人的速度.17.某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?18.某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.19.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.①陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.参考答案1.C【解析】根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为60{22412x yx y+=⨯=.故选C.2.C【解析】由两数x,y之和是10可列式x y10+=;由x比y的3倍大2可列式x3y2=+.故选C.3.A【解析】解:设甲的钱数为x,乙的钱数为y;由甲得乙半而钱五十,可得:1x y502+=由甲把其23的钱给乙,则乙的钱数也为50;可得:2503x y+=故答案为:A 4.B【解析】设购买篮球x 个,排球y 个,根据题意可得120x+90y=1200,则y=4043x -, ①x 、y 均为正整数,①x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B .5.A【解析】设快者的速度为x 千米/小时,慢这的速度为y 千米/小时,根据题意得: 55402240x y x y -=⎧⎨+=⎩, 解得:146x y =⎧⎨=⎩. 故选A.6.A【解析】设“●”“■”“▲”分别为x 、y 、z ,由图(1)(2)可知,2x y z z x y=+⎧⎨=+⎩ , 解得x=2y ,z=3y ,所以x+z=2y+3y=5y ,即“■”的个数为5.故选A .7.B【解析】设这个两位数的十位数字为x ,则个位数字为7−x ,由题意列方程得,10x+7−x+45=10(7−x)+x ,解得x=1,则7−x=7−1=6,故这个两位数为16.故选B.8.D【解析】设笼中有x 只鸡,y 只兔,根据题意得:{x +y =352x +4y =94解得:{x =23y =12. 故选D .9.D【解析】设小红所买的笔和笔记本的价格分别是x 元,y 元,则 5x+10y=42 10x+5y=30 ,解得 x=1.2 y=3.6 ,所以小红所买的笔和笔记本的价格分别是1.2元,3.6元.故选D.10.B 【解析】设大球体积为x,小球体积为y,根据题意建立方程组23382623326x yx y-⎧⎨-⎩+=+=,解方程组,得到x,y的值,再计算得到2x+2y的值为36,所以,选B.11.502250 3yxx y⎧+=⎪⎪⎨⎪+=⎪⎩【解析】由题意可得,y5022503xx y⎧+=⎪⎪⎨⎪+=⎪⎩,故答案为y5022503xx y⎧+=⎪⎪⎨⎪+=⎪⎩.12.250 325x yx y+=⎧⎨=+⎩.【解析】由图可得250 325 x yx y+=⎧⎨=+⎩.故答案为250 325 x yx y+=⎧⎨=+⎩.13.454664x yx y+=⎧⎨-=⎩.【解析】设篮球的单价为x 元,足球的单价为y 元,由题意得:454664x y x y +=⎧⎨-=⎩故答案为:454664x y x y +=⎧⎨-=⎩. 14.5【解析】解:设驴子原来驮x 袋,根据题意,得:2(x ﹣1)﹣1﹣1=x +1解得:x =5.故驴子原来所托货物的袋数是5.故答案为5.15.20 15【解析】解:设索长为x 尺,竿子长为y 尺.根据题意得:515,2x y x y -=⎧⎪⎨=-⎪⎩ 解得:2015.x y =⎧⎨=⎩ 故答案为20,15.16.甲的速度为每小时4千米,乙的速度为每小5千米;或甲的速度为每小时1534千米,乙的速度为每小253千米. 【解析】①当甲、乙两人相遇前相距3千米时,得: ()()33303303223032x y x y +=-⎧⎪⎨⎡⎤-+=-+⎪⎣⎦⎩,解得:45x y =⎧⎨=⎩, ①当甲、乙两人经过3小时相遇后又相距3千米时,得:()()33303303223032x y x y +=+⎧⎪⎨⎡⎤-+=-+⎪⎣⎦⎩,解得:153253x y ⎧=⎪⎪⎨⎪=⎪⎩, 答:甲的速度为每小时4千米,乙的速度为每小5千米;或甲的速度为每小时1534千米,乙的速度为每小253千米. 17.少花160元【解析】 设打折前甲商品的单价为x 元,乙商品的单价为y 元,由题意得:23180{4200x y x y +=+=,解得:24{44x y ==,则打折前购买10件甲商品和10件乙商品需要10×(24+44)=680(元),打折后实际花费520元,680-520=160(元),①这比打折前少花160元.答:这比打折前少花160元.18.(1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.【解析】解:(1)设该车间应安排x 天加工童装,y 天加工成人装,由题意得:104530360x y x y +=⎧⎨+=⎩, 解得:46x y =⎧⎨=⎩,答:该车间应安排4天加工童装,6天加工成人装;(2)①45×4=180,30×6=180,①180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.19.(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;①签字笔的单价可能为2元或6元.【解析】求出其解就可以得出结论.【详解】解:(1)设钢笔的单价为x 元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755,解得:x =21,①毛笔的单价为:x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)①设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解之得:y=44.5 (不符合题意).①陈老师肯定搞错了.①设单价为21元的钢笔为z支,签字笔的单价为a元,则根据题意,得21z+25(105﹣z)=2447﹣a.①4z=178+a,①a、z都是整数,①178+a应被4整除,①a为偶数,又因为a为小于10元的整数,①a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以签字笔的单价可能2元或6元.故答案为2元或6元.。
《8.3实际问题与二元一次方程组》一、选择题(每小题只有一个正确答案)1.在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x名学生,列出方程组为()A. B. C. D.2.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D. 96mm23.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A. 14和6B. 24和16C. 28和12D. 30和104.某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A. 50、100B. 50、56C. 56、126D. 100、1265.我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100 匹马恰好拉了 100 片瓦,已知 1 匹大马能拉3 片瓦,3 匹小马能拉 1 片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. B. C. D.6.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x人,分成y个小组,则可得方程组()A.74{83x yx y+=-=B.7y4{83xy x=++=C.7y4{83xy x=-=+D.7y+4{83xy x==+7.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.42{43x yx y+==B.42{34x yx y+==C.42{1134x yx y-==D.42{43y xx y+==二、填空题8.某公司向银行申请了甲 、乙两种贷款,共计68万元,每年需付出8.42万元利息。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案) 已知:23x y ++与()22x y +的和为零,则x y -=( ) A .7B .5C .3D .1【答案】C【解析】【分析】 利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可求出x −y 的值.【详解】根据题意得:|x +2y +3|+()22x y +=0, ∴2320x y x y +=-⎧⎨+=⎩①②, 由②得:y =−2x ③,③代入①得:x −4x =−3,即x =1,把x =1代入③得:y =−2,则x −y =1−(−2)=1+2=3.故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.22. 铭铭要用20元钱购买笔和本,两种物品都必须都买,20元钱全部用尽,若每支笔3元,每个本2元,则共有几种购买方案( )A.2 B.3 C.4 D.5【答案】B【解析】【分析】设购买x支笔,y个本,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结x,y均为正整数即可求出结论.【详解】解:设购买x支笔,y个本,依题意,得:3x+2y=20,∴y=10-32 x.∵x,y均为正整数,∴112 7x y =⎧⎨=⎩,2244xy=⎧⎨=⎩,3361xy=⎧⎨=⎩,∴共有3种购买方案.故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的基础,用一个变量表示另一个变量,进行整数解的讨论是解题的关键.二、解答题23.列方程组解应用题:《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买一只羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?【答案】合伙人是21人,羊价是150元.【解析】【分析】设合伙买羊的有x 人,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设合伙人数是x 人、羊价是y 元,依题意得:54573x y x y +=⎧⎨+=⎩, 解得:21150x y =⎧⎨=⎩答:合伙人数是21人,羊价是150元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.李师傅负责修理我校课桌椅,现知道李师傅修理2张课桌和3把椅子共需86分钟,修理5张课桌和2把椅子共需149分钟.(1)请问李师傅修理1张课桌和1把椅子各需多少分钟(2)现我校有12张课桌和14把椅子需要修理,要求1天做完,李师傅每天工作8小时,请问李师傅能在上班时间内修完吗?【答案】(1)李师傅修理1张课桌需要25分钟,修理1把椅子需要12分钟;(2)李师傅能在上班时间内修完.【解析】【分析】(1)设李师傅修理1张课桌需要x分钟,修理1把椅子需要y分钟,根据“李师傅修理2张课桌和3把椅子共需86分钟,修理5张课桌和2把椅子共需149分钟”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)求出李师傅修理12张课桌和14把椅子所需时间,将其与8小时(480分钟)比较后即可得出结论.【详解】解:(1)设李师傅修理1张课桌需要x分钟,修理1把椅子需要y分钟,依题意,得:2386 52149x yx y+=⎧⎨+=⎩,解得:2512 xy=⎧⎨=⎩.答:李师傅修理1张课桌需要25分钟,修理1把椅子需要12分钟.(2)25×12+12×14=468(分钟),8小时=480分钟,∵468<480,∴李师傅能在上班时间内修完.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.甲、乙两人同解方程组232ax by cx y +=⎧⎨-=-⎩,甲正确解得11x y =⎧⎨=-⎩,乙因抄错c ,解得23x y =⎧⎨=-⎩,求a 2﹣b +c 的值. 【答案】9.【解析】【分析】把11x y =⎧⎨=-⎩代入②得出c +3=﹣2,求出c ,把11x y =⎧⎨=-⎩和23x y =⎧⎨=-⎩代入①得出2232a b a b -=⎧⎨-=⎩,求出a ,b ,再求出a 2﹣b +c 的值即可. 【详解】解:232ax by cx y +=⎧⎨-=-⎩①② 把11x y =⎧⎨=-⎩代入②得:c +3=﹣2, 解得:c =﹣5,把11x y =⎧⎨=-⎩和23x y =⎧⎨=-⎩代入①得:2232a b a b -=⎧⎨-=⎩, 解得:42a b =⎧⎨=⎩, 所以a 2﹣b +c =42﹣2﹣5=9.【点睛】本题考查了解二元一次方程组和二元一次方程组的解,根据方程解的概念将方程的解代入未抄错的方程中得出关于c 的方程和得出关于a 、b 的方程组是解此题的关键.26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.【答案】(1)(11,3)-;(2)12a =,12m =,2n =;(3)()1,4 【解析】【分析】 (1)根据题意和平移的性质求点P '坐标;(2)由正方形的性质,结合题意列方程组求解;(3)设点F 的坐标为(,)x y ,根据平移规律列方程组求解.【详解】(1)∵(2,1)P -,5a =,1m =,2n =,∴(251,152)P '⨯+-⨯+∴(11,3)P '-故答案为:(11,3)-;(2)根据题意得:313202a m a m a n -+=-⎧⎪+=⎨⎪⋅+=⎩解得12122a m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩即12a =,12m =,2n =; (3)设点F 的坐标为(,)x y ,根据题意得1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得14x y =⎧⎨=⎩ ∴F 的坐标为()1,4.【点睛】本题主要考察平移变换,关键是掌握坐标系中平移变换与横、纵坐标的变化规律.27.我国古代有这样一个数学问题:以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺,绳长、井深各几何?大意是:用绳测量井深,若将绳子折成三等分(如图1),则一份绳长比并深多5尺;若将绳子折成四等分(如图2),则一份绳长比井深多1尺,求绳长和井深各是多少尺.【答案】绳长是48尺,井深是11尺【解析】【分析】设绳长是x 尺,井深是y 尺,根据绳子折叠后的长度与井深可列写2个方程,然后解二元一次方程可得.【详解】解:设绳长是x 尺,井深是y 尺 依据题意,得5,314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 解这个方程组,得48,11.x y =⎧⎨=⎩苍:绳长是48尺,井深是11尺.【点睛】本题考查二元一次方程的运用,解题关键是将题干中的信息转化为等量关系式,然后列写等量方程.28.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.【答案】(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭【解析】【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论. 【详解】解:(1)∵AB BC ⊥∴90B ∠=︒∵//AB CD∴18090C B ∠=︒-∠=︒∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒;(2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG 证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF∴DAE BEA ∠=∠∴EAF AEG ∠=∠∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠∴180GEF DAF ∠+∠=︒∵GEF k DAF ∠=∠ ∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒ ∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒ ∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点∴45BAE x ∠=︒>︒∵k 为不超过10的正整数∴当8k 时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.29.为加强爱国主义教育,提高思想道德素质,某中学决定组织部分班级去山西国民师范旧址革命活动纪念馆开展红色旅游活动,在参加此次活动的师生中,若每位教师带17名学生,还剩12名学生没人带;若每位教师带18名学生,就有一位教师少带4名学生.现有甲、乙两种大客车,两种客车的载客量和租金如下表所示.(1)参加此次红色旅游活动的教师和学生各有多少人?(2)为了安全,每辆客车上要有2名教师.则怎样租车可以保证师生均有车坐,而且每辆车上都没有空座,也不超载,此时租车的费用为多少元?【答案】(1)教师有16位,学生有284名;(2)应租用甲种客车3辆,乙种客车5辆,此时租车的费用为3000元【解析】【分析】(1)设教师有x 位,学生有y 名,根据题意列出方程组即可;(2)由(1)知每辆客车上要有2名教师需1628÷=辆车,设学校应租用甲种客车m 辆,乙种客车()8m -辆,根据学生和老师的总人数列出方程即可,再算出相应的费用.【详解】(1)设教师有x 位,学生有y 名,根据题意,得1712,18 4.x y x y =-⎧⎨=+⎩解,得16,284.x y =⎧⎨=⎩答:教师有16位,学生有284名.(2)1628÷=,需要租8辆车.设学校应租用甲种客车m 辆,乙种客车()8m -辆,根据题意,得()3042828416m m +-=+,解得3m =,85m -=,330054203000⨯+⨯=(元).答:应租用甲种客车3辆,乙种客车5辆,此时租车的费用为3000元.【点睛】本题考查了二元一次方程组、一元一次方程的实际应用,正确寻找等量关系是解题关键.30.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?【答案】每枚黄金重1434两,每枚白银重1174两 【解析】【分析】设每枚黄金重x 两,每枚白银重y 两,根据题意可得等量关系:①9枚黄金重量=11枚白银重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13,解方程即可.【详解】(1)设每枚黄金重x 两,每枚白银重y 两,根据题意,得()()911,10813.x y x y x y =⎧⎨+-+=⎩解得143,4117.4x y ⎧=⎪⎪⎨⎪=⎪⎩答:每枚黄金重1434两,每枚白银重1174两. 【点睛】 本题考查二元一次方程组实际应用,正确找出等量关系是解题关键.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习试题(含答案)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。
(1)求文具袋和圆规的单价。
(2)学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:方案一:购买一个文具袋还送1个圆规。
方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.【答案】(1)文具袋的单价为15元,圆规单价为3元;(2)①方案一总费用为(3240)m+元,方案二总费用为(2.4306)m+元;②方案一更合算.【解析】【分析】(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论.【详解】(1)设文具袋的单价为x元,圆规单价为y元。
由题意得2212339x yx y+=⎧⎨+=⎩解得153xy=⎧⎨=⎩答:文具袋的单价为15元,圆规单价为3元。
(2)①设圆规m个,则方案一总费用为:20153(20)(3240)m m⨯+-=+元方案二总费用2015103380%(10)(2.4306)m m⨯+⨯+⨯-=+元故答案为:(3240)m+元;(2.4306)m+①买圆规100个时,方案一总费用:20153(10020)540⨯+-=元,方案二总费用:2015103380%(10010)546⨯+⨯+⨯-=元,①方案一更合算。
【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.72.已知方程组913x y ax y a+=--⎧⎨-=-+⎩的解x、y满足:x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,关于x的不等式2ax+x>2a+1的解集为x<1.【答案】(1)-2<a≤5;(2)-1.【解析】【分析】(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据不等式2ax+x>2a+1的解为x<1,得出2a+1<0且-2<a≤5,解此不等式得到关于a取值范围,找出符合条件的a的值.【详解】(1)解这个方程组的解为524x ay a--⎩-⎧⎨==,由题意,得50240aa≤--⎩-⎧⎨<,第一个不等式的解集是:a≤5,第二个不等式的解集是:a>-2,则原不等式组的解集为-2<a≤5;(2)∵不等式2ax+x>2a+1的解集为x<1,∴2a+1<0且-2<a≤5,∴在-2<a<-12范围内的整数有a=-1.【点睛】本题考查的是解二元一次方程组及解一元一次不等式组、代数式的化简求值,先把a当作已知求出x、y的值,再根据已知条件得到关于a的不等式组求出a 的取值范围是解答此题的关键.73.某车间有90人,一人每天加工10个螺栓或25个螺母,组装一部机器需4个螺栓和5个螺母,问应安排多少人生产螺栓,多少人生产螺母,才能尽可能多的组装成这种机器?【答案】安排60人生产螺栓,40人生产螺母【解析】【分析】本题可以从问题入手,设安排x人生产螺栓,y人生产螺母,那么等量关系有:x+y=90;x人生产的螺栓总数:y人生产的螺母总数=4:5,据此可列方程组求解.【详解】解:设安排x人生产螺栓,y人生产螺母则90 102545 x yx y+⎧⎨⎩=:=:解得:6030 xy=⎧⎨=⎩答:安排60人生产螺栓,40人生产螺母,才能尽可能多地组装成这种机器.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.74.在平面直角坐标系中,已知A(a,b),B(2,2),且=0.(1)求点A的坐标;(2)过点A作AC⊥x轴于点C,连接BC,AB,延长AB交x轴于点D,设AB交y轴于点E,那么OD与OE是否相等?请说明理由.(3)在x轴上是否存在点P,使S△OBP=S△BCD?若存在,请求出P点坐标,若不存在,请说明理由.【答案】(1)点A 的坐标为(-2,6);(2)OD 与OE 相等.理由见解析;(3)存在. P (-6,0)或(6,0).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)如图2,OD 与OE 相等.通过计算证明OE=4,OD=4即可解决问题.(3)假设存在.设P (m ,0),构建方程求出m 即可解决问题.【详解】(1)由=0,803260a b a b -+⎧⎨+-⎩==, 解得:26a b -⎧⎨⎩==. ∴点A 的坐标为(-2,6);(2)如图2,OD 与OE 相等.理由如下:设点D的坐标为(x,0)(x>0),点E的坐标为(0,y)(y>0),则CD=x+2,OE=y,因为,三角形ABC的面积=三角形ACD的面积-三角形BCD的面积,所以,12=12×(x+2)×6-12×(x+2)×2=2(x+2),解得,x=4,即OD=4.又因为,三角形EOD的面积=三角形ACD的面积-梯形ACOE的面积,所以,12×4×y=12×6×6-12×(y+6)×2,解得:y=4,即OE=4,所以,OD=OE.(3)存在.设P(m,0),由题意:12•|m|×2=6,解得m=±6,∴P(-6,0)或(6,0).【点睛】本题属于三角形综合题,考查了非负数的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.75.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过15吨(含15吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过15吨,则超过部分每吨按市场价n 元收费,小明家5月份用水22吨,交水费48元;6月份用水20吨,交水费42元.求每吨水的政府补贴优惠价和市场价分别是多少?【答案】每吨水的政府补贴优惠价1.8元,市场调节价为3元.【解析】【分析】首先设每吨水的政府补贴优惠价为m 元,市场价为n 元.根据题意,得出二元一次方程组,解得m 和n 的值即可.【详解】解:设每吨水的政府补贴优惠价为m 元,市场价为n 元.根据题意,得: 15(2215)4815(2015)42m n m n +-=⎧⎨+-=⎩ 解得: 1.83m n =⎧⎨=⎩答:每吨水的政府补贴优惠价1.8元,市场价为3元.【点睛】此题主要考查二元一次方程的实际应用问题,理解题意,列出关系式,即可得解.76.一般地,二元一次方程的解可以转化为点的坐标,其中x 的值对应为点的横坐标,y 的值对应为点的纵坐标,如二元一次方程x −2y=0的解00x y ==⎧⎨⎩ 和21x y =⎧⎨=⎩可以转化为点的坐标A(0,0)和B(2,1).以方程x −2y=0的解为坐标的点的全体叫做方程x −2y=0的图象。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩的解满足x <y ,试求a 的取值范围.【答案】a <﹣3. 【解析】 【分析】先把a 当作已知条件求出x 、y 的值,再根据x <y 即可求出a 的不等式,求出a 的取值范围即可.【详解】解方程组325x y a x y a -=+⎧⎨+=⎩得212x a y a =+⎧⎨=-⎩,∵x <y , ∴2a +1<a ﹣2, 解得a <﹣3.故a 的取值范围是a <﹣3. 【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.52.满足方程组3512332x y k x y k +=+⎧⎨+=-⎩的x 和y 的值之和是2,求k 的值.【答案】k =35【解析】 【分析】方程组消去k 表示出x +y ,代入x +y =2中计算即可求出k 的值. 【详解】3512332x y k x y k +=+⎧⎨+=-⎩①②, ②×2﹣①得:x +y =5﹣5k , 代入x +y =2得:5﹣5k =2,解得:k =35.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.53.对于实数,规定新运算:x*y ax by =+,其中a 、b 是常数.已知2*17=,1*31-=.()1求a 、b 的值; ()2求1*5的值.【答案】()201?a 7=,9b 7=;()652?7. 【解析】 【分析】()1利用新定义和两组对应值得到27{31?a b a b +=-+=,然后利用加减法解方程组即可;()2由()1得新运算为:209x*y 77x y =+,然后把1x =,5y =代入计算即可.【详解】()1根据题意得2a b 7{a 3b 1?+=-+=,解得20a 7=,9b 7=; ()2由()1得209x*y x y 77=+,所以209651*515777=⨯+⨯=.【点睛】本题考查了解二元一次方程组:利用代入消元法或加减消元法解二元一次方程组.54.已知关于x 、y 的方程组35223x y k x y k +=+⎧⎨+=⎩,的解满足﹣2<x+y <5,求k 的取值范围.【答案】0<k <7. 【解析】 【分析】把k 看作常数,利用加减消元法解关于x 、y 的二元一次方程组,然后求出x +y ,再列出不等式组,求解即可.【详解】解方程组35223x y k x y k +=+⎧⎨+=⎩,得:264x k y k =-⎧⎨=-⎩,∴x+y =(2k ﹣6)+(﹣k+4)=k ﹣2, 又∵﹣2<x+y <5, ∴﹣2<k ﹣2<5, 解得:0<k <7. 【点睛】本题考查了二元一次方程组的解法,解一元一次不等式组,把k 看作常数求出x 、y 是解题的关键,也是本题的难点.55.解方程或方程组:(1)2-13x =+24x ﹣1;(2)已知二元一次方程:①x+y =4,①2x ﹣y =2,①x ﹣2y =1,请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.【答案】(1)x=-25 ;(2)选①和②,31x y =⎧⎨=⎩ .【解析】 【分析】(1)根据一元一次方程的解法即可求答案. (2)根据二元一次方程组的解法即可求出答案. 【详解】(1)4(2x ﹣1)=3(x+2)﹣12 8x ﹣4﹣3x ﹣6=﹣12 5x =﹣2x =25-;(2)421x y x y +=⎧⎨-=⎩①②①﹣②得:3y =3 y =1将y =1代入①得:x =3∴方程组的解为31x y =⎧⎨=⎩【点睛】本题考查方程的解法,解题的关键是熟练运用方程的解法,本题属于基础题型.56.实践操作题 某班学生植树,若每人植7棵树,则剩5棵树;若每人植8棵树,则有1人少植1棵树,问有多少名学生植树,有多少棵树.(1)假设有x 名学生植树,有y 棵树,请列出关于这个问题的二元一次方程组;(2)用列表的方法求出有多少名学生植树,有多少棵树.【答案】(1)7581x y x y +=⎧⎨-=⎩;(2)有6名学生植树,有47棵树.【解析】 【分析】(1) 设有x 名学生植树,有y 棵树,根据每人植7棵树,剩5棵树可得75x y +=,根据每人植8棵树,则有1人少植1棵树可得:81x y -=,从而可得方程组; (2)通过列表,把满足方程75x y +=和81x y -=的解一一列举出来,找出满足两个方程的公共解.【详解】解:(1)根据题意,得:7581x y x y +=⎧⎨-=⎩; (2)根据方程组及x,y 都是正整数的特点,可列表如下:显然x =6,y =47满足这个方程组,即方程组的解是647x y =⎧⎨=⎩,答:有6名学生植树,有47棵树. 【点睛】本题主要考查二元一次方程组解决实际问题,解决本题的关键是要熟练找出题目中等量关系.57.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩ 的解为53x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()3()163()()0m a b a b a b n a b +--=⎧⎨+--=⎩的解是_____.【答案】41a b =⎧⎨=⎩【解析】 【分析】仿照已知方程组的解确定出所求方程组的解即可. 【详解】∵关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,∴关于a、b的二元一次方程组()()()()31630m a b a ba b n a b⎧+--=⎪⎨+--=⎪⎩的解是53a ba b+=⎧⎨-=⎩,即41ab=⎧⎨=⎩.故答案为41ab=⎧⎨=⎩【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.58.已知实数x,y()22350x y--=,求8x y-的平方根与立方根【答案】±3【解析】【分析】根据非负数的性质列出关于x、y的二元一次方程组,求解得到x、y的值,然后代入代数式进行计算求出的值,再根据平方根的定义解答.【详解】根据题意得230 2350 x yx y--=⎧⎨--=⎩,解得11 xy=⎧⎨=-⎩,x-8y=9,平方根=±3,立方根【点睛】本题考查了算术平方根非负数,平方数非负数的性质,解二元一次方程组,平方根的定义,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.59.某商店甲、乙两种商品三天销售情况的账目记录如下表:(1)财务主管在核查时发现:第一天的账目正确,但其他两天的账目有一天有误,请你判断第几天的账目有误,并说明理由;(2)求甲、乙两种商品的单价.【答案】(1)第二天的账目有误(2)甲、乙两种商品的单价分别为5元,6元【解析】【分析】(1)设甲、乙商品的单价分别为x,y元,根据题意列出方程组进行解答即可;(2)根据题意列出方程组进行解答即可.【详解】(1)第二天的账目有误,理由如下:设甲、乙两种商品的单价分别为x元,y元,根据题意可得:第一天:39x+21y=321①;第二天:26x+14y=204②;第三天:39x+25y=345③.由①÷3,得13x+7y=107,由②÷2,得13x+7y=102,∵第一天的账目正确,∴第二天的账目有误.(2)由(1)得第二天的账目有误,∴3921321 39+25y345x yx+=⎧⎨=⎩①③③-①,得y=6.把y=6代入①,得x=5,所以方程组的解为56xy=⎧⎨=⎩,答:甲、乙两种商品的单价分别为5元,6元.【点睛】本题考查了二元一次方程组的应用,解题的关键是根据题意列出方程组解答即可.60.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有4% 的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?【答案】(1)水果店第一次购进水果800元,第二次购进水果1200元;(2)水果每千克售价为10元【解析】 【分析】(1)设该水果店两次分别购买了x 元和y 元的水果.根据“购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,”、“两次购进水果共花去了2000元”列出方程组并解答;(2)设该水果每千克售价为m 元,,则由“售完这些水果获利不低于3780元”列出不等式并解答.【详解】(1)设水果店第一次购进水果x 元,第二次购进水果y 元由题意,得20002414x y y x +=⎧⎪⎨=⨯⎪⎩- 解之,得8001200x y =⎧⎨=⎩故水果店第一次购进水果800元,第二次购进水果1200元.(2)设该水果每千克售价为m 元,第一次购进水果8004=200÷ 千克,第二次购进水果12003=400÷ 千克,由题意()2001-30+4001-420003780m ⨯⨯⋅-≥⎡⎤⎣⎦%(%)解之,得10m故该水果每千克售价为10元.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于列出方程。
人教版七年级下册数学8.3 实际问题与二元一次方程组课后巩固练习(带解析)一、单选题1.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.602412x yx y+=⎧⎨=⎩B.601224x yx y+=⎧⎨=⎩C.6022412x yx y+=⎧⎨⨯=⎩D.6024212x yx y+=⎧⎨=⨯⎩2.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是A.x y10{y3x2+==+B.x y10{y3x2+==-C.x y10{x3y2+==+D.x y10{x3y2+==-3.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩4.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()5.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A.14和6B.24和16C.28和12D.30和106.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为()A.5个B.4个C.3个D.2个7.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是()A.61B.16C.52D.258.鸡兔同笼问题是我国古代著名趣题之一,大约在1500 年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有35 个头;从下面数,有94 只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡20 只,兔15 只B.鸡12 只,兔23 只C.鸡15 只,兔20 只D.鸡23 只,兔12 只9.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是()A.0.8元/支,2.6元/本B.0.8元/支,3.6元/本C.1.2元/支,2.6元/本D.1.2元/支,3.6元/本10.根据如图给出的信息,计算放入体积相同的大球、体积相同的小球各2个,水面将上升到()A.35 cm B.36 cm C.37 cm D.39 cm二、填空题11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十,问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己23的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱数为x,乙持钱数为y,可列方程组为________.12.结合下面图形列出关于未知数x,y的方程组为_____.13.某活动小组购买4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y 元,依题意,可列方程组为______.14.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.15.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺.三、解答题16.甲、乙两人分别从相距30千米的A、B两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到B地所剩的路程是乙到A地所剩路程的2倍,试求甲、乙两人的速度.17.某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?18.某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.19.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.①陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.参考答案1.C【解析】根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为60{22412x yx y+=⨯=.故选C.2.C【解析】由两数x,y之和是10可列式x y10+=;由x比y的3倍大2可列式x3y2=+.故选C.3.A【解析】解:设甲的钱数为x,乙的钱数为y;由甲得乙半而钱五十,可得:1x y502+=由甲把其23的钱给乙,则乙的钱数也为50;可得:2503x y+=故答案为:A 4.B【解析】设购买篮球x 个,排球y 个,根据题意可得120x+90y=1200,则y=4043x -, ①x 、y 均为正整数,①x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种,故选B .5.A【解析】设快者的速度为x 千米/小时,慢这的速度为y 千米/小时,根据题意得: 55402240x y x y -=⎧⎨+=⎩, 解得:146x y =⎧⎨=⎩. 故选A.6.A【解析】设“●”“■”“▲”分别为x 、y 、z ,由图(1)(2)可知,2x y z z x y=+⎧⎨=+⎩ , 解得x=2y ,z=3y ,所以x+z=2y+3y=5y ,即“■”的个数为5.故选A .7.B【解析】设这个两位数的十位数字为x ,则个位数字为7−x ,由题意列方程得,10x+7−x+45=10(7−x)+x ,解得x=1,则7−x=7−1=6,故这个两位数为16.故选B.8.D【解析】设笼中有x 只鸡,y 只兔,根据题意得:{x +y =352x +4y =94解得:{x =23y =12. 故选D .9.D【解析】设小红所买的笔和笔记本的价格分别是x 元,y 元,则 5x+10y=42 10x+5y=30 ,解得 x=1.2 y=3.6 ,所以小红所买的笔和笔记本的价格分别是1.2元,3.6元.故选D.10.B 【解析】设大球体积为x,小球体积为y,根据题意建立方程组23382623326x yx y-⎧⎨-⎩+=+=,解方程组,得到x,y的值,再计算得到2x+2y的值为36,所以,选B.11.502250 3yxx y⎧+=⎪⎪⎨⎪+=⎪⎩【解析】由题意可得,y5022503xx y⎧+=⎪⎪⎨⎪+=⎪⎩,故答案为y5022503xx y⎧+=⎪⎪⎨⎪+=⎪⎩.12.250 325x yx y+=⎧⎨=+⎩.【解析】由图可得250 325 x yx y+=⎧⎨=+⎩.故答案为250 325 x yx y+=⎧⎨=+⎩.13.454664x yx y+=⎧⎨-=⎩.【解析】设篮球的单价为x 元,足球的单价为y 元,由题意得:454664x y x y +=⎧⎨-=⎩故答案为:454664x y x y +=⎧⎨-=⎩. 14.5【解析】解:设驴子原来驮x 袋,根据题意,得:2(x ﹣1)﹣1﹣1=x +1解得:x =5.故驴子原来所托货物的袋数是5.故答案为5.15.20 15【解析】解:设索长为x 尺,竿子长为y 尺.根据题意得:515,2x y x y -=⎧⎪⎨=-⎪⎩ 解得:2015.x y =⎧⎨=⎩ 故答案为20,15.16.甲的速度为每小时4千米,乙的速度为每小5千米;或甲的速度为每小时1534千米,乙的速度为每小253千米. 【解析】①当甲、乙两人相遇前相距3千米时,得: ()()33303303223032x y x y +=-⎧⎪⎨⎡⎤-+=-+⎪⎣⎦⎩,解得:45x y =⎧⎨=⎩, ①当甲、乙两人经过3小时相遇后又相距3千米时,得:()()33303303223032x y x y +=+⎧⎪⎨⎡⎤-+=-+⎪⎣⎦⎩,解得:153253x y ⎧=⎪⎪⎨⎪=⎪⎩, 答:甲的速度为每小时4千米,乙的速度为每小5千米;或甲的速度为每小时1534千米,乙的速度为每小253千米. 17.少花160元【解析】 设打折前甲商品的单价为x 元,乙商品的单价为y 元,由题意得:23180{4200x y x y +=+=,解得:24{44x y ==,则打折前购买10件甲商品和10件乙商品需要10×(24+44)=680(元),打折后实际花费520元,680-520=160(元),①这比打折前少花160元.答:这比打折前少花160元.18.(1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.【解析】解:(1)设该车间应安排x 天加工童装,y 天加工成人装,由题意得:104530360x y x y +=⎧⎨+=⎩, 解得:46x y =⎧⎨=⎩,答:该车间应安排4天加工童装,6天加工成人装;(2)①45×4=180,30×6=180,①180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.19.(1) 钢笔的单价为21元,毛笔的单价为25元;(2)①见解析;①签字笔的单价可能为2元或6元.【解析】求出其解就可以得出结论.【详解】解:(1)设钢笔的单价为x 元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755,解得:x =21,①毛笔的单价为:x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)①设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解之得:y=44.5 (不符合题意).①陈老师肯定搞错了.①设单价为21元的钢笔为z支,签字笔的单价为a元,则根据题意,得21z+25(105﹣z)=2447﹣a.①4z=178+a,①a、z都是整数,①178+a应被4整除,①a为偶数,又因为a为小于10元的整数,①a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以签字笔的单价可能2元或6元.故答案为2元或6元.。
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min相遇一次,已知甲比乙跑得快,设甲每分钟跑x圈,乙每分钟跑y圈,则可列方程为()A.B.C.D.2.两个角的大小之比是7:3,它们的差是72°,则这两个角的关系是()A.相等B.互余C.互补D.无法确定3.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km B.750km C.765km D.780km4.《算法统宗》中有如下的类似问题:“哑子来买肉,难言钱数目,一斤少二十五,八两多十五,试问能算者,合与多少肉”,意思是一个哑巴来买肉,说不出钱的数目,买一斤(16两)还差二十五文钱,买八两多十五文钱,问肉数和肉价各是多少?则该问题中,哑巴所带的钱共能买到的肉为()A.10两B.11两C.12两D.13两5.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有()A.4种B.3种C.2种D.1种6.“今有五十鹿进舍,小舍容四鹿,大舍容六鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,求所需圈舍的间数.求得的结果有()A.3种B.4种C.5种D.6种7.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长()尺.A.25B.20C.15D.108.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.小明原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱还少240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.每盒圆形礼盒比每盒方形礼盒多()A.90元B.140元C.100元D.120元9.某学校计划用17件同样的奖品全部用于奖励在“扫黑除恶宣传”活动中表现突出的班级,一等奖奖励3件,二等奖奖励2件,则分配一、二等奖个数的方案有()A.1种B.2种C.3种D.4种10.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有()A.4种B.5种C.6种D.7种11.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三:人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又会差4钱,则物价是()钱.A.7B.45C.53D.5912.利用两块长方体木块测量一张桌子的高度.首先按图1方式放置,再交换两木块的位置,按图2方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二.填空题(共5小题)13.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为.14.要用20张白卡纸做长方体的包装盒,准备把这些白卡纸分成两部分,一部分x张做侧面,另一部分x张做底面.已知每张白卡纸可以做侧面2个,或做底面3个,如果5个侧面可以和2个底面做成一个包装盒.依题意列方程组为15.学校进行了一次智力测试,共25题.规定答对一题得2分,答错一题扣1分,未答的题不得分也不扣分.小刚同学共得了34分,且已知他有奇数道题目未答,则他有道题未答.16.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走4km,平路每小时走5km,下坡每小时走6km,那么从甲地到乙地需54min,从乙地到甲地需42min,甲地到乙地全程是km17.小华同学生日的月数减去日数为9,月数的两倍和日数相加为27,则小强同学生日的月数和日数的和为.三.解答题(共6小题)18.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?19.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?20.某商场用13000元购进甲、乙两种矿泉水共400箱,矿泉水的成本价与销售价如下表所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这400箱矿泉水,可获利多少元?21.某中学共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供3000名学生就餐;同时开放1个大餐厅,1个小餐厅,可供1700名学生就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名学生就餐.(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全校4500名学生就餐?请说明理由.22.某家具商先准备购进A,B两种家具,已知100件A型家具和150件B型家具需要35000元,150件A型家具和100件B型家具需要37500元.(1)求A,B两种家具每件各多少元;(2)家具商现准备了8500元全部用于购进这两种家具,他有几种方案可供选择?请你帮他设计出所有的购买方案.23.某建设工程队计划每小时挖掘土540方,现决定租用甲、乙两种型号的挖掘机来完成这项工作,已知一台甲型挖掘机与一台乙型挖掘机每小时共挖土140方,5台甲型挖掘机与3台乙型挖掘机恰好能完成每小时的挖掘量.(1)求甲、乙两种型号的挖掘机每小时各挖土多少方?(2)若租用一台甲型挖掘机每小时100元,租用一台乙型挖掘机每小时120元,且每小时支付的总租金不超过850元,又恰好完成每小时的挖掘量,请设计该工程队的租用方案.参考答案1-5:CCBBC 6-10:BBDCC 11-12:CD13、14、15、516、17、1518、甜果买了657个,需要803文钱;苦果买了343个,需要196文钱19、设1辆大货车一次运货x吨,1辆小货车一次运货y吨,依题意,得:解得:x2x+y=11.答:2辆大货车与1辆小货车可以一次运货11吨.20、:(1)设购进甲种矿泉水x箱,乙种矿泉水y箱,依题意,得:解得:答:购进甲种矿泉水100箱,乙种矿泉水300箱.(2)(35-25)×100+(48-35)×300=4900(元).答:该商场售完这400箱矿泉水,可获利4900元.21、:(1)设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,依题意,得:解得:答:1个大餐厅可供1300名学生就餐,1个小餐厅可供400名学生就餐.(2)x3×1300+2×400=4700(名),4700>4500,x如果3个大餐厅和2个小餐厅全部开放,那么能满足全校4500名学生的就餐要求.22、:(1)设A型家具每件x元,B型家具每件y元,依题意,得:解得:答:A型家具每件170元,B型家具每件120元.(2)设该家具商购入a件A型家具,b件B型家具,依题意,得:170a+120b=8500,xa=50-b.xa,b均为正整数,xb为17的整数倍,xx该家具商总共有两种购入方案,方案一:购进A型家具38件,B型家具17件;方案二:购进A型家具26件,B型家具34件.23、:(1)设甲型挖掘机每小时挖土x方,乙型挖掘机每小时挖土y方,依题意,得:解得:答:甲型挖掘机每小时挖土60方,乙型挖掘机每小时挖土80方.(2)设租用m台甲型挖掘机、n台乙型挖掘机,依题意得:60m+80n=540,化简得:3m+4n=27,xm、n均为正整数,x当m=5、n=3时,支付租金:100×5+120×3=860(元),x860>850,x此租车方案不符合题意;当m=1、n=6时,支付租金:100×1+120×6=820(元),x820<850,x此租车方案符合题意.答:该工程队的租用方案为租1台甲型挖掘机和6台乙型挖掘机。
人教版七年级下册数学8.3实际问题与二元一次方程组--销售利润问题专题练习一、单选题1.为处理甲.乙两种积压服装,商场决定打折销售,已知甲.乙两种服装的原单价共为880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲.乙两种服装的原单价分别是()A.400元,480元B.480元,400元C.560元,320元D.320元,560元2.某商店用300元购进A,B两种商品,A商品的利润率是10%,B商品的利润率是11%,售出后共获利32.5元,则A,B两种商品各获利()A.5元,27.5元B.6元,26.5元C.7元,25.5元D.9元,23.5元3.开学后某书店向学校推销两种素质教育用书,如果原价买这两种书共需850元,书店推销时第一种书打八折,第二种书打七五折,结果两种书共少要了200元,则原来每种书分别需()A.250元,600元B.600元,250元C.250元,450元D.450元,200元4.小李以两种形式储蓄300元,一种储蓄的年利率为10%,另一种为11%,一年后的本息和为331.5元,则两种储蓄的存款分别为()A.100元,200元B.150元,150元C.200元,100元D.50元,250元5.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元.打折后,买50件A商品和40件B商品仅需364元,则比打折前少花()A.56元B.116元C.420元D.480元6.根据如图提供的信息,小红去商店买一只水瓶和一只杯子应付()A.30元B.32元C.31元D.34元7.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元8.甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需()A.130元B.100元C.120元D.110元二、填空题9.某商场购进商品后,加价40%作为销售价.五一期间,商场搞优惠促销,决定由顾客抽签确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款448元.两种商品原销售价之和为560元.则两种商品进价分别为________元.10.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价x元,乙商品原来的单价为y元,根据题意可列方程组为_____________;11.某水果店销售50千克香蕉,第一、二、三天的售价分别为9元/千克、6元/千克、3元/千克,三天全部售完,销售额共计270元.则第三天比第一天多销售香蕉__________千克.12.某超市以A、B两种糖果为原料,组装出了甲、乙、丙三种糖果礼盒(礼盒包装成本忽略不计).其中,甲礼盒每盒含1千克A糖果、1千克B糖果;乙礼盒每盒含2千克A糖果、1千克B糖果;丙礼盒每盒含1千克A糖果、3千克B糖果.甲礼盒每盒售价48元,利润率为20%.国庆节期间,该超市进行打折促销活动,将甲、乙、丙礼盒各一盒合组装成大礼包,并且每购买一个大礼包可免费赠送一个乙礼盒,这样即可实现利润率为30%,则每个大礼包的售价为_____元.13.某公司用3000元购进两种货物,货物卖出后,一种货物的利润率是10%,另一种货物的利润率是11%,两种货物共获利315元,如果设该公司购进这两种货物所用的费用分别为x元,y元,则列出的方程组是__.14.“五一”前夕,某服装专卖店按标价打折销售.小明去店里买了一套服装,衣服打五折,裤子打七折,共计260元,付款后,收银员结算时不小心把衣服、裤子的标价计算反了,多找给小明40元,则衣服裤子原标价分别是________.15.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)已知关于x ,y 的二元一次方程组335x y m x y m +=+⎧⎨-=-⎩. (1)若x ,y 互为相反数,求m 的值;(2)若x 是y 的2倍,求原方程组的解.【答案】(1)m =-1;(2)63x y =⎧⎨=⎩. 【解析】【分析】(1)中方程①中33x y m +=+,再由x 、y 的值互为相反数则x+y=0,即可得出33m +=0,即关于m 的方程,求出m 的值即可;(2)再由x 是y 的2倍,即可得出x =2y ,代入原方程组,得到关于m 的方程,求出m 的值即可解答.【详解】(1)若x ,y 互为相反数,则x +y =0,所以有3m +3=0,解得m =-1.(2)若x 是y 的2倍,则x =2y ,原方程组可化为3335y m y m =+⎧⎨=-⎩解得32y m =⎧⎨=⎩所以方程组的解为63x y =⎧⎨=⎩. 【点睛】本题考查的是二元一次方程组的解,先根据题意得出x,y的代数式是解答此题的关键.32.如图所示,3×3的方格中每个方格内均有一个单项式(图中只列出了部分单项式),方格中每一行、每一列以及每一条对角线上的三个单项式的和均相等.求a的值.【答案】a=7.【解析】【分析】先由条件建立二元一次方程组求出x、y的值,就可以求出每一行或每一列的数的和,就可以求出中间这列的最后一个数,再建立关于a的方程就可以求出结论.【详解】由题意,得335555543y x x y xy x y-+=-+⎧⎨-+=++⎩解得23 xy=-⎧⎨=⎩所以5-3x+a=5+4+3y,所以a=7.【点睛】本题考查学生是图标的能力的运用,列二元一次方程组解实际问题的运用,解答时建立方程组求出各行或各列的和是关键.33.全球变暖,气候开始恶化,中国政府为了对全球气候变暖负责,积极推进节能减排,居民购买节能灯,国家补贴50%购灯费.某县推广财政补贴节能灯后,李阿姨买了4个8W 和3个24W 的节能灯,一共用了29元;王叔叔买了2个8W 和2个24W 的节能灯,一共用了17元.该县财政补贴50%后,一个8W 、24W 节能灯的价格各是多少元?【答案】一个8W 节能灯的价格为3.5元;一个24W 节能灯的价格为5元.【解析】【分析】两个等量关系为:4个8W 节能灯的总价钱+3个24W 的节能灯的总价钱=29,2个8W 节能灯的总价钱+2个24W 的节能灯的总价钱=17.【详解】设该县财政补贴50%后,一个8W 节能灯的价格为x 元,一个24W 节能灯的价格为y 元,则4329{2217x y x y +=+= 解得 3.5{5x y ==答:该县财政补贴50%后,一个8W 节能灯的价格为3.5元,一个24 W 节能灯的价格为5元.【点睛】此题主要考查了二元一次方程组的应用,关键是抓住题目中的关键语句,列出方程组.34.在括号内填写一个二元一次方程,使所组成方程组()521x y +=⎧⎨⎩的解是12x y =⎧⎨=-⎩. 【答案】x-y=3【解析】【分析】根据x 、y 的值,任意写一个关于x 、y 的二元一次方程即可.【详解】解:∵所组成方程组的解是12x y =⎧⎨=-⎩∴x-y=3,即方程组5213x y x y +=⎧⎨-=⎩的解是12x y =⎧⎨=-⎩. 故答案为:x-y=3【点睛】本题考查二元一次方程的解.此题是开放题,要学生理解方程组的解的定义,围绕解列不同的算式即可列不同的方程组.35.若方程组4322(3)3x y mx m y +=⎧⎨+-=⎩的解满足x =2y ,求m 的值. 【答案】m=32【解析】【分析】先把x=2y 代入第一个方程求出y=2,然后把x=4,y=2代入第二个方程即可求出m 的值.【详解】解:()432233x y mx m y +=⎧⎪⎨+-=⎪⎩①② 将x =2y 代入方程①,得8y +3y =22,解得y =2.将y =2代入方程x =2y ,得x =4.把x =4,y =2代入方程②,得4m +2(m -3)=3,解得m=32. 【点睛】本题考查的知识点是二元一次方程组的解,解题关键是利用代入法.36.已知关于x ,y 的二元一次方程组3522718x y a x y a -=⎧⎨+=-⎩(1)消去a ,试用含y 的代数式表示x ;(2)若方程组中的x ,y 互为相反数,求出方程组的解.【答案】(1) x =-19y -36;(2)22x y =⎧⎨=-⎩. 【解析】【分析】(1)把a 的系数变为相等,两个方程作差,即可解答;(2)根据x ,y 互为相反数,得到x+y=0,即x=-y ,代入方程组,即可解答.【详解】解:(1)352 2718x y a x y a -=⎧⎨+=-⎩①② ②×2-①,得(4x +14y)-(3x -5y)=-18×2,整理,得x=-19y-36.(2)∵x,y互为相反数,∴x+y=0,∴-19y-36+y=0,y=-2,∴x=2,∴方程组的解为22 xy=⎧⎨=-⎩.【点睛】本题考查的知识点是二元一次方程组的解,解题关键是利用加减消元法.37.某市规定:出租车起步价允许行驶的最远路程为3km,超过3km的部分每千米另收费,甲说:“我乘这种出租车走了9km,付了14元.”乙说:“我乘这种出租车走了13千米,付了20元”.请你算出这种出租车的起步价是多少元?超过3km后,每千米的车费是多少元?【答案】这种出租车的起步价是5元,超过3km后,每千米的车费是1.5元.【解析】【分析】设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据“乘坐这种出租车走了9km,付了14元;乘坐这种出租车走了13千米,付了20元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设这种出租车的起步价是x元,超过3km后,每千米的车费是y元,根据题意得:()()931413320x yx y⎧+-=⎪⎨+-=⎪⎩,解得:51.5xy=⎧⎨=⎩.答:这种出租车的起步价是5元,超过3km 后,每千米的车费是1.5元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.38.为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出980台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1254台.在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?【答案】销售给农户的Ⅰ型冰箱为580台,销售给农户的Ⅱ型冰箱为400台【解析】【分析】本题有两个相等关系:“启动活动前一个月Ⅰ型冰箱售出量+Ⅰ型冰箱售出量=980台”、“启动活动后的第一个月Ⅰ型冰箱售出量+Ⅰ型冰箱售出量=1254台”,据此设未知数列出方程组,解方程组即可求得结果.【详解】解:设销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为x 台、y 台,由题意得:980(130%)(125%)1254x y x y +=⎧⎨+++=⎩,解得580400x y =⎧⎨=⎩. 答:销售给农户的Ⅰ型冰箱为580台,销售给农户的Ⅱ型冰箱为400台.【点睛】本题考查了二元一次方程组的应用,属于基础题型,正确理解题意,找准相等关系列出方程组是求解的关键.39.(列二元一次方程组解应用题)甲、乙两家超市出售同样品牌的保温壶和水杯,保温壶和水杯在两家超市的售价分别相同.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.求一个保温壶和一个水杯售价各是多少元?【答案】一个保温壶50元,一个水杯10元.【解析】【分析】设一个保温壶的售价x元,一个水杯的售价y元,根据“买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】设一个保温壶x元,一个水杯y元.根据题意得:60 23130x yx y+=⎧⎨+=⎩解得5010 xy=⎧⎨=⎩答:一个保温壶50元,一个水杯10元【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.40.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个21人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费645元,两种客房各租住了多少间?【答案】租住三人间3间,两人间6间.【解析】【分析】设租住三人间x间,两人间y间,根据人数和住宿费用各列一个方程,组成方程组求解即可.【详解】设租住三人间x间,两人间y间,根据题意得:,解得:.答:租住三人间3间,两人间6间.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。
8.3 实际问题与二元一次方程组 练习一、选择题1. 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A. {x +y =3518x +24y =750B. {x +y =3524x +18y =750 C. {x −y =3524x −18y =750 D. {x −y =3518x −24y =750 2. 小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A. {x −y =y +4x −y =49+xB. {x −y =y +4x −y =49−x C. {x −y =y −4x −y =49+x D. {x −y =y −4x −y =49−x 3. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A. {7y =x +38y +5=xB. {7y =x −38y +5=xC. {7y =x +38y =x +5D. {7y =x −38y =x +5 4. 一辆汽车从A 地出发,向东行驶,途中要经过十字路口B ,在规定的某一段时间内,若车速为每小时60千米,就能驶过B 处2千米;若每小时行驶50千米,就差3千米才能到达B 处,设A 、B 间的距离为x 千米,规定的时间为y 小时,则可列出方程组是( )A. {60y −x =2x =3−50yB. {60y −x =250y −x =3C. {60y =x +250y =x −3D. {60y =x −250y =x +3 5. 已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为( )A. 50元、150元B. 50元、100元C. 100元、50元D. 150元、50元6. 已知某座桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全通过共用了1分钟,这列火车完全在桥上的时间为40秒,则火车的速度和车长分别是( )A. 20米/秒,200米B. 30米/秒,300米C. 15米/秒,180米D. 25米/秒,240米7. 用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A. {x +y =12040y =16xB. {x +y =12040y =32xC. {x +y =12040y =20xD. {x +y =12020y =40x 8. 我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. {x +y =1003x +3y =100B. {x +y =100x +3y =100C. {x +y =1003x +13y =100D. {x +y =1003x +y =1009.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A. 9天B. 11天C. 13天D. 22天10.初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A. 14B. 13C. 12D. 15二、填空题11.有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x,十位数字为y,根据题意,得方程组______.12.某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了80s,整列火车完全在桥上的时间共60s;设火车的速度为xm/s,火车的长度为ym,根据题意列方程组为______.13.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组______.14.今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组______.15.某校为住校生分宿舍,若每间7人,则余下3人;若每间8人,则有5个空床位,设该校有住校生x人,宿舍y间,则可列出方程组为______.16.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人,根据题意,所列方程组是______.17.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为______ .三、计算题18.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?19.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款地点票价(2)若学生都去参观历史博物馆,则能节省票款多少元?20.某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?参考答案1.【答案】B2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】A7.【答案】C8.【答案】C9.【答案】B10.【答案】C11.【答案】{x +y =1110x +y −(10y +x)=6312.【答案】{80x =1750+y60x =1750−y13.【答案】{3x +13y =100x +y =10014.【答案】{3x +2y =165x +3y =25 15.【答案】{7y +3=x8y −5=x16.【答案】{x +y =303x +2y =7817.【答案】12,2018.【答案】解:(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得{45y +15=x 60(y −1)=x, 解这个方程组,得{x =240y =5. 答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元), 租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元). 答:租用4辆60座客车更合算.19.【答案】解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得{x +y =15010x +20y =2000, 解得{x =100y =50. 答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000−150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.20.【答案】解:(1)设每个篮球和每个足球的售价分别为x 元,y 元,根据题意得:{2x +y =3203x +2y =540,解得:{x =100y =120, 则每个篮球和每个足球的售价分别为100元,120元;(2)设足球购买a 个,则篮球购买(50−a)个, 根据题意得:120a +100(50−a)≤5500, 整理得:20a ≤500,解得:a ≤25,则最多可购买25个足球.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案)甲、乙两人在A 地,丙在B 地,他们三人同时出发,甲、乙与丙相向而行,甲每分走120米,乙每分走130米,丙每分走150米.已知丙遇上乙后,又过了5分钟遇到甲,求A 、B 两地的距离.【答案】A 、B 两地的距离为37800米.【解析】【分析】设乙丙相遇所用的时间为x 分钟,A 、B 两地的距离为y 米,根据题意可得甲丙相遇比乙丙相遇多用5分钟,列方程组求解.【详解】设乙丙相遇所用的时间为x 分钟,A 、B 两地的距离为y 米,由题意得: 1301501201505x y x y +=⎧⎨++=⎩()()()解得:13537800x y =⎧⎨=⎩. 答:A 、B 两地的距离为37800米.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.32.解方程组:2226691x y x xy y +=⎧⎨-+=⎩①②【答案】41x y =⎧⎨=⎩,16575x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】【分析】先由②得(x-3y )2=1,x-3y=1或x-3y=1,再把原方程组分解为:2631x y x y +=⎧⎨-=⎩,2631x y x y +=⎧⎨-=-⎩,最后分别解这两个方程组即可. 【详解】解:由②得:(x-3y )2=1,31,31x y x y -=-=-则原方程组化为2631x y x y +=⎧⎨-=⎩,2631x y x y +=⎧⎨-=-⎩解这两个方程组得原方程组的解为41x y =⎧⎨=⎩,16575x y ⎧=⎪⎪⎨⎪=⎪⎩∴原方程的组解为41x y =⎧⎨=⎩,16575x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.33.某校为表彰在美术展览活动中获奖的同学,老师决定购买一些水笔和颜料盒作为奖品,请你根据图中所给的信息,解答下列问题:(1)求出每个颜料盒,每支水笔各多少元?(2)若学校购买10个颜料盒,6支水笔,共需多少元?【答案】(1)每个颜料盒18元,每支水笔15元(2)270元【解析】【分析】(1)设每个颜料盒为x元,每支水笔为y元,然后列出方程组求解即可;(2)用(1)中计算的单价乘以数量即可.【详解】(1)设每个颜料盒x元,每支水笔y元根据题意得2381 52120x yx y+=⎧⎨+=⎩,解得1815xy=⎧⎨=⎩.答:每个颜料盒18元,每支水笔15元.(2)1810156270⨯+⨯=答:共需270元【点睛】考查二元一次方程组的应用,读懂题目,找出题目中的等量关系是解题的关键.34.列方程组解决实际问题古书上有这样一道题:“今有雉(鸡)兔同笼,上有25头,下有80足,问雉兔各几何?’题目的大意是:笼子里有25只鸡和兔子,共有80条腿,请问笼子里鸡和兔子各有多少只?【答案】笼子里有10只鸡,15只兔子【解析】【分析】设笼子里有x只鸡,y只兔子,根据鸡和兔子共25只且有80条腿,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设笼子里有x只鸡,y只兔子,依题意,得:25 2480x yx y+=⎧⎨+=⎩,解得:1015xy=⎧⎨=⎩.答:笼子里有10只鸡,15只兔子.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.35.如图,杭州某化工厂与A,B两地有公路,铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.4元/(吨•千米),铁路运价为1.1元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费89100元,求:(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【答案】(1)该工厂从A 地购买了400吨原料,制成运往B 地的产品300吨;(2)这批产品的销售款比原料费与运输费的和多1896900元【解析】【分析】(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨,利用两个等量关系:A 地到长青化工厂的公路里程×1.4X+B 地到长青化工厂的公路里程x1.4y=这两次运输共支出公路运输费14000元;A 地到长青化工厂的铁路里程x1.1x+B 地到长青化工厂的铁路里程x1.1y=这两次运输共支出铁路运输费89100元,列出关于x 与y 的二元一次方程组,求出方程组的解得到x 与y 的值,即可得到该工厂从A 地购买原料的吨数以及制成运往B 地的产品的吨数;(2)由第一问求出的原料吨数x 每吨1000元求出原料费,再由这两次运输共支出公路运输费14000元,铁路运输费89100元,两运费相加求出运输费之和,由制成运往B 地的产品的吨数x 每吨8000元求出销售款,最后由这批产品的销售款-原料费运输费的和,即可求出所求的结果【详解】(1)设该工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨,依题意,得:10 1.420 1.414000120 1.1110 1.189100x y x y ⨯+⨯=⎧⎨⨯+⨯=⎩,解得:400{300x y == .答:该工厂从A 地购买了400吨原料,制成运往B 地的产品300吨.(2)8000×300﹣(1000×400+14000+89100)=1896900(元). 答:这批产品的销售款比原料费与运输费的和多1896900元【点睛】此题考查二元一次方程组的应用,解题关键在正确列出二元一次方程组36.《九章算术》中有“盈不足术”的问题,原文如下:今有共買牛,人出三十,不足三百五;人出六十,不足五十.问人数、牛價各幾何?大意为:若干人共同出资买牛,每没人出30元,则差350元;每人出60元,则差50元.求人数和牛价各是多少?请解答上述问题.【答案】买牛的人数为10人,牛价为650元.【解析】【分析】设合伙买牛的有x 人,牛的价钱为y 元,根据“每人出30元,则差350元;每人出60元,则差50元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设合伙买牛的有x 人,牛的价钱为y 元,依题意,得:303506050x y x y+=⎧⎨+=⎩, 解得:10650x y =⎧⎨=⎩.答:合伙买牛的有10人,牛的价钱为650元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.37.我国古代的优秀数学著作《九章算术》有一道“竹九节”问题,大意是说:现有﹣一根上细下粗共九节的竹子,自上而下从第2节开始,每一节与前一节的容积之差都相等,且最上面三节的容积共9升,最下面三节的容积共45升,求第五节的容积,及每一节与前一节的容积之差.请解答上述问题.【答案】第五节的容积9升,每一节与前一节的容积之差2升.【解析】【分析】从题目中可知,第2节开始相邻两节的容积差相等设为y,第5节的容积直接设为x,然后根据第5节和容积差建立等量关系:第1节容积+第2节容积+第3节容积=9,第7节容积+第8节容积+第9节容积=45构建二元一次方程组求解.【详解】解:设第五节的容积为x升,每一节与前一节的空积之差为y升,依题意得:(4)(3)(2)9(2)(3)(4)45x y x y x y x y x y x y -+-+-=⎧⎨+++++=⎩, 解得:92x y =⎧⎨=⎩, 答:第五节的容积9升,每一节与前一节的容积之差2升.【点睛】本题考查了二元一次方程组在古典数学中的应用,突出了我国古人在数学方面的成就.难点是用第5节容积和相邻容积来表示竹子各节的容积.38.若关于x 、y 的二元一次方程组322218x y x y m +=⎧⎨+=-⎩的解x 、y 互为相反数,求m 的值.【答案】20【解析】【分析】根据x 、y 互为相反数得:x+y=0,与第一个方程组成新的方程组,解出可得x 、y 的值,代入第二个方程可得m 的值【详解】解:由已知得:x +y =0,则0322x y x y +=⎧⎨+=⎩,解得:22x y =⎧⎨=-⎩, ∴2×2﹣2=m ﹣18,∴m =20.【点睛】本题考查了二元一次方程组的解、互为相反数的性质;根据题意建立新的方程组是解决问题的关键.39.甲、乙两个同学从A 地到B 地,甲步行的速度为3千米/小时,乙步行的速度是5千米/小时,两人骑车的速度都是15千米/小时.现在甲先步行,乙先骑自行车,两人同时从A 地出发,走了一段路程后,乙放下自行车步行,甲到乙放自行车的地方处改骑自行车.后面不断这样交替进行,两人恰好同时到达B 地.那么,甲走全程的平均速度是多少? 【答案】457千米/小时. 【解析】【分析】根据题意甲、乙从A 地到B 地,即甲步行共走的路程恰好等于乙骑车共走的路程;甲骑车共走的路程恰好等于乙步行共走的路程.故首先设甲步行共走x 千米,骑车共走y 千米,则乙骑车共行x 千米,步行共行y 千米.再根据路程=速度×时间,且甲、乙两人行走过程中经过的时间相同,那么可列出方程315155x y x y +=+,解方程可得y 用x 表示表达式.再根据平均速度=总路程总时间,在求解过程中约去x ,即可甲走完全程的平均速度.【详解】解:设甲步行共走x 千米,骑车共走y 千米,则乙骑车共行x 千米,步行共行y 千米.则根据题意,得315155x y x y +=+, 解得y=2x .故甲的平均速度为()315x y x y ⎛⎫+÷+ ⎪⎝⎭=457(千米/时); 答:甲走完全程的平均速度457(千米/时). 【点睛】考查了一元一次方程的应用.本题解决的关键是根据题意画出路线草图,明白甲步行共走的路程恰好等于乙骑车共走的路程,甲骑车共走的路程恰好等于乙步行共走的路程;再就是求解过程中能够约去未知数.40.某运动员在一场篮球比赛中的技术统计如下表所示:(注:表中出手投篮次数和投中次数均不包括罚球)根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.【答案】本场比赛中该运动员投中2分球16个,3分球6个.【解析】【分析】设本场比赛中该运动员投中2分球x 个,3分球y 个,根据投中22次,结合罚球得分和总分可列出关于x 、y 的二元一次方程组,解方程组即可得出结论.【详解】解:设本场比赛中该运动员投中2分球x个,3分球y个.根据题度,得10236022x yx y++=⎧⎨+=⎩解得166xy=⎧⎨=⎩所以本场比赛中该运动员投中2分球16个,3分球6个【点睛】本题考查了二元一次方程组的应用,解题的关键是根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.。
8.3《实际问题与二元一次方程组》复习巩固练习一、选择题:1.为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x 元,水笔每支为y 元,那么下面列出的方程组中正确的是( )A ⎩⎨⎧=-=+2.1361020y x y xB ⎩⎨⎧=-=+2.1361020x y y xC ⎩⎨⎧=-=+2.1362010y x y xD ⎩⎨⎧=-=+2.1362010x y y x 2.某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分的比为6∶5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组为( )A.65240x y x y ==-⎧⎨⎩B.65240x y x y ==+⎧⎨⎩C.56240x y x y ==+⎧⎨⎩ D.56240x y x y ==-⎧⎨⎩3.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组( )A. 74{ 83x y x y +=-=B. 7y 4{ 83x y x =++=C. 7y 4{ 83x y x =-=+D. 7y +4{ 83x y x ==+ 4.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是( )A.3∶1B.2∶1C.1∶1D.5∶25.某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组( )A.272366x y x y +=+=⎧⎨⎩B.2723100x y x y +=+=⎧⎨⎩C.273266x y y x +=+=⎧⎨⎩D.2732100x y y x +=+=⎧⎨⎩ 6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A. ()77{ 91x yx y+=-= B. ()77{ 9+1x y x y +== C. ()77{ 91x yx y -=-= D. ()77{ 9+1x y x y -==7.阅读材料:“今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各何”,阎伟经过认真思考,并得出了正确结论,则下列结论中正确的是( ).A .鸡23只, 兔12只B .鸡24只, 兔11只C .鸡25只, 兔10只D .鸡12只, 兔23只8.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程正确的是( )A.2753x y y x +==⎧⎨⎩B.2753x y x y+==⎧⎨⎩ C.2753x y y x +==⎧⎨⎩ D.2753x y x y +==⎧⎨⎩9.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种10.小秋家果树又获丰收,现要将个大的A级苹果装箱.若每箱装25 kg,则剩余40 kg无处装;若每箱装30 kg,余有20只空箱,则共有苹果箱数是( ).A.12 B.60 C.112 D.128二、填空题:11.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.12.某校运动员分组训练,若每组7人,余5人;若每组8人,则缺3人,则该校运动员共有______人.13.为清理积压的库存,商场决定打折销售.已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是______14.甲队有x人,乙队有y人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________.15.某服装店用6000元购进A、B两种新款服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:则这两种服装共购进件。
16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题17.某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?18.自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天早上七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包?19.已知一个两位数,它的十位上的数字与个位上的数字的和为12,•若对调个位与十位上的数字,得到的新数比原数小18,求原来的两位数。
20.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?21.某服装店用6 000元购进A,B两种新式服装,按标价售出后可获得毛利润3 800元(毛利润=售价-进价),这两种服装的进价、标价如表所示:(1)这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?22.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.参考答案:一、选择题:1.为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x 元,水笔每支为y 元,那么下面列出的方程组中正确的是( B )A ⎩⎨⎧=-=+2.1361020y x y xB ⎩⎨⎧=-=+2.1361020x y y xC ⎩⎨⎧=-=+2.1362010y x y xD ⎩⎨⎧=-=+2.1362010x y y x 2.某校春季运动会比赛中,八年级(1)班和(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分的比为6∶5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组为( D )A.65240x y x y ==-⎧⎨⎩B.65240x y x y ==+⎧⎨⎩C.56240x y x y ==+⎧⎨⎩ D.56240x y x y ==-⎧⎨⎩3.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组( C )A. 74{ 83x y x y +=-=B. 7y 4{ 83x y x =++=C. 7y 4{ 83x y x =-=+D. 7y +4{ 83x y x ==+ 4.一条船在一条河上的顺流航速是逆流航速的3倍,这条船在静水中的航速与河水的流速之比是( D )A.3∶1B.2∶1C.1∶1D.5∶25.某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组( A )A.272366x y x y +=+=⎧⎨⎩B.2723100x y x y +=+=⎧⎨⎩C.273266x y y x +=+=⎧⎨⎩D.2732100x y y x +=+=⎧⎨⎩6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( A )A. ()77{ 91x yx y+=-= B. ()77{ 9+1x y x y +== C. ()77{ 91x yx y -=-= D. ()77{ 9+1x y x y -==7.阅读材料:“今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各何”,阎伟经过认真思考,并得出了正确结论,则下列结论中正确的是( A ).A .鸡23只, 兔12只B .鸡24只, 兔11只C .鸡25只, 兔10只D .鸡12只, 兔23只8.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程正确的是( B )A.2753x y y x +==⎧⎨⎩B.2753x y x y +==⎧⎨⎩C.2753x y y x +==⎧⎨⎩D.2753x y x y +==⎧⎨⎩9.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( A ) A .4种 B .3种 C .2种 D .1种10.小秋家果树又获丰收,现要将个大的A 级苹果装箱.若每箱装25 kg ,则剩余40 kg 无处装;若每箱装30 kg ,余有20只空箱,则共有苹果箱数是( B ).A .12B .60C .112D .128二、填空题:11.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.答案1912.某校运动员分组训练,若每组7人,余5人;若每组8人,则缺3人,则该校运动员共有______人.答案6113.为清理积压的库存,商场决定打折销售.已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是______答案 240元,200元14.甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则甲队人数是乙队人数的一半,可列方程为______________. 答案10)10(21+=-y x 15.某服装店用6000元购进A 、B 两种新款服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:则这两种服装共购进 件。