19
知识点三:中心对称作图
典例讲评
(1)如图①,选择点O为对称中 心,画出点A关于点O的对称点A;
解:(1)如图①,连接AO,在AO的延 长线上截取OA′=OA,即可以求得点 A关于点O的对称点A′.
O A′ A
①
20
知识点三:中心对称作图
典例讲评
C
(2)如图②,选择点O为对称中
A
B′ A′
心,画出与△ABC关于点O对称的
B ②O
△A′B′C′.
解:(2)如图②,作出A,B,C三
C′
点关于点O的对称点A′,B′,C′, 作已知图形关于某一
依次连接A′B′,B′C′,C′A′,就可 点对称的图形,其作图步
得到与△ABC关于点O对称的 △A′B′C′.
骤简记为:连接、延长、 截取相等线段、连点成图.
21
知识点三:中心对称作图
而且被 对称中心 所平分。 2.关于中心对称的两个图形是 全等形 。
B
∵∆ABC和∆A′B′C′关于点O成中心对称 A ∴OA=OA′,OB=OB′,OC=OC′
∆ABC ∆A′B′C′
C
O C′
A′
B′
11
知识点二:中心对称的性质
归纳总结
(1)因为中心对称是一种特殊的旋 转变换,所以具备旋转的一切性 质. (2)成中心对称的两个图形,其对 应线段互相平行(或在同一条直 线上)且相等.
15
知识点二:中心对称的性质
学以致用
2.如图,在平面直角坐标系中,点
P(1,1),N(2,0),△MNP和△M1N1P1 的顶点都在格点上,△MNP与 △M1N1P1关于某一点成中心对称, 则对称中心的坐标为 (2,1) .