数学集训一队每周习题(8)参考答案
- 格式:doc
- 大小:373.00 KB
- 文档页数:4
全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧2分析:平面几何最值、面积、三角函数、轨迹8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答2014高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得全国高中数学联赛试题及解答一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。
人教版六下数学专题集训卷_数的认识_1.填空某网上商城于2022年6月19日凌晨0时10分在其官方微博上公布,从2022年6月1日0时到6月18日24时,累计下单金额高达201543600000元.横线上的数读作,其中“6”在位上;把这个数改写成用“万”作单位的数是万;省略亿位后面的尾数约是亿.2.填空在−0.8,30,−3,0,45,−2022,716,32.78,66这些数中,正数有,负数有,分数有,小数有,自然数有,既不是正数也不是负数.3.填空用3个6和2个0组成一个读两个0的五位数,这个数是.从左边起,第一个“6”在位上,表示;第二个“6”在位上,表示.4.填空58的分数单位是,它有个这样的分数单位,再添上个这样的分数单位就是最小的假分数.5.填空小刚用4米长的铁丝做了5个完全一样的“九连环”,做1个“九连环”需要铁丝( )( )米,1米长的铁丝可以做( )( )个“九连环”.6.填空在一次体育测试中,小强做了28个仰卧起坐,记作+3个;小刚做了32个,应记作个;小力做了23个,应记作个.7.看图填空如下图,直线上A点表示的数是,B点表示的数写成小数是,C点表示的数写成分数是.6.4646⋯是小数,用简便方法记作,保留一位小数约是.9.填空20以内不是偶数的合数有,20以内不是奇数的质数是.10.填空两个质数的积是35,这两个质数的和是.11.填空从2,5,7中任意取两个数字,组成既有因数3又有因数5的数是.12.填空a=3×5×m,b=3×7×m,m是大于0的自然数,如果a和b的最大公因数是6,则m是,a和b的最小公倍数是.13.填空0.25=( )4=8÷=%=折.14.填空一种商品打八折销售,表示现价是原价的%,如果原价是200元,现在便宜了元.15.比大小在○里填上“<”“>”或“=”.8600○8599 350008○35009 −3○−1.20.374○38 78%○0.78 45○162016.填空下图阴影部分用分数表示是,用小数表示是,用百分数表示是.17.填空三个质数的最小公倍数是105,这三个质数分别是、、.如图,在白菜地和辣椒地之间有一个蓄水池,蓄水池的面积占白菜地的 19,占辣椒地的 16,白菜地的面积是辣椒地面积的 ( )( ).19. 填空用 3 个 9 和 3 个 0 组成的六位数中,一个 0 都不读的有 ,只读一个 0 的有 ,读两个 0 的有 .20. 填空(分数的基本性质、最简分数)一个分数,分子与分母的和是 80,这个分数化成最简分数是 23,这个分数原来是 .21. 选择下面的数中,比 −2 小的是 ( )A . −1.5B . 0C . −0.4D . −10022. 选择一款裙子的原价是 50 元/条,儿童节期间以 40 元/条的优惠价出售,便宜了 ( )A . 45B .二成C .三成D .四成23. 选择下面与38相等的小数和百分数是( )A.0.3和83B.0.375和375%C.0.375和37.5%D.3.75和37.5%24.选择下面的说法错误的是( )A.1既不是质数也不是合数B.真分数的倒数一定是假分数C.一个数的倍数一定比这个数大D.正数都大于负数25.选择省略“38▫970”万位后的尾数约是39万,▫内可以填的数有( )个.A.7B.5C.3D.226.选择要使a8是假分数,a10是真分数,那么a最大可以是( )A.7B.8C.9D.1027.填空如果a是一个质数,那么2a+1一定是一个( )A.质数B.合数C.奇数D.偶数28.选择ba(a>3)是一个真分数,下面各分数中最大的一个是( )A.a×3b×3B.a−3bC.a÷3b÷3D.ab÷329.选择一个数的小数点先向左移动3位,再扩大到原来的100倍后是7.88,这个小数原来是( ) A.0.788B.7.88C.0.0788D.78.830.选择幼儿园张阿姨买来一些苹果,兰兰4个4个地数余3个,丽丽5个5个地数余4个,倩倩6个6个地数余5个.张阿姨最少买来了( )个苹果.A.60B.90C.59D.8931.解决问题甲地的海拔高度是30米,乙地的海拔高度是25米,丙地的海拔高度是−65米.哪个地方的海拔最高?哪个地方的海拔最低?两地海拔相差多少米?32.解决问题期中考试后,张老师把121支圆珠笔和83本日记本分别平均奖励给班上获得“五好少年”称号的同学们,结果圆珠笔多出1支,日记本还少1本,获得“五好少年”称号的同学最多有几人?33.解决问题张阿姨和李阿姨到瑜伽馆练瑜伽,张阿姨每4天去一次,李阿姨每5天去一次.假设2022年2月18日这天她们在瑜伽馆相遇,那么她们下次在瑜伽馆相遇的日子是几月几日?34.解决问题有两个大小不同的数,它们的和是34.34,如果把较小数的小数点向右移动两位,就与较大的数相等.这两个数分别是多少?35.解决问题(分数的基本性质、最简分数)一个最简分数,分子与分母的和是62,若分子减去1,分母减去7,所得的新分数化简后是2.原来的分数是多少?736.解决问题学校举行“不忘初心,牢记使命”主题教育活动,学生们正好坐成一个长方形方阵,兰兰在从前往后数的第3排,从后往前数的第6排,从左往右数的第5列,从右往左数的第6列.参加这次活动的学生一共有多少人?37.解决问题一个小数的整数部分是8,小数部分各个数位上的数字之和是15,而且小数部分各个数位上的数字各不相同.这个小数最大是多少?最小是多少?38.解决问题在周长为800米的水池边,每50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插完后发现,一共有4面彩旗没动.问:现在的彩旗间隔是多少米?答案1. 【答案】二千零一十五亿四千三百六十万;十万;20154360;20152. 【答案】30,45,716,32.78,66;−0.8,−3,−2022;45,716;−0.8,32.78;30,0,66;03. 【答案】60606;万;6个万;百;6个百4. 【答案】18;5;35. 【答案】4;5;5;46. 【答案】+7;−27. 【答案】−2;0.5;1358. 【答案】循环;6.46;6.59. 【答案】9,15;210. 【答案】1211. 【答案】7512. 【答案】2;21013. 【答案】1;32;25;二五14. 【答案】80;4015. 【答案】>;>;<;<;=;=16. 【答案】710;0.7;70%17. 【答案】3;5;718. 【答案】3;219. 【答案】999000,909900;990900,990090,990009,900099,909009,900990,909090;90090920. 【答案】324821. 【答案】D22. 【答案】B23. 【答案】C24. 【答案】C25. 【答案】B26. 【答案】C27. 【答案】C28. 【答案】D29. 【答案】D30. 【答案】C31. 【答案】甲地最高,丙地最低,相差30+65=95(米).提示:根据海拔的意义,海拔30米表示高于海平面30米,海拔25米表示高于海平面25米,海拔−65米,表示低于海平面65米,所以甲地海拔最高,丙地海拔最低,相差30+65=95(米).32. 【答案】121−1=120(支),83+1=84(本).120和84的最大公因数是12,获得“五好少年”称号的同学最多有12人.根据题意,圆珠笔的支数减1,日记本的本数加1后就是“五好少年”人数的倍数,求获得“五好少年”称号的同学最多有几人,求出它们的最大公因数即可.33. 【答案】4和5的最小公倍数是20.2022÷4=505,2022年是闰年,2月有29天.29−18=11(天)20−11=9(天)答:她们下次在瑜伽馆相遇的日子是3月9日.34. 【答案】根据小数点的移动规律可知,较大数是较小数的100倍,两数的和是较小数的(100+1)倍,根据倍的意义.求出较小数,进一步求出较大数即可.较小数:34.34÷(100+1)=0.34,较大数:0.34×100=34.35. 【答案】62−1−7=54,54÷(2+7)=6,分子:2×6+1=13,分母:7×6+7=49,原来的分数:1349【解析】提示:先求出变化后分子与分母的和,然后除以化简后分子与分母的和,求出约掉的公因数,然后反推回去即可.36. 【答案】5+6−1=10(人)3+6−1=8(人)8×10=80(人)【解析】根据兰兰所占的位置求出这个方阵每排的人数和每列的人数,然后根据乘法的意义求出总人数,注意在求每排和每列人数时不要重复计算.37. 【答案】最大:8.96,最小:8.012345要使小数最大,十分位上的数要尽可能大,所以是9,则百分位上最大为6;要使小数最小,十分位上的数要尽可能小,所以是0,后面数位上的数依次是1,2,3,4,5.38. 【答案】800÷50=16(面)50×(16÷4)=200(米)与50的最小公倍数是200,且小于50的数为8和40,所以现在的彩旗间隔是8米或40米.【解析】每50米插一面彩旗,共插800÷50=16(面).重新插完后,有4面没动,而这4面中的每相邻两面相距50×(16÷4)=200(米),因此重新插完后每相邻两面彩旗间的距离与50的最小公倍数是200,并且这个距离一定小于50米,把符合这样条件的数求出来即可.。
小题专项集训(八) 不等式(建议用时:40分钟 分值:75分)1.若b <a <0,则下列结论不正确的是 ( ).A .a 2<b 2B .ab <b 2 C.⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a D.a b +b a >2解析 取a =-1,b =-2,则⎝ ⎛⎭⎪⎫12-2=4>⎝ ⎛⎭⎪⎫12-1=2.答案 C2.“a +c >b +d ”是“a >b 且c >d ”的 ( ).A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析 “a +c >b +d ”/⇒“a >b 且c >d ”,∴“充分性不成立”,“a >b 且c >d ”⇒“a +c >b +d ”. ∴必要性成立. 答案 A3.不等式x +5(x -1)2≥2的解集是( ).A.⎣⎢⎡⎦⎥⎤-3,12 B.⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3] D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 解析 首先x ≠1,在这个条件下根据不等式的性质,原不等式可以化为x +5≥2(x -1)2,即2x 2-5x -3≤0,即(2x +1)(x -3)≤0,解得-12≤x ≤3,故原不等式的解集是⎣⎢⎡⎭⎪⎫-12,1∪(1,3].答案 D4.已知a ≥0,b ≥0,且a +b =2,则 ( ).A .ab ≤12 B .ab ≥12 C .a 2+b 2≥2D .a 2+b 2≤3解析 由a +b =2可得2≥2ab ,即ab ≤1;对于选项C :a 2+b 2≥2,即(a +b )2-2ab ≥2,可得ab ≤1.故选项C 正确. 答案 C5.若变量x ,y 满足约束条件⎩⎨⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值是( ).A .4B .3C .2D .1解析 如图,画出约束条件表示的可行域,当直线z =x -2y 经过x +y =0与x -y -2=0的交点A (1,-1)时,z 取到最大值3,故选B. 答案 B6.不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为 ( ). A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析 因为x 2-2x +5=(x -1)2+4的最小值为4,所以要使x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4,故选A. 答案 A7.设a 、b 是实数,且a +b =3,则2a +2b 的最小值是 ( ).A .6B .4 2C .2 6D .8解析 2a +2b ≥22a +b =42,当且仅当2a =2b ,即a =b 时等号成立.故选B. 答案 B8.若a ≥0,b ≥0,且当⎩⎨⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则以a ,b 为坐标的点P (a ,b )所形成的平面区域的面积是( ).A.12B.π4 C .1D.π2解析 由题意可得,当x =0时,by ≤1恒成立,b =0时,by ≤1显然恒成立;b ≠0时,可得y ≤1b 恒成立,解得0<b ≤1,所以0≤b ≤1;同理可得0≤a ≤1.所以点P (a ,b )确定的平面区域是一个边长为1的正方形,故面积为1. 答案 C9.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 ( ).A .2 000元B .2 200元C .2 400元D .2 800元解析 设需用甲型货车x 辆,乙型货车y 辆,由题目条件可得约束条件为⎩⎨⎧20x +10y ≥100,0≤x ≤4,0≤y ≤8,目标函数z =400x +300y ,画图可知,当平移直线400x +300y =0过点(4,2)时,z 取得最小值2 200,故选B.答案 B10.设x ,y 满足约束条件⎩⎨⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则ab 的最大值为( ).A .1 B.12 C.32D .2解析不等式组⎩⎨⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0所表示的可行域如图所示,当平行直线系ax +by =z 过点A (4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值,z 最大值=4a +6b =12,∵4a +6b =12≥24a ×6b ,∴ab ≤32. 答案 C11.若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________.解析 由不等式的解集知1,2是方程m (x -1)=x 2-x 的根,将2代入可得m =2. 答案 212.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________. 解析 因为正实数x ,y 满足2x +y +6=xy ,所以由基本不等式得xy ≥22·xy +6(当且仅当x =3,y =6时等号成立),令xy =t ,得不等式t 2-22t -6≥0,解得t ≤-2(舍去)或t ≥32,故xy 的最小值为18. 答案 1813.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)解析 根据已知条件画出可行域(如下图所示).平移直线3y -2x =0,当经过A 点时,z =2x -3y 取得最大值;当平移到C 点时,z =2x -3y 取得最小值,A 点坐标满足方程组⎩⎨⎧x -y =3,x +y =-1,解得A (1,-2).C 点坐标满足方程组⎩⎨⎧x -y =2,x +y =4,解得C (3,1),代入直线z =2x -3y 中求得z 的最大值为8,最小值为3,所以取值范围为(3,8). 答案 (3,8)14.设常数a >0,若对任意正实数x ,y 不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9恒成立,则a 的最小值为________.解析 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2a =(a +1)2,当且仅当y =a x时取等号.所以(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,于是(a +1)2≥9,所以a ≥4,故a 的最小值为4.答案 415.已知实数x ,y 满足⎩⎨⎧y ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a 的值为________.解析 依题意,在坐标平面内画出不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1. 答案 1。
数学集训一队每周习题(6)本周的练习,出现了有规律的加法计数。
如:6个2相加的和为多少?在课堂讲解每份数和份数的意义后,要求同学们用乘法算式表示。
掌握:一个数里有几个几;平均分,能够用拆数法。
(除法,不要求列算式)锯木头,剪绳子思维引导:锯木头,剪绳子时,剪或锯的次数,与绳子(木头)的段数,有必然的联系。
在已知段数求次数时:次数=段数-1在已知次数求段数时:段数=次数+11.乐乐做手工,把一根绳子剪3次变成段,剪5次变成段。
如果要剪成3段需要剪次,剪成7段需要剪次。
2.乐乐要做一个七色圆形纸花瓶,瓶身每色之间用双面胶粘贴。
他要用条双面胶。
3.乐乐把一张纸同方向对折2次,从正中间剪开。
那么,纸被剪成段。
星期二锯木头总费用和总时间思维引导:锯木头的费用和时间只跟锯的次数相关系。
要先求次数,再用每次的费用(时间)×次数=总费用(总时间)。
4.乐乐做手工,想把一根玻璃棒平均分割成4段,每分割一次需要2分钟。
那么,分割成4段一共需要多少分钟?解:答:分成4段一共需要分钟。
5.一根木头锯成5段,每锯一次需要付5元钱。
一共要付费多少元钱?解:答:一共要付费元钱。
锯木头单次费用和单次时间思维引导:求单次费用或单次时间:要先求次数,再用“总费用÷次数=单次费用”或“总时间÷次数=单次时间”来解决问题。
6.爸爸去玻璃店,将一根玻璃棒分割成4段,共付了6元钱。
每分割一次要付多少元钱?解:答:每分割一次要付元钱。
7.陈叔叔把4根铁管焊接成一根长管用时12分钟,李叔叔把6根铁管焊接成一根长管用时15分钟。
李叔叔和陈叔叔比焊接速度,谁的速度快?本题引导:在比较时,要一对一地实行比较,分别求出李叔叔和陈叔叔焊一次所用的时间。
因为是单次时间的比较,所以单次时间越短的越快。
答:李叔叔和陈叔叔比,的速度快。
星期三楼梯问题思维引导:在楼梯问题中要注意,所在层数和走的层数是两个不同的概念。
所在层数=较低层数+走的层数=较高层数-走的层数8.乐乐家住在4楼,每上一层楼梯要走20级台阶。
第八届“启智杯”数学思维能力竞赛集训(一)代数---观察与归纳【备注】一、考察的思维品质考察数学思维的广阔性、深刻性、灵活性、独创性与批判性。
二、考察的思维能力1.发散性思维能力:直觉思维——数学直觉和数学灵感;形象思维——数学表象和数学想象。
2.收敛性思维能力:逻辑思维——形式逻辑、数理逻辑、辩证逻辑。
3、从个别事例开始,先观察、研究这类问题的几个简单的、特殊的情况的共同特征,通过逆推、比较、分析,从中发现一般规律,找到解决问题的途径和方法,叫做归纳思维同步练习1.找规律填数(1)30、36、31、40、32、44、()、()(2)2, 6, 4, 12, 10, 30, 28,(),()【参考答案】(1)30、36、31、40、32、44、(33 )、(48 )(2)2, 6, 4, 12, 10, 30, 28,(84 ),(82 )乘3减22.根据规律填数。
43×101=4343 29×101=292951×101=()86×()=8686()×101=7272 ()×()=9494【参考答案】51×101=(5151 )86×(101 )=8686(72 )×101=7272 (94 )×(101 )=94943.根据规律填数。
67×67=4489667×667=4448896667×6667=()66......67× 66......67=44......488 (89)【参考答案】101个4,100个84.观察下面的几个算式,找出规律:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,……利用上面的规律,请你迅速算出:1+2+3+……+99+100+99+……+3+2+1=________.【参考答案】1002=100005. 一串分数按规律排列:11,12,21,13,22,31,14,23,32,41,15,24,33,42,51……,那么,第100个分数是多少? 2011是排列中的第 个分数。
全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.全国高中数学联赛试题及解答加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。
2.5逆命题和逆定理1. 已知命题“如果a+b=0,那么a,b互为相反数”,写出它的逆命题:如果a,b互为相反数,那么a+b=0.2.“等边三角形有两个角都等于60°”的逆命题为有两个角是60°的三角形是等边三角形.这个逆命题是真命题(填“真”或“假”).3.给出下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③角平分线上的点到角的两边距离相等;④不是对顶角的角不相等.其中原命题与逆命题均为真命题的有(A)A. 1个B. 2个C. 3个D. 4个4. 给出下列结论:①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形的角平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题.其中正确的有(B) A.1个B.2个C.3个D.4个5. 下列四个命题中,逆命题正确的是(D)A.两个数的差为正数,则这两个数都为正数B.如果a2+b2=0,那么a=0C.如果一个三角形为锐角三角形,那么这个三角形三个角中必存在大于60°的角D.如果两个角有一条公共边,并且这两个角的和是180°,那么这两个角互为邻补角6.下列命题中,逆命题正确的是(B)A.若a=b,则|a|=|b|B.两直线平行,同位角相等C.全等三角形的对应角相等D. 直角都相等7.下列定理中,无逆定理的是(B)A.两直线平行,内错角相等B.对顶角相等C.全等三角形的三条边对应相等D.在同一个三角形中,等边对等角8.写出下列命题的逆命题,并判断真假.(1)如果一个三角形是等边三角形,那么它的三个内角都相等;(2)如果a=5,那么a(a-5)=0.(3)如果ab=0,那么a=0,b=0.【解】(1)如果一个三角形的三个内角都相等,那么这个三角形是等边三角形.是真命题.(2)如果a(a-5)=0,那么a=5.是假命题.(3)如果a=0,b=0,那么ab=0.是真命题.9.下列定理中,哪些有逆定理?如果有逆定理,请写出它的逆定理.(1)两边及其夹角对应相等的两个三角形全等;(2)三角形的外角和等于360°;(3)等腰三角形顶角的平分线与底边上的高线互相重合.【解】(1)有逆定理.如果两个三角形全等,那么这两个三角形的两边及其夹角对应相等.(2)无逆定理.(3)有逆定理.若一个三角形的一个角的平分线与这个角所对边上的高线互相重合,则这个三角形是等腰三角形.10.对于以下说法:①如果一个命题是真命题,那么它的逆命题不一定是真命题;②每个定理都有逆定理;③基本事实是通过推理判断为正确的命题;④“同位角相等”是定理.其中正确的说法有(A)A. 1个B. 2个C. 3个D. 4个【解】命题“对顶角相等”的逆命题是相等的角是对顶角.从这个例子可看出①对②错.定理是通过推理判断为正确的命题,故③错.“同位角相等”是假命题,定理都是真命题,故④错.11. 材料:如果两个命题中,一个命题的条件和结论分别是另一个命题的条件和结论的否定,则称这两个命题互为否命题.逆命题的否命题称为逆否命题.有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则1-q有平方根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号有(C)A.①②③B.③④C.①③D.①④【解】①逆命题是:若x,y互为相反数,则x+y=0.它是真命题.②否命题是:若两个三角形不是全等三角形,则这两个三角形的面积不相等.它是假命题.③逆命题是:若1-q有平方根,则q≤1.它是真命题.④逆否命题是:三个内角不相等的三角形是等边三角形.它是假命题.12.举反例说明定理“全等三角形的面积相等”没有逆定理.(第12题解)【解】逆命题:如果两个三角形面积相等,那么这两个三角形全等.反例:如解图所示,l1∥l2,△ABC和△BCD同底等高,∴△ABC的面积等于△BCD的面积,但△ABC和△BCD不全等.故此定理没有逆定理.13.已知下列命题:①若a≤0,则|a|=-a;②若ma2>na2,则m>n;③对顶角相等.其中原命题与逆命题均为真命题的个数是(B)A. 0B. 1C. 2D. 3【解】①命题“若a≤0,则|a|=-a”是真命题,逆命题为“若|a|=-a,则a≤0”,是真命题;②命题“若ma2>na2,则m>n”是真命题,逆命题为“若m>n,则ma2>na2”,是假命题;③命题“对顶角相等”是真命题,逆命题为“相等的角是对顶角”,是假命题.所以原命题与逆命题均为真命题的个数是1.。
第三单元综合检测B卷一、单选题(共8题;共16分)1.下面图形中,表示射线MN的图形是()A. B.C. D.2.小强画了一条5厘米长的( )。
A. 直线B. 射线C. 线段D. 角3.图形中有( )条线段.A. 4B. 5C. 64.下面说法错误的是( )。
A. 一条直线长6厘米。
B. 角的两边张开得越大,角越大。
C. 钟面上2时整,分针和时针成锐角。
5.下面图形中,是线段的是()。
A. B. C.6.不能用一副三角尺画出的角是()。
A. 60°B. 70°C. 135°D. 180°7.下列几种情况,两条线互相垂直的是()A. 两条直线相交B. 不平行的两条直线C. 两条直线相交成直角8.下图中有( )条线段.A. 7B. 8C. 9D. 10二、判断题(共5题;共10分)9.一条射线长4000米。
()10.直线的长度是射线的两倍。
()11.乐乐画了一条长6厘米的直线。
()12.边越长,角越大。
()13.线段可以量出长度。
()三、填空题(共8题;共17分)14.角的两条边是两条________线,角的大小和________没有关系.15.如下图,________是直线,________是射线,________是线段。
16.线段有________个端点,射线有________端点。
17.钟面上3时整,时针与分针所形成的角是________角,6时整,时针与分针所形成的角是________角。
18.如图,已知∠1=40°,∠2=________,∠3=________,∠4=________.19.一个角的两边成直线,这个角是________角,是________°.20.上学路上.小明从家出发到学校走了________分钟,分针走了________度。
21.数一数:有________条线段四、计算题(共2题;共11分)22.大于90°小于180°的角是________;小于90°的角是________.23.智慧树。
2017春季数学集训一队每周习题(8)
星期一
数学谜语。
1.100-1。
(猜一个字) 答案:
2.一来就千。
(猜一个数) 答案:
3.泰山中无人,无水。
(猜一个数) 答案:
4.背着喇叭。
(猜一数学符号) 答案:
5.风筝跑了。
(猜一数学名词) 答案:
6.成绩是多少? (猜一数学名词) 答案:
星期二
7.数独游戏。
要求:每一行,每一列1~9这九个数各出现一次。
每个小九宫格里(共有9个小九宫格)1~9这九个数各出现一次。
星期三 8.小蚂蚁从A处回B处的家,它要在砖缝中走一条这样的路:每经过一块砖,左右两边砖块的颜色必需相同。
小朋友,请你带小蚂蚁回家吧。
2 5 5 2 6 1
9 3 2 4 6 4
4
9.请你从入口出发,走到出口。
可以横着走或竖着走。
要求你走过的线路,格子里的数之和为39。
(多解)
10.在下面的圆圈中填上运算符号使小牛回家的道路畅通,并使得最后的结果等于100。
11.甲数比乙数多15,丙数比乙数多5,丁数比丙数少20,那么甲数比丁数多 。
解:
12.甲数比乙数少15,丙数比乙数少5,丁数比丙数多20,那么甲数比丁数少 。
解:
13.甲数比乙数多15,丙数比丁数多5,丁数比乙数少20,那么甲数比丙数多 。
解:
入口出口
星期五
14.请你一直按照1、2、3、4、5、6;1、2、3、4、5、6;……的顺序从入口处进入,从出口处出来。
(不能斜走)
入口。
第8单元《数与形》同步练习一、单选题。
1、按如下规律摆放三角形:则第(5)堆三角形的个数为()A、14B、15C、16D、172、按如图点阵中的规律继续画,第10个点阵应画()个点.A. 90B. 110C. 132 D、1363、根据111=236-,111=3412-,那么11=99100-()A、199B、1100C、19900D、1100004、3×7=21,33×67=2211,333×667=222111,那么3333×6667=()A、222111B、22221111C、2221111D、222211115、观察找规律:用同样长的小棒摆第10个图形需要()根小棒.A、20B、21C、25D、306、按如图用小棒摆正六边形,摆第51个正六边形需要________根小棒.A、240B、250C、256D、2587、观察下面的点阵图形,根据圆点的变化,探究其规律,则第8个图形中圆点的个数为( )A.25B.26C.27D.29 8、玲玲用黑白两色方块按照下列这样拼图:(1) (2) (3) 那么,以下巧巧的说法正确的是( ) A. 图序5会有黑色方块10块。
B. 图序6有白色方块22块。
C. 图中有24块白色方块的是图序7。
D. 图序n 的黑色方块是(2n +2)。
9、照这样排下去,第六个图形里会有( )个小三角形.A.25B.30C.36D.4710、一张正方形的桌子可以坐4人,同学们吃饭时把桌子拼在一起,如图,那么8张桌子可以坐( )人.A.18B.16C.25D.24 二、填空题。
1、21+41+81+161+321+641+1281+2561= .2、23411112222++++… = .3、观察与分析下面各列数的排列规律,然后填空。
(1)5,9,13,17,, .(2)4,5,7,11,19,, .(3)4,9,19,34,54,, .(4) 45,1,43,3,41,5 ,,37,9。
人教版六升七数学暑期衔接集训卷(八)含答案一、判断题1. ( 2分) 圆柱和圆锥都有1条高.()2. ( 2分) 依法纳税是每个公民应尽的义务。
()3. ( 2分) 一家保险公司去年的营业额是6.2亿元,如果按营业额的5%缴纳营业税,去年应缴纳营业税0.31亿元。
()4. ( 2分) 300元的商品提价10%后再降价10%,结果还是300元。
()5. ( 2分) 在一条1m长的线段上有4个点,这4个点中至少有两个点的距离不大于20厘米。
()6. ( 2分) 百米赛跑中,速度和时间成反比例。
()二、填空题7. ( 2分) 把圆柱的侧面沿高展开,得到的是一个________形;把圆锥的侧面展开,得到的是一个________形.8. ( 1分) 王老师购买了一套商品房,价格为180万元。
王老师要按房价的1.5%的税率缴纳契税,王老师需缴纳契税________万元。
9. ( 1分) 把红、黄、蓝三种颜色的球各10个放在同一个袋子里,至少取________个才能保证取到2个颜色一样的球。
10. ( 2分) 如果3a=5b,a、b都不为0,a:b写成最简整数比是________,比值是________。
11. ( 1分) 有一根半径是2厘米,高6厘米的圆柱形钢材,加工成与它等底等高的圆锥,要切去________立方厘米钢材。
12. ( 1分) 李伯伯把10000元钱存入银行,存2年,到期后,李伯伯可以拿回________钱。
13. ( 1分) 一种袋装食品的标准净重为150g,质检工作人员对这种食品进行检测,把净重148g记为-2g,那么记为-5g的食品净重为________g。
14. ( 1分) 甲、乙两种商品,成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价.后来都按定价的90%打折出售,结果仍获利131元.甲种商品的成本是________元.15. ( 1分) 把一根长16米的方木锯成相等的5段,表面积增加了4平方米,这根方木的体积是________立方米。
专项限时集训(八) 函数最值、恒成立及存在性问题(限时:60分钟)1.(本小题满分14分)(镇江市2019届高三上学期期末)已知函数f (x )=x ln x ,g (x )=λ(x 2-1)(λ为常数).(1)若函数y =f (x )与函数y =g (x )在x =1处有相同的切线,求实数λ的值; (2)若λ=12,且x ≥1,证明:f (x )≤g (x );(3)若对任意x ∈[1,+∞),不等式f (x )≤g (x )恒成立,求实数λ的取值范围. [解](1)f ′(x )=ln x +1,则f ′(1)=1且f (1)=0. 所以函数y =f (x )在x =1处的切线方程为:y =x -1, 从而g ′(x )=2λx ,g ′(1)=2λ=1,即λ=12.2分(2)证明:由题意知:设函数h (x )=x ln x -12(x 2-1),则h ′(x )=ln x +1-x ,设p (x )=ln x +1-x ,从而p ′(x )=1x-1≤0对任意x ∈[1,+∞)恒成立,所以p (x )=ln x +1-x ≤p (1)=0,即h ′(x )≤0, 因此函数h (x )=x ln x -12(x 2-1)在[1,+∞)上单调递减,即h (x )≤h (1)=0,所以当x ≥1时,f (x )≤g (x )成立. 6分(3)设函数H (x )=x ln x -λ()x 2-1,从而对任意x ∈[1,+∞),不等式H (x )≤0=H (1)恒成立. 又H ′(x )=ln x +1-2λx ,当H ′(x )=ln x +1-2λx ≤0,即ln x +1x≤2λ恒成立时,函数H (x )单调递减.设r (x )=ln x +1x ,则r ′(x )=-ln x x2≤0, 所以r (x )max =r (1)=1,即1≤2λ⇒λ≥12,符合题意;当λ≤0时,H ′(x )=ln x +1-2λx ≥0恒成立,此时函数H (x )单调递增. 于是,不等式H (x )≥H (1)=0对任意x ∈[1,+∞)恒成立,不符合题意;当0<λ<12时,设q (x )=H ′(x )=ln x +1-2λx ,则q ′(x )=1x -2λ=0⇒x =12λ>1,当x ∈⎝ ⎛⎭⎪⎫1,12λ时,q ′(x )=1x -2λ>0,此时q (x )=H ′(x )=ln x +1-2λx 单调递增,所以H ′(x )=ln x +1-2λx >H ′(1)=1-2λ>0, 故当x ∈⎝ ⎛⎭⎪⎫1,12λ时,函数H (x )单调递增.于是当x ∈⎝ ⎛⎭⎪⎫1,12λ时,H (x )>0成立,不符合题意; 综上所述,实数λ的取值范围为λ≥12.14分2.(本小题满分14分)已知函数f (x )=a ln x -bx 3,a ,b 为实数,b ≠0,e 为自然对数的底数,e≈2.71828.(1)当a <0,b =-1时,设函数f (x )的最小值为g (a ),求g (a )的最大值; (2)若关于x 的方程f (x )=0在区间(1,e]上有两个不同的实数解,求a b的取值范围.【导学号:56394114】[解](1)b =-1时,f (x )=a ln x +x 3,则f ′(x )=a +3x 3x,令f ′(x )=0,解得:x =3-a3,∵a <0,∴3-a3>0, x ,f ′(x ),f (x )的变化如下:故g (a )=f ⎝⎛⎭⎪⎫3-a 3=a 3ln ⎝ ⎛⎭⎪⎫-a 3-a3, 令t (x )=-x ln x +x ,则t ′(x )=-ln x ,令t ′(x )=0,解得:x =1, 且x =1时,t (x )有最大值1, 故g (a )的最大值是1,此时a =-3;8分(2)由题意得:方程a ln x -bx 3=0在区间(1,e]上有2个不同的实数根,故a b =x 3ln x在区间(1,e]上有2个不同实数根, 即函数y 1=a b 的图象与函数m (x )=x 3ln x 的图象有2个不同的交点,∵m ′(x )=x 2 3ln x -1 ln x 2,令m ′(x )=0,得:x =3e , x ,m ′(x ),m (x )的变化如下:∴x ∈(1,3e)时,m (x )∈(3e ,+∞),x ∈(3e ,e]时,m (x )∈(3e ,e 3], 故a ,b 满足的关系式是3e <a b≤e 3,即a b的范围是(3e ,e 3].14分3.(本小题满分14分)(江苏省镇江市丹阳高中2019届高三下学期期中)已知函数f (x )=x -1x,(1)函数F (x )=f (e x)-k ⎝ ⎛⎭⎪⎫x +x 36,其中k 为实数, ①求F ′(0)的值;②对∀x ∈(0,1),有F (x )>0,求k 的最大值;(2)若g (x )=x 2+2ln xa(a 为正实数),试求函数f (x )与g (x )在其公共点处是否存在公切线,若存在,求出符合条件的a 的个数,若不存在,请说明理由. [解](1)由F (x )=e x-1e x -k ⎝ ⎛⎭⎪⎫x +x 36得F ′(x )=e x+1e x -k ⎝ ⎛⎭⎪⎫1+x 22,①F ′(0)=2-k ,②记h (x )=F ′(x ),则h ′(x )=e x-1ex -kx ,记m (x )=h ′(x ),则m ′(x )=e x +1e x -k ,当x ∈(0,1)时,e x+1e x ∈⎝ ⎛⎭⎪⎫2,e +1e .3分(ⅰ)当k ≤2时,m ′(x )>2-k ≥0,x ∈(0,1),即m (x )在(0,1)上是增函数, 又m (0)=0,则h ′(x )>0,x ∈(0,1),即h (x )在(0,1)上是增函数,又F ′(0)=2-k ≥0, 则F ′(x )>0,x ∈(0,1),即F (x )在(0,1)上是增函数,故F (x )>F (0)=0,x ∈(0,1). (ⅱ)当k >2时,则存在x 0∈(0,1),使得m ′(x )在(0,x 0)小于0,即m (x )在(0,x 0)上是减函数,则h ′(x )<0,x ∈(0,x 0), 即h (x )在(0,x 0)上是减函数,又F ′(0)=2-k <0, 则F ′(x )<0,x ∈(0,x 0),又F ′(0)=2-k <0, 即F (x )在(0,x 0)上是减函数, 故F (x )<F (0)=0,x ∈(0,x 0),矛盾. 故k 的最大值为2.8分(2)设函数f (x )与g (x )在其公共点x =x 1处存在公切线,则⎩⎨⎧x 1-1x 1=x 21+2ln x 1a, ①1+1x 21=2x 1+2x 1a , ②由②得(2x 1-a )(x 21+1)=0,即x 1=a2,代入①得8ln a -8ln2-a 2+8=0,记G (a )=8ln a -8ln2-a 2+8,则G ′(a )=8a-2a ,得G (a )在(0,2)上是增函数,(2,+∞)上是减函数, 又G (2)=4>0,G (4)=8ln2-8<0,G ⎝ ⎛⎭⎪⎫2e =-4e 2<0, 得符合条件的a 的个数为2.(未证明小于0的扣2分)14分4.(本小题满分16分)(无锡市2019届高三上学期期末)已知f (x )=x 2+mx +1(m ∈R ),g (x )=e x.(1)当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数,求实数m 的取值范围; (2)若m ∈(-1,0),设函数G (x )=f xg x ,H (x )=-14x +54,求证:对任意x 1,x 2∈[1,1-m ],G (x 1)<H (x 2)恒成立.[解](1)∵F (x )=x 2+mx +1-e x ,∴F ′(x )=2x +m -e x. ∵当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数, ∴F ′(x )≥0即2x +m -e x≥0在[0,2]上恒成立, 即m ≥e x-2x 在[0,2]上恒成立. 令h (x )=e x-2x ,x ∈[0,2],则h ′(x )=e x-2,令h ′(x )=0,则x =ln2.∴h (x )在[0,ln2]上单调递减,在[ln2,2]上单调递增. ∵h (0)=1,h (2)=e 2-4>1, ∴h (x )max =h (2)=e 2-4, ∴m ≥e 2-4.6分(2)证明:G (x )=x 2+mx +1ex,则G ′(x )=-x 2+ 2-m x +m -1e x =- x -1 [x - 1-m ]e x. 要证任给x 1,x 2∈[1,1-m ],G (x 1)≤H (x 2)恒成立,即证G (x )max ≤H (x )min , ∵x ∈[1,1-m ],∴G (x )在[1,1-m ]上单调递增,G (x )max =G (1-m )=2-me 1-m ,∵H (x )在[1,1-m ]上单调递减,H (x )min =H (1-m )=-14(1-m )+54.10分要证G (x )max ≤H (x )min ,即证2-m e 1-m ≤-14(1-m )+54,即证4(2-m )≤e1-m[5-(1-m )].令1-m =t ,则t ∈(1,2).设r (x )=e x(5-x )-4(x +1),x ∈[1,2],即r (x )=5e x-x e x-4x -4.r ′(x )=(4-x )e x -4≥2e x -4>0,∴r (x )=e x(5-x )-4(x +1)在[1,2]上单调递增, ∵r (1)=4e -8>0,∴e x(5-x )≥4(x +1),从而有-14(1-m )+54≥2-m e ,即当x ∈[1,1-m ]时,G (x )max ≤H (x )min 成立.16分5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2019届高三上学期期末)已知函数f (x )=x 22e-ax ,g (x )=ln x -ax ,a ∈R .(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.【导学号:56394115】[解](1)当a =0时,f (x )=x 22e,所以f (x )≤0的解集为{0};当a ≠0时,f (x )=x ⎝⎛⎭⎪⎫x 2e -a , 若a >0,则f (x )≤0的解集为[0,2e a ]. 若a <0,则f (x )≤0的解集为[2e a,0]. 综上所述,当a =0时,f (x )≤0的解集为{0};当a >0时,f (x )≤0的解集为[0,2e a ]; 当a <0时,f (x )≤0的解集为[2e a,0].4分(2)证明:设h (x )=f (x )-g (x )=x 22e -ln x ,则h ′(x )=x e -1x =x 2-ee x.令h ′(x )=0,得x =e ,列表如下:所以函数h (x )所以h (x )=x 22e-ln x ≥0,即f (x )≥g (x ).8分(3)假设存在常数a ,b 使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立, 即x 22e≥2ax +b ≥ln x 对任意的x >0恒成立. 而当x =e 时,ln x =x 22e =12,所以12≥2a e +b ≥12,所以2a e +b =12,则b =12-2a e ,所以x 22e -2ax -b =x 22e -2ax +2a e -12≥0(*)恒成立,①当a ≤0时,2a e -12<0,所以(*)式在(0,+∞)上不恒成立;②当a >0时,则4a 2-2e (2a e -12)≤0,即⎝ ⎛⎭⎪⎫2a -1e 2≤0,所以a =12e,则b =-12. 令φ(x )=ln x -1ex +12,则φ′(x )=e -x e x,令φ′(x )=0,得x =e ,当0<x <e 时,φ′(x )>0,φ(x )在(0,e)上单调递增; 当x >e 时,φ′(x )<0,φ(x )在(e ,+∞)上单调递减. 所以φ(x )的最大值为φ(e)=0.所以ln x -1ex +12≤0恒成立.所以存在a =12e,b =-12符合题意.16分6.(本小题满分16分)(江苏省南京市、盐城市2019届高三第一次模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R ). (1)当a =2时,解关于x 的方程g (e x)=0(其中e 为自然对数的底数);(2)求函数φ(x )=f (x )+g (x )的单调增区间;(3)当a =1时,记h (x )=f (x )·g (x ),是否存在整数λ,使得关于x 的不等式2λ≥h (x )有解?若存在,请求出λ的最小值:若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986)[解](1)当a =2时,方程g (e x )=0即为2e x+1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x=12,故所求方程的根为x =0或x =-ln2. 2分(2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x - a -1 x2= ax - a -1 x +1x2(x >0), ①当a =0时,由φ′(x )>0,解得x >0; ②当a >1时,由φ′(x )>0,解得x >a -1a; ③当0<a <1时,由φ′(x )>0,解得x >0; ④当a =1时,由φ′(x )>0,解得x >0; ⑤当a <0时,由φ′(x )>0,解得0<x <a -1a . 综上所述,当a <0时,φ(x )的增区间为⎝⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的增区间为(0,+∞);a >1时,φ(x )的增区间为⎝⎛⎭⎪⎫a -1a ,+∞.6分(3)法一:当a =1时,f (x )=ln x ,g (x )=x -3,h (x )=(x -3)ln x ,所以h ′(x )=ln x +1-3x 单调递增,h ′⎝ ⎛⎭⎪⎫32=ln 32+1-2<0,h ′(2)=ln2+1-32>0, 所以存在唯一x 0∈⎝ ⎛⎭⎪⎫32,2,使得h ′(x 0)=0,即ln x 0+1-3x 0=0,当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以h (x )min =h (x 0)=(x 0-3)ln x 0=(x 0-3)⎝ ⎛⎭⎪⎫3x 0-1=- x 0-3 2x 0=6-⎝⎛⎭⎪⎫x 0+9x 0,记函数r (x )=6-⎝ ⎛⎭⎪⎫x +9x ,则r (x )在⎝ ⎛⎭⎪⎫32,2上单调递增,所以r ⎝ ⎛⎭⎪⎫32<h (x 0)<r (2),即h (x 0)∈⎝ ⎛⎭⎪⎫-32,-12,由2λ≥-32,且λ为整数,得λ≥0,所以存在整数λ满足题意,且λ的最小值为0. 16分法二:当a =1时,f (x )=ln x ,g (x )=x -3, 所以h (x )=(x -3)ln x ,由h (1)=0得,当λ=0时,不等式2λ≥h (x )有解,下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立. 显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立, 只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立. 即证明ln x +2x -3<0.令m (x )=ln x +2x -3, 所以m ′(x )=1x -2 x -3 2=x 2-8x +9x x -3 2,由m ′(x )=0,得x =4-7,当x ∈(1,4-7)时,m ′(x )>0;当x ∈(4-7,3)时,m ′(x )<0; 所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13=ln2-1<0. 所以当λ≤-1时,h (x )>2λ恒成立.综上所述,存在整数λ满足题意,且λ的最小值为0. 16分。
2017秋季数学集训队预科班每周习题(1)
星期一
1.练习写0~9的数字。
(要求在家多练习,能熟练书写数字)
2.数一数,涂一涂。
3.把数量相同的图形用线连起来。
星期二
1.看数画“□”。
4: 7:
6: 9:
2.再补画几个○,使○的个数与左边的数同样多。
7: ○○
10: ○○○○
3.照样子,涂一涂。
星期三
1.连线:把物体的个数与正确的数相连。
1 8 6
2
3
4
5 7
2.
3.
数一数,每种图形各有多少个?
☆○☆△☆□○△□□△☆□□□□○○○○☆□△△
○有
个,△有
个,□有 个,☆有 个。
星期四
1.看数继续涂色。
2.把正方形右边的1个“○”涂黑,再把正方形左边的2个“○”涂黑。
3.把下面数量少的图形涂色。
星期五
1.看数,将图中缺少的图形补齐。
2.有5个小朋友分星星,每个小朋友分到2颗,那么哪一堆星星比较合适?在下面的“。
3.数一数,下面一共有
双筷子。
一元一次方程应用题分类集训和差倍分问题1.某县有一些农户处于贫困状态,去年这些农户中有25%脱离贫困状态,但仍有600户处于贫困状态,求这个县原来贫困农户有多少户?(1)设这个县原来贫困农户有x户,①由这个县原有贫困农户=脱离贫困农户+未脱离贫困农户,可以得到的方程是;②由脱离贫困农户=这个县原有贫困农户-未脱离贫困农户,可以得到的方程是;③由未脱离贫困农户=这个县原有贫困农户-脱离贫困农户,可以得到的方程是;(2)解决这个问题,得x= .答:这个县原来贫困农户有户.2.某校号召学生为贫困地区的学生捐献图书,初中和高中的同学共捐书5 200册,经过统计知道初中学生捐的书是高中学生捐的书的30%,求高中学生捐的书为多少册?3.某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价.4.学校组织七年级同学参加植树劳动,七年级甲班和七年级乙班共种树31株,其中甲班种的树比乙班种的树的2倍多1株,求两班各种树多少株?5.挖一条长为1 320 m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130 m ,乙队每天挖90 m ,需要几天才能挖好?6.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?7.三个连续偶数和为24,求这三个数.8.一个数的4倍与这个数的13的差为1112,求这个数.9.甲、乙、丙三个数的和是14,已知甲数是乙数的2倍,丙数是乙数的一半,求三个数各是多少?10.一个两位数,把十位数字与个位数字对调后所得的数比90小4,那么这个两位数是( ) A.86 B.64 C.46 D.6811.某农场有试验田1 080 m2,种植A,B,C三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.设A种农作物的种植面积是2x m2,根据题意可列出方程为 .12.某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?13.中国古代有很多经典的数学题,例如《孙子算经》卷下第17题是一首诗:“妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”这首诗翻译成现代文就是:每两位客人合用1只饭碗,三位合用1只汤碗,四位合用1只肉碗,共用65只碗,问有多少客人?14.七年级(1)班的学生分成三个小组,利用星期日的时间去参加公益活动,第一组有学生m 名,第二组的学生数比第一组学生数的2倍少10人,第三组的学生数是第二组学生数的一半.(1)七年级(1)班共有多少名学生?(用含m的式子表示)(2)若七年级(1)班共有45名学生,求m的值.15.如图是由一些奇数排成的数阵,用一长方形框在表中任意框住4个数.(1)若这样框出的四个数的和是156,求这四个数.(2)能否框住这样的四个数,它们的和为220,为什么?16.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50 kg,茄子、豆角当天的批发价和零售价如下表所示:品名茄子豆角批发价(元·kg-1) 3.0 3.5这天该经营户批发了茄子和豆角各多少千克?路程问题及工程问题相遇问题1.小明和小刚从相距25.2 km的两地同时相向而行,小明每小时走4 km,3 h后两人相遇,设小刚的速度为x km/h,列方程得( )A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.A、B两地相距70 km,甲从A地出发,每小时行15 km,乙从B地出发,每小时行20 km.若两人同时出发,相向而行,则经过几小时两人相遇?3.A,B两地相距300 km.甲车从A地出发,每小时行驶60 km,乙车从B地出发,每小时行驶40 km.甲车从A地开出1小时后,乙车从B地出发,两车相向而行,则乙车出发几小时后两车相遇?追及问题4.(衡水安平县期末)小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是( )A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-55.已知A,B两地相距90 km,甲、乙两车分别从A,B两地同时出发,已知甲车速度为115 km/h,乙车速度为85 km/h,两车同向而行,快车在后,求经过几小时快车追上慢车?6.列方程解应用题.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?7.汽车从甲地到乙地,如果以35 km/h的速度行驶,就要迟到2小时;如果以50 km/h的速度行驶,那么可以提前1小时到达.设甲、乙两地相距x千米,则所列方程为 .8.上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1 180公里,问两车几点相遇?9.甲、乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12 km,相遇时乙车所走的路程是甲车的1.5倍.求甲、乙两车的速度.10.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?(直接写出结果)11.列方程解应用题:成雅高速公路全长147 km,上午八时一辆货车由雅安到成都,车速是每小时60 km,半小时后,一辆小轿车从雅安出发去追赶货车,车速是80 km/h,问:(1)小车几小时能追上货车?(2)小车追到货车时行驶了多少千米?(3)能在到达成都之前追上货车吗?(4)小轿车追上货车时距离成都还有多少千米?12.列方程解应用题:如图,现有两条乡村公路AB,BC,AB长为1 200米,BC长为1 600米,一个人骑摩托车从A处以200 m/min的速度匀速沿公路AB,BC向C处行驶;另一人骑自行车从B处以100 m/min的速度从B向C行驶,并且两人同时出发.(1)求经过多少分钟摩托车追上自行车?(2)求两人均在行驶途中时,经过多少分钟两人在行进路线上相距150米?工程问题1.甲、乙两个人给花园浇水,甲单独做需要4小时完成任务,乙单独做需要6小时完成任务,现在由甲、乙合做,完成任务需要几个小时?2.一项工程,甲队单独做需要5天完成,乙队单独做需要8天完成,甲队和乙队先合做一段时间,后来又有新任务,剩下的工作由乙队来完成,结果这项工程用了4天就全部竣工了,求甲队干了几天?3.一项工作,小李单独做需要6小时完成,小王单独做需要9小时完成,现小李先做几小时后,再由小李和小王合做125小时完成,求小李单独做的小时数.4.整理一批图书,由一个人做要40 h 完成,现计划由一部分人先做4 h ,然后增加2人与他们一起再做8 h ,就能完成这项工作.假设这些人的工作效率相同,具体应先安排的人数为 .5.修筑一条公路,由3个工程队分筑,第一工程队筑全路的13;第二工程队筑剩下的13;第三工程队筑了20 km 把这条公路筑完.问:这条公路共长多少千米?6.一项工程,甲独做需要10天,乙独做需要12天,丙独做需要15天.现甲、乙、丙3人合做2天后,乙因有事提前离去,余下的由甲和丙合作完成.问还需几天能完成这项工程?7.整理一批图书,若由一个人独做需要80个小时完成,假设每人的工作效率相同. (1)若限定32小时完成,一个人先做8小时,需再增加多少人帮忙才能在规定的时间内完成? (2)计划由一部分人先做4小时,然后增加3人与他们一起做4小时,正好完成这项工作的34,应该安排多少人先工作?储蓄、利润及增长率问题 增长率问题1.某农场今年粮食总产量为500吨,比去年增产25%,求去年粮食总产量,设去年粮食总产量为x吨,则可列出方程( )A.25%x=500B.(1+25%)x=500C.x=500×25%D.(1-25%)x=5002.一件羽绒服降价10%后售出价是270元,设原价x元,得方程( )A.x(1-10%)=270-xB.x(1+10%)=270C.x(1+10%)=x-270D.x(1-10%)=2703.某所中学现有学生4 200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,问:这所学校现在的初中在校生和高中在校生人数分别是多少?4.国家规定:银行一年定期储蓄的年利率为 3.25%.小明有一笔一年定期存款,如果到期后全取出,可取回1 239元.若设小明的这笔一年定期存款是x元,则下列方程中正确的是( ) A.x+3.25%=1 239 B.3.25%x=1 239C.1+3.25%x=1 239D.x+3.25%x=1 2395.王海的爸爸想用一笔钱买年利率为5.5%的5年期国库券,如果他想5年后本息和为2万元,现在应买这种国库券多少元?如果设应买这种国库券x元,那么可以列出方程( )A.x×(1+5.5%×5)=20 000B.5x×(1+5.5%)=20 000C.x×(1+5.5%)5=20 000D.x×5.5%×5=20 0006.王先生手中有30 000元钱,想买年利率为5.18%的三年期国库券,到银行时,银行所剩国库券已不足30 000元,王先生全部买下这部分国库券后,余下的钱改存三年定期银行存款,年利率为5%,三年后,王先生得到的本息和为34 608元.求王先生买了多少元国库券?在银行存款是多少元?7.某商店进行年终促销活动,将一件标价为690元的羽绒服7折售出,仍获利15%,则这件羽绒服的进价为( )A.380元B.420元C.460元D.480元8.苏宁电器元旦促销,将某品牌彩电按进价提高40%,然后在广告上写“元旦大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电进价是多少元?9.某商品的售价为每件900元,为了参与市场竞争,商店按售价的九折再让利40元销售,此时可获利10%.求此商品的进价.10.高速发展的芜湖奇瑞汽车公司,去年汽车销量达到18万辆,该公司今年汽车总销售目标为25.2万辆,则奇瑞公司今年的汽车销量将比去年增加的百分率为( )A.40%B.32%C.9%D.15%11.已知银行一年期定期储蓄的年利率为3.25%,所得利息要缴纳20%的利息税,例如:某人将100元按一年期的定期储蓄存入银行,到期储户纳税后所得利息的计算公式为:税后利息=100×3.25%-100×3.25%×20%=100×3.25%×(1-20%).已知某储户有一笔一年期的定期储蓄,到期纳税后,得到利息650元,问:该储户存入了多少本金?12.一个计算器,若卖100元,可赚原价的25%;若卖120元,则可以赚原价的百分之几?13.时代中学现有校舍面积20 000平方米,为改善办学条件,计划拆除部分旧校舍,新建教学楼.如果新建教学楼的面积是拆除旧校舍面积的3倍,那么计划完成后校舍总面积增加20%,拆除旧校舍多少平方米?14.某商品的进价是100元,提高50%后标价售出,在销售旺季过后,经营者想得到5%的销售利润,请你帮他想一想,该商品需打几折销售?15.如表是某电脑进货单,其中进价一栏被墨迹污染,请求出这台电脑的进价.商场进货单进价(进货价格)标价(预售价格) 5 850元折扣8折利润率 20%16.一家商店因换季准备将某种服装打折销售,每件服装如果按标价的五折出售将亏20元,而按标价的八折出售将赚40元.问:(1)每件服装的标价是多少?(2)每件服装的成本是多少?(3)为保证不亏本,最多能打几折?17.某集团公司有甲、乙两个商场,一月份甲、乙两商场销售总额为2 000万元,二月份甲商场因内部装修,影响销售,致使销售额比一月份下降10%;而乙商场大搞促销活动,因而销售额比一月份增加了20%,这样整个集团公司(甲、乙两商场)的销售总额比一月份还要增加3.5%.问甲、乙两商场二月份的销售额分别是多少万元?18.某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完,该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为( )A.4x +8=4.5xB.4x -8=4.5xC.4x =45x +8D.4(x +8)=4.5x19.设有x 个人共种m 棵树苗,若每人种8棵,则剩下2棵树苗未种;若每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( )A.x 8-2=x 10+6B.x 8+2=x10-6 C.m -28=m +610 D.m +28=m -61020.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,请问该小组共有多少人?计划做多少个“中国结”? 根据题意,小明、小红分别列出了如下尚不完整的方程: 小明:5x□( )=4x□( ); 小红:y□( )5=y□( )4.(1)根据小明、小红所列的方程,其中“□”中是运算符号,“( )”中是数字,请你分别指出未知数x 、y 表示的意义:小明所列方程中x 表示 小红所列方程中y 表示 .(2)请选择小明、小红中任意一种方法,完整的解答该题目.等积变形问题1.根据图中给出的信息,可得正确的方程是( )A.π×(82)2×x =π×(62)2×(x +5)B.π×82×x =π×62×5C.π×(82)2×x =π×(62)2×(x -5)D.π×82×x =π×62×(x -5)2.一块棱长2分米的立方体钢块,可以锻造成一块长8分米、宽25分米、厚 分米的钢板.3.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2,100 cm 2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲中的水位高度低了8 cm ,求甲中水的高度.4.全班同学去春游,准备租船游玩,如果比计划减少一条船,那么每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班共有 个同学.5.已知5台A 型机器一天生产的产品装满8箱后还剩4个,7台B 型机器一天生产的产品装满11箱后还剩1个,每台A 型机器比B 型机器一天多生产1个产品.求每箱装多少个产品.6.桌面上有甲、乙两个圆柱形的杯子,杯深均为20 cm,各装有10 cm高的水且下表记录了甲、乙两个杯子的底面积.今小明将甲杯内一些水倒入乙杯,过程中水没溢出,使得甲、乙两杯内水的高度比变为3∶4.若不计杯子厚度,则甲杯内水的高度变为多少厘米?几何图形及动点问题几何图形问题1.一个正方形花圃边长增加2 m,所得新正方形花圃的周长是28 m,设原正方形花圃的边长为x m,由此可得方程为( )A.x+2=28B.4(x+2)=28C.2(x+2)=28D.4x+2=282.一块长方形黎锦的周长为80 cm,已知这块黎锦的长比宽多5 cm,求它的长和宽.设这块黎锦的宽为x cm,则所列方程正确的是( )A.x+(x+5)=40B.x+(x-5)=40C.x+(x+5)=80D.x+(x-5)=803.一个三角形的三边长的比为3∶4∶5,最短的边比最长的边短6 cm,则这个三角形的周长为 cm.4.一个角的余角的3倍比它的补角小10°,求这个角的度数.5.如图,用总长为6米的铝合金条制作“日”字形窗框,已知窗框的高比宽多0.5米,求窗框的高和宽.动点问题6.已知:如图所示,在△ABC中,AB=5 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.如果P,Q分别从A,B同时出发,那么几秒后,BP=BQ?7.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则所列方程为8.图1是边长为30 cm的正方形纸板,裁掉阴影后将其折叠成图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm3.9.如图,悦悦将一张正方形纸片剪去一个宽为3 cm的长方形纸条,再从剩下的长方形纸片上剪去一个宽为1 cm的长条,如果第一次剪下的长方形纸条的周长恰好是第二次剪下的长方形纸条周长的2倍.求:(1)原正方形纸片的边长;(2)第二次剪下的长方形纸条的面积.10.如图,在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B,点C表示的数;(2)在(1)的条件之下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从点C出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的D点相遇,求D点表示的数是多少?11.将长为40 cm,宽为15 cm的长方形白纸按如图所示的方法粘合起来,粘合部分宽为5 cm.你认为白纸粘合起来总长度可能为2 019 cm吗?为什么?12.如图1,在长方形ABCD中,AB=12 cm,BC=6 cm,点P沿AB边从点A开始向点B以2 cm/s 的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P,Q同时出发,用t(s)表示移动的时间,那么:(1)如图1,当点P到达点B,或点Q到达点A时,两点都停止运动.①当t=3时,分别求AQ和BP的长;②当t为何值时,BP=7?(2)如图2,若P,Q到达B,A后速度不变继续运动,点Q开始向点B移动,P点返回向点A 移动,其中一点到达目标点后就停止运动.问当t为何值时,线段PQ的长度等于线段BC长度的一半?图1 图2一元一次方程应用题分类集训答案和差倍分问题1.某县有一些农户处于贫困状态,去年这些农户中有25%脱离贫困状态,但仍有600户处于贫困状态,求这个县原来贫困农户有多少户?(1)设这个县原来贫困农户有x户,①由这个县原有贫困农户=脱离贫困农户+未脱离贫困农户,可以得到的方程是x=25%x+600;②由脱离贫困农户=这个县原有贫困农户-未脱离贫困农户,可以得到的方程是25%x=x-600;③由未脱离贫困农户=这个县原有贫困农户-脱离贫困农户,可以得到的方程是600=x-25%x;(2)解决这个问题,得x=800.答:这个县原来贫困农户有800户.2.某校号召学生为贫困地区的学生捐献图书,初中和高中的同学共捐书5 200册,经过统计知道初中学生捐的书是高中学生捐的书的30%,求高中学生捐的书为多少册?解:设高中学生捐的书为x册,则初中学生捐的书为30%x册,根据题意,得x+30%x=5 200.解得x=4 000.答:高中学生捐的书为4 000册.3.某产品的成本价为25元,现在按标价的8折销售,还可以有10元的利润,求此产品的标价.解:设此产品的标价为x元,依题意,得80%x-25=10.解得x=43.75.答:此产品的标价为43.75元.4.学校组织七年级同学参加植树劳动,七年级甲班和七年级乙班共种树31株,其中甲班种的树比乙班种的树的2倍多1株,求两班各种树多少株?解:设乙班种树x株,则甲班种树(2x+1)株,依题意,有x+(2x+1)=31.解得x=10.则2x+1=20+1=21.答:甲班种树21株,乙班种树10株.5.挖一条长为1 320 m 的水渠,由甲、乙两队从两头同时施工,甲队每天挖130 m ,乙队每天挖90 m ,需要几天才能挖好? 解:设需要x 天才能挖好,根据题意,得 130x +90x =1 320. 解得x =6.答:需要6天才能挖好.6.小李读一本名著,星期六读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?解:设这本名著共有x 页,根据题意,得 36+14(x -36)=38x ,解得x =216.答:这本名著共有216页.7.三个连续偶数和为24,求这三个数.解:设这三个连续偶数分别为n -2,n ,n +2.依题意,得 n -2+n +n +2=24.解得n =8.从而有n -2=6,n +2=10. 答:这三个数分别为6,8,10.8.一个数的4倍与这个数的13的差为1112,求这个数.解:设这个数为x ,依题意,得 4x -13x =1112.解得x =14.答:这个数为14.9.甲、乙、丙三个数的和是14,已知甲数是乙数的2倍,丙数是乙数的一半,求三个数各是多少?解:设乙数为x ,则甲数为2x ,丙数为12x ,依题意,得x +2x +12x =14.解得x =4.从而有2x =8,12x =2.答:甲、乙、丙三个数分别为8,4,2.10.一个两位数,把十位数字与个位数字对调后所得的数比90小4,那么这个两位数是(D) A.86 B.64 C.46 D.6811.某农场有试验田1 080 m 2,种植A ,B ,C 三种农作物.已知三种农作物的种植面积比是2∶3∶4,求三种农作物的种植面积分别是多少.设A 种农作物的种植面积是2x m 2,根据题意可列出方程为2x +3x +4x =1_080.12.某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 解:设应安排x 名工人生产螺钉,则安排(22-x)名工人生产螺母.根据题意,得 2 000(22-x)=2×1 200x. 解得x =10. 则22-x =12.答:应安排10名工人生产螺钉,12名工人生产螺母.13.中国古代有很多经典的数学题,例如《孙子算经》卷下第17题是一首诗:“妇人洗碗在河滨,路人问她客几人?答曰不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”这首诗翻译成现代文就是:每两位客人合用1只饭碗,三位合用1只汤碗,四位合用1只肉碗,共用65只碗,问有多少客人?解:设有x名客人,依题意,得1 2x+13x+14x=65.解得x=60.答:有60名客人.14.七年级(1)班的学生分成三个小组,利用星期日的时间去参加公益活动,第一组有学生m 名,第二组的学生数比第一组学生数的2倍少10人,第三组的学生数是第二组学生数的一半.(1)七年级(1)班共有多少名学生?(用含m的式子表示)(2)若七年级(1)班共有45名学生,求m的值.解:(1)根据题意,得第二组有(2m-10)人,第三组有12(2m-10)=(m-5)人,则三个小组一共有m+(2m-10)+(m-5)=(4m-15)人.(2)因为七年级(1)班共有45名学生,所以4m-15=45,解得m=15.15.(邯郸魏县期中)如图是由一些奇数排成的数阵,用一长方形框在表中任意框住4个数.(1)若这样框出的四个数的和是156,求这四个数.(2)能否框住这样的四个数,它们的和为220,为什么?解:(1)记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是x+2,x+10,x+12.根据题意,得x+(x+2)+(x+10)+(x+12)=156.解得x=33.从而有x+2=35,x+10=43,x+12=45.答:这四个数分别是33,35,43,45.(2)不能.理由如下:假设能框住这样的4个数,它们的和等于220,则x+(x+2)+(x+10)+(x+12)=220,解得x=49.则x+2=51,x+10=59,x+12=61.因为49在最右边,51在最左边,所以不能.16.某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50 kg,茄子、豆角当天的批发价和零售价如下表所示:这天该经营户批发了茄子和豆角各多少千克?解:设这天该经营户批发茄子x kg,则批发豆角(50-x)kg.由题意,得3.0x+3.5(50-x)=160.解得x=30.从而有50-30=20(kg).答:批发茄子30 kg,批发豆角20 kg.路程问题及工程问题相遇问题1.小明和小刚从相距25.2 km的两地同时相向而行,小明每小时走4 km,3 h后两人相遇,设小刚的速度为x km/h,列方程得(C)A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.A、B两地相距70 km,甲从A地出发,每小时行15 km,乙从B地出发,每小时行20 km.若两人同时出发,相向而行,则经过几小时两人相遇?解:设经过x小时两人相遇,依题意,得15x+20x=70.解得x=2.答:经过2小时两人相遇.3.A,B两地相距300 km.甲车从A地出发,每小时行驶60 km,乙车从B地出发,每小时行驶40 km.甲车从A地开出1小时后,乙车从B地出发,两车相向而行,则乙车出发几小时后两车相遇?解:设乙车出发x小时后两车相遇.依题意,得60+(60+40)x=300.解得x=2.4.答:乙车出发2.4小时后两车相遇.追及问题4.(衡水安平县期末)小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是(B)A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-55.已知A,B两地相距90 km,甲、乙两车分别从A,B两地同时出发,已知甲车速度为115 km/h,乙车速度为85 km/h,两车同向而行,快车在后,求经过几小时快车追上慢车?解:设经过x小时快车追上慢车.根据题意,得115x-85x=90,解得x=3.答:经过3小时快车追上慢车. 6.(衡水枣强县期中)列方程解应用题.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?解:设快马x 天可以追上慢马,由题意,得 240x -150x =150×12. 解得x =20.答:快马20天可以追上慢马.7.汽车从甲地到乙地,如果以35 km/h 的速度行驶,就要迟到2小时;如果以50 km/h 的速度行驶,那么可以提前1小时到达.设甲、乙两地相距x 千米,则所列方程为x 35-2=x50+1. 8.上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1 180公里,问两车几点相遇?解:设从北京到上海的G5次列车行驶x 小时与G102次列车相遇,根据题意,得 200(x +12)+280x =1 180.解得x =2.25. 2.25时=2时15分, 7时+2时15分=9时15分. 答:两车于9点15分相遇.9.甲、乙两辆汽车同时从两个村庄出发,相向而行,4小时后相遇,已知乙车每小时比甲车多走12 km ,相遇时乙车所走的路程是甲车的1.5倍.求甲、乙两车的速度. 解:设甲车每小时走x km ,则乙车每小时走(x +12)km.由题意,得 4(x +12)=1.5×4x. 解得x =24.则x +12=24+12=36.。
2019年精选北师大版数学三年级上册课后练习第八篇第1题【单选题】将8支球队分成两个小组,各小组采用单循环制;小组前2名共4支球队再进行淘汰制,决出冠军和亚军,一共需要赛场.( )A、28场B、7场C、35场D、15场【答案】:【解析】:第2题【单选题】你的年龄大约是( )A、600天B、600时C、600周D、600月【答案】:【解析】:第3题【单选题】用九根同样长的小棒,最多可以拼成( )个正三角形.A、3B、4C、5D、6【答案】:【解析】:第4题【单选题】有两名士官和四名士兵,从中任选一名士官和一名士兵搭配值勤,有( )种选择.A、2B、4C、8【答案】:【解析】:第5题【单选题】第49届世乒赛在中国广州举行.男团决赛在中国队和韩国队之间进行,比赛从19:30开始,到21:15结束.这场比赛共用了( )分钟.A、1:45B、145C、90D、105【答案】:【解析】:第6题【单选题】甲乙两地相距440千米,汽车早6时从甲地开出,每小时行55千米,汽车到达乙地的时刻是( )A、下午1时B、中午12时C、下午2时D、下午3时【答案】:【解析】:第7题【填空题】一个密码锁的密码是由四个数字组成,每个数字都是0~9这10个数字中的一个,粗心的小华忘了其中的两个数字,他最多需要试______次才能打开锁。
【答案】:【解析】:第8题【填空题】2004年的中秋佳节是9月28日,是星期二,2005年9月28日是星期______【答案】:【解析】:第9题【填空题】小伟要从甲地到乙地去,他可以有______条路可走(只能从下而上,从左到右走)【答案】:【解析】:第10题【填空题】十把钥匙开十把锁,你不知哪把钥匙开哪把锁,最多要试______次可把钥匙与锁配对。
【答案】:【解析】:第11题【填空题】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试______次。
【答案】:【解析】:第12题【填空题】清华中学为了从5名运动员中选1名运动员参加区比赛,进行了单循环比赛,一共要进行______场比赛【答案】:【解析】:第13题【填空题】在尺子上,从刻度“0”到“4”是______厘米,从刻度“2”到“7”是______厘米。
2014春季数学集训一队每周习题(8)参考答案
星期一
1.100-1 。
(猜一个字)答案:百-一横=白
2.一来就千。
(猜一个数)答案:千-一撇=十
3.泰山中无人,无水。
(猜一个数)答案:三
4.背着喇叭。
(猜一数学符号)答案:<
5.风筝跑了。
(猜一数学名词)答案:线段(线“断”)
6.成绩是多少?(猜一数学名词)答案:分数
星期二
7.在数字中间填上“+”、“-”,使等式成立。
5 1 8 4 9
6 4 5 3
7 9 4 =15 5 1
8 4
9 6 4 5 3 7 9 4 =15
思维引导:等式左边12个数的和为65,保留结果 65-15=50。
把50调整为0,确定减数是25。
5+1+8+4+9-6+4-5-3-7+9-4=15 减数25
5+1+8+4+9-6+4+5-3-7-9+4=15 减数25
8.7只篮子分别放有1只、2只、4只、8只、16只、32只、64只苹果。
现在要从这7只篮子里取出87只苹果,但每只篮子内的苹果要么全部取走,要么不取。
你看该怎么取?
列式:解:64+16+4+2+1=87(只)
9.把100个鸡蛋分装在6个盒子里,要求每个盒子里装的鸡蛋个数都带有数字6。
想想看,应该怎样分?
解:100=60+16+6+6+6+6
星期三
10.数独游戏。
要求:每一行,每一列1~9这九个数各出现一次。
每个小九宫格里(共有9个小九宫格)1~9这九个数各出现一次。
星期四
11.小蚂蚁从A处回B处的家,它要在砖缝中走一条这样的路:每经过一块砖,左右两边砖块的颜色必需相同。
小朋友,请你带小蚂蚁回家吧。
2
5 5 2
6 1 9 3
2 4 6 4
4
1
6 9
9
7 1
3 4 9
8 7 3
2
7 1 3
4 5 4 6
8 6
9 1
3 1 8 3
5 1 2
100 12.请你从人口出发,走到出口。
可以横着走或竖着走。
要求你走过的线路,格子里的数字和为39。
(多解)
13.在下面的圆圈中填上运算符号,使小牛回家的道路畅通,并使得最后的结果等于100。
思维引导:
本题的实质,就是在等式“1 2 38 16 4 19 15 4 12 9 25 3 7 5=100”中填上适当的运算符号,使等式成立。
左边各数之和=160,右边的的得数为100,左边比右边多160-100=60。
把60调整为0,平分为30和30。
确定减数为30。
在给定的数中,寻找“和为30”的若干个数,在这些数的前面填入“-”,剩余的各数前都填“+”。
答案不唯一,举其中一例。
1+2+38+16+4+19+15+4+12+9-25+3+7-5=100 入口 出口
星期五
14.你能按照1、2、3、4、5、6的顺序从入口处进入,从出口处出来吗?(不能斜走)
入口
出口。