快速成型技术工艺特点及影响精度的因素
- 格式:pdf
- 大小:287.70 KB
- 文档页数:3
1 引言快速成型技术(Rapid Prototying,RP)是由CAD模型直接驱动,快速制造任意复杂形状的三维物理实体的技术。
快速成型技术的出现赋予了装备制造业快速响应、无模制造和加工信息远程传递制造的新特点,引发了装备制造方法的重大变革回。
经过20余年的发展,快速成型技术从原来的SLA技术先后发展出SLS、LOM、FDM、3DP、LENS等多种成型工艺,并在机械制造、航空航天、军事、医学、考古、艺术以及建筑等领域得到—定程度的应用。
Rapid prototyping technology (Rapid, Prototying, RP) is directly driven by the CAD model, the three-dimensional physical entities rapid manufacturing complex shape technology. The rapid molding technology gives the equipment manufacturing industry of fast response, no mold manufacturing and processing information remote transmission characteristics of manufacturing, caused major changes to equipment manufacturing method. After 20 years of development, the rapid prototyping technology from the original SLA technology has developed the SLS, LOM, FDM, 3DP, LENS and other molding process, and in machinery manufacturing, aerospace, military, medicine, archaeology, art and architecture and other fields have a certain degree of application.目前,快速成型技术面临的一个主要的问题就是表面质量不高,其制件必须经过打磨、抛光等后处理工艺才能满足工业应用的要求。
来源于:注塑财富网PCM快速成形工艺精度和表面质量影响因素概述RP技术发展到今天,其发展重心已从快速原型(RP)向快速制造(RM-Rapid Manufacturing)及金属零部件的快速制造方向转移,RP领域各种各样的新材料及新工艺不断出现。
RP技术不仅应用于设计过程,而且也延伸到制造领域。
在制造业中,限制产品推向市场时间的主要因素是模具及模型的设计制造时间,RP 是快速设计的辅助手段,而更多的厂家则希望直接从CAD数据制成模具或产品,所以RM技术就尤为令人关注。
RP技术与铸造工艺结合产生的快速铸造(QC-Quick Casting),是RM的主要研究领域之一。
近几年来,利用快速成形的离散/堆积原理发展起来的直接铸型制造技术,省去了传统工艺的模型,按照铸型 CAD模型(包括浇注系统等工艺信息)的几何信息精确控制造型材料的堆积过程,直接制造铸型,是传统铸造过程的重大变革。
由清华大学研制成功的 PCM(Patternless Casting Modeling)工艺,是将RP理论引进到树脂砂造型工艺中,采用轮廓扫描喷射固化工艺,实现了无模型铸型的快速制造。
PCM工艺是一个包含CAD/CAM、数控、材料、喷射、工艺参数设置及后处理的集成制造过程,可概括为以下3个过程:(1)前处理过程:首先规划和设计铸型,即确定工艺参数、选取最优加工方向、设计浇注系统等,将产品/零件的CAD模型转换成铸型的CAD模型。
然后由铸型CAD数据得到分层截面轮廓数据,再以层面信息产生控制信息。
(2)造型过程:原砂存储及铺砂机构将原砂均匀铺撒在砂箱表面并由压滚压实,喷射装置将树脂和固化剂喷射在每一层铺好压实的型砂上,粘结剂与催化剂发生胶联反应,粘接剂和催化剂共同作用的地方型砂被固化在一起,其他地方型砂仍为颗粒态干砂。
固化完一层后再粘接下一层,所有层面粘接完之后就可以得到一个三维实体铸型。
(3)后处理过程:清理出铸型中间未固化的干砂就可以得到一个有一定壁厚的铸型,在砂型的内表面涂敷或浸渍涂料。
FDM快速成型加工工艺问题研究FDM(Fused Deposition Modeling)是一种快速成型加工工艺,它是通过加热和挤压塑料材料,将其层层叠加来制造物体。
FDM快速成型技术具有成本低、加工速度快、设备简单等优点,被广泛应用于制造业,如汽车、航空航天、医疗器械等领域。
FDM快速成型加工工艺也存在一些问题需要研究和解决。
以下是对几个常见问题的研究:1. 精度问题:FDM快速成型技术在制造物体时,由于材料的挤压和层层叠加,容易产生加工误差和表面粗糙度问题。
研究如何提高FDM快速成型技术的制造精度,包括控制挤压速度、温度、升降平台的精度等方面,是非常重要的。
2. 材料选择问题:FDM快速成型技术的加工材料通常为热塑性聚合物,如ABS、PLA 等。
不同材料具有不同的熔融温度和流动性,影响FDM成型的质量和成型速度。
研究如何选择适合的材料,并对不同材料的加工参数进行优化,是提高FDM成型质量和效率的关键。
3. 系统稳定性问题:FDM快速成型系统由多个硬件和软件组成,如挤出机、喷嘴、传感器、控制系统等。
这些组件之间的稳定性和协调性对FDM成型结果有着重要影响。
研究如何提高FDM系统的稳定性和效率,包括优化系统结构、改进传感器和控制算法等方面,是重要的问题。
4. 模型支撑结构问题:在FDM快速成型过程中,为了保持模型的形状稳定,需要添加支撑结构。
支撑结构的设计和移除对成型质量和效率有着重要影响。
研究如何设计适合的支撑结构,并开发高效的支撑结构移除方法,是提高FDM成型效率和质量的关键。
FDM快速成型加工工艺的问题研究是一个复杂而重要的课题。
通过对精度、材料选择、系统稳定性和模型支撑结构等问题的研究,可以不断改进FDM技术的制造质量和效率,并推动FDM快速成型在制造业的应用。
快速成型技术的心得心得:如何提高成型效率和质量快速成型技术的心得:如何提高成型效率和质量随着科技的不断进步,各种新型加工技术层出不穷。
其中快速成型技术因其快速、高效、精准等优点,在工业设计、医疗、航空航天等领域得到广泛应用。
然而,快速成型技术对成型效率和质量的要求很高,如何提高成型效率和质量成为了制约其应用的主要因素。
本文将从优化设计、材料选择、后处理等多个方面阐述如何提高成型效率和质量。
一、优化设计设计是成型的关键因素。
一个优秀的设计可以在一定程度上缩短成型周期,提高成型质量。
优化设计的具体操作有以下几个方面:1、简化构型。
设计简单的构型可以减少连接点、支撑点,降低成型难度。
如在SLA快速成型技术中,简单的构型可以降低生成的悬空部分,避免出现变形或断裂。
2、优化结构。
结构设计的优化可以经过预测、模拟和试验三个阶段完成。
预测阶段可以使用有限元方法对部件进行静态或动态分析,计算应力和变形。
模拟阶段可以将数字模型导入软件中进行仿真。
试验阶段可以将优化后的设计进行制作和测试。
3、合理放置支撑结构。
在使用部分快速成型技术时,支撑结构的设置至关重要。
任何快速成型技术都需要一定的支撑结构,以保证成型构型的稳定性。
但是,支撑结构太多、太大、太密集会直接影响成型效率和质量。
因此,在设计过程中,合理放置支撑结构是提高成型效率和质量的关键之一。
二、材料选择快速成型技术的材料也是影响成型效率和质量的重要因素。
每种材料都有各自的特点,对成型性能、机械性能、化学性能等指标都有不同的要求。
其中,选择合适的材料是非常关键的。
如果选择了质量低劣的材料,将直接影响成型效率和成型质量。
在选择材料时,应注意以下几点:1、优先考虑适用性。
在原材料不同的情况下,适用于具体快速成型技术的材料不同。
因此,在选材时,首先应考虑应用的快速成型技术。
2、考虑机械性能和化学性能。
材料的机械性能和化学性能是直接影响成型效率和质量的因素。
其中,机械性能受材料在力学中的表现影响,而化学性能则受其在化学中的表现影响。
FDM快速成型加工工艺问题研究一、引言FDM(Fused Deposition Modeling),即熔融沉积成型技术,是一种快速成型技术,其工艺流程主要是利用专用的3D打印机,通过计算机将设计好的三维模型切割成一层一层的二维截面,然后逐层堆叠打印材料,最终形成三维实体。
FDM技术在快速成型领域具有广泛的应用,但在实际生产过程中还存在一些问题,本文将对FDM快速成型加工工艺中的问题进行研究,以期能够提高FDM技术的应用效率和成型质量。
二、FDM快速成型加工工艺存在的问题1. 打印精度不高FDM技术在打印过程中容易受到热胀冷缩的影响,导致成品尺寸与设计尺寸存在差异,尤其在大型件的打印过程中更为明显,影响了产品的精度。
材料在堆叠成型中容易出现变形和翘曲现象,进一步影响了打印精度。
2. 表面质量不佳FDM技术在堆叠打印过程中,由于材料温度的影响和层与层之间的连接问题,导致成品表面存在明显的层状纹理和毛刺,降低了产品的外观质量。
3. 加工速度慢FDM技术在实际应用中,由于打印速度受到电机性能和材料熔化速度的限制,导致加工速度较慢,尤其在大型件的打印过程中更为明显,影响了生产效率。
4. 材料选择有限FDM技术在材料选择上存在一定的局限性,一方面受到打印机型号的限制,另一方面受到材料熔化温度的影响,导致无法满足一些特殊性能要求。
5. 设备和成本限制FDM技术的设备价格昂贵,同时耗材成本也相对较高,加之设备维护费用和操作成本,限制了FDM技术的大规模应用,影响了产业的发展。
三、针对FDM快速成型加工工艺问题的解决方法1. 提高打印精度针对FDM技术打印精度不高的问题,可以通过优化打印参数、提高材料的熔化温度和改善材料层间粘结等手段进行改进。
还可以引入先进的自动补偿技术和实时监测技术,提高成品的精度。
2. 改善表面质量针对FDM技术表面质量不佳的问题,可以通过优化打印路径、调整层厚和选择合适的材料等手段进行改进。
快速成型技术的特点“快速原型”(Rapid Prototyping)工艺于80年代后期在美国问世以来,引起了广泛的关注,吸引了大量的研究和开发工作。
目前,这类工艺在航空、航天器、军事装备、考古、工业造型、雕刻、电影制作、家用电器、玩具、轻工业产品、建筑模型、医疗器具以及人造器官制作等许多方面获得大量的应用。
世界各国拥有快速成形机的比例数四界各国拥有成形服务机构的比例数快速成形工艺的原意是用于快速生成尚在计算机中的零件设计的实物模型。
因此是一种“快速原型”技术,即所生成模型的形状和尺寸与所设计的零件十分贴近,但模型的材质和物理、力学性能却与真实的零件不尽相同或大不一样。
尽管如此,这类模型却有很重要用途:它可以用于检查零件设计的外观、可以用于检查零件的加工工艺性(便于装夹和刀具可接近被加工表面等)、装配工艺性(可装入性以及足够的扳手空间等),还可以直接用于风洞试验或光弹性试验以及动、静刚度的模型试验。
快速成形工艺的主要优点:1、适用于形状复杂零件的小批量快速制造,对于这类零件如果要按传统方法制造模具,不仅经济上不合算,而且工期太长;2、它适于新产品样件的低成本快速试制,以便尽快投入试运转、测试与进行改进设计,从而最大限度地缩短新产品的“开发—试制—投产”的周期,并提高其成功率。
快速成形将计算机中关于产品设计的信息转换成产品实物,是制造工艺的重要发展和重大突破。
对于模具制造业,无论从手段到观念都有深远的影响。
模具的设计与制造是多环节、多反复的复杂过程。
由于在实际制造和检测前,很难保证产品在成型过程中的性能,长期以来模具设计大都是凭经验或使用传统的CAD进行。
要设计和制造出一套适用的模具往往需要经过由设计、制造到试模、修模的多次反复,使模具制作的周期长、成本高,甚至可能造成报废,难以适应快速增长的市场需要。
快速原型制造技术不仅能适应各种生产类型特特别是单件小批的模具生产,而且能适应各种复杂程度的模具制造。