当前位置:文档之家› 滑阀式的工作原理

滑阀式的工作原理

滑阀式的工作原理

滑阀式是一种常用的控制元件,其工作原理是通过调节滑阀在阀芯和阀座之间的位置来控制流体的通断和流量。具体原理如下:

1. 结构组成:滑阀式由阀体、阀座和阀芯等组成。阀芯是可以在阀座上滑动的,通过滑动来改变阀口的开启大小。阀体和阀座之间有密封圈来确保密封性。

2. 控制流体通断:当阀芯完全关闭时,阀芯与阀座紧密贴合,阀口关闭,流体无法通过;当阀芯被抬起时,阀口逐渐打开,流体可以顺利通过。

3. 控制流体流量:通过改变阀芯的升降位置,可以调节阀口开启的大小,进而控制流体的流量。当阀芯离阀座较远时,阀口较大,流体可以以较大的流量通过;当阀芯接近阀座时,阀口较小,流体的流量减小。

4. 液压控制:滑阀式一般与液压控制系统结合使用。通过液压力来控制阀芯的升降,从而实现对流体的精准控制。液压控制系统通过改变液压力的大小和方向,使阀芯上下运动,从而实现流体的通断和流量调节。

5. 应用领域:滑阀式广泛应用于工业自动化控制系统中,常用于调节液体或气体的流量,以及控制液压元件的工作。同时,滑阀式还可用于安全阀、节流阀和方向控制阀等,以满足不同的工程需求。

伺服阀工作原理

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放 放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则 电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。

常用液压元件简介

常用液压元件简介(一) 一、方向控制阀 靠阀口的接通或断开来控制液流方向的元件称为方向阀,它主要有单向阀和换向阀两大类。 (一)、单向控制阀和液控单向阀 l、单向阀 是只准液流正向自由导通,而反向截止的阀。图2是力士乐公司的单向阀结构,阀体内装弹簧在常态时支持阀芯处于关闭位置,当有液流流过时,阀芯开启,其行程受挡铁限制。图3是其符号。对这种符号要很好地记住和理解,它不表示结构,只表示职能,这对于表示和了解液压系统是非常方便的。单向阀在液压系统中的应用是相当多的,一般在油泵出口处要加设一个单向阀,其作用是防止停泵时,压力油倒流,在维修泵时,防止管路中的油跑出。此外利用其反向截止作用,当两条油路需要隔离时,以防止干扰,就需要在两个油路之间设一单向阀。 阀的开启压力由弹簧力和阀芯有效面积决定。开启压力一般为0.5-4-4巴。 开启压力较小的阀可作为单向节流阀的闭锁元件。与回油滤油器相并连的单向阀,开启压力较大,一般为4巴。目的在于当滤油器阻塞时,单向阀作为旁通阀使用。 2、液控单向阀 液控单向阀具有单向阀的功能,即液流可以正向导通,反向截止,同时在必要时又可将其逆止作用解除,使液流可以反向通过,这样就给液压系统带来很多方便。

图4是力士乐公司的SV型液控单向阀的结构和符号。 这种阀无泄漏油口。由A口至B口油液始终可以流动。反方向上则导阀(2)和主阀(3)被弹簧(4)和系统压力压在阀座上。若X口供给压力油则控制活塞(5)被推向右。这时首先打开导阀(2),然后打开主阀(3)。于是油液先通过导阀,然后通过主阀。为了保证用控制活塞(5)能可靠地操纵阀芯动作,需要一定的最低控制压力。 图5是SL型液压控单向阀的结构和符号。这种阀在原理上,与SV型有相同的功能。不同之处在于增加了泄漏油口Y,这就可使控制活塞(5)的环形面积与A口隔离。A口来的油压只作用在控制活塞(5)的面积M上,从而有效地降低此条件下所需的控制压力。 液控单向阀具有良好的单向密封性能,常用于执行元件需要长时间保压,锁紧的情况下,也可用于防止油缸停止时下滑以及速度换接等回路中。图6是SV型液控单向阀应用示例。此图说明,SV型液控单向阀在反向开启时,A口必须是无压力的,如在A口有压力,此压力作用在控制活塞的环形面积上,将对X口的控制压力起反作用,使阀芯打不开。

各类真空泵工作原理

各类真空泵工作原理 罗茨真空泵(简称罗茨泵)是一种旋转式变容真空泵。它是由罗茨鼓风机演变而来的。根据罗茨真空泵工作范围的不同,又分为直排大气的低真空罗茨泵;中真空罗茨泵(又称机械增压泵)和高真空多级罗茨泵。一般来说,罗茨泵具有以下特点: 在较宽的压强范围内有较大的抽速; 起动快,能立即工作; 对被抽气体中含有的灰尘和水蒸气不敏感; 转子不必润滑,泵腔内无油; 振动小,转子动平衡条件较好,没有排气阀; 驱动功率小,机械摩擦损失小; 结构紧凑,占地面积小; 运转维护费用低。 因此,罗茨泵在冶金、石油化工、造纸、食品、电子工业部门得到广泛的应用。

罗茨泵的工作原理: 罗茨泵的结构如图所示。在泵腔内,有二个“8”字形的转子相互垂直地安装在一对平行轴上,由传动比为1的一对齿轮带动作彼此反向的同步旋转运动。在转子之间,转子与泵壳内壁之间,保持有一定的间隙,可以实现高转速运行。由于罗茨泵是一种无内压缩的真空泵,通常压缩比很低,故高、中真空泵需要前级泵。罗茨泵的极限真空除取决于泵本身结构和制造精度外,还取决于前级泵的极限真空。为了提高泵的极限真空度,可将罗茨泵串联使用。 罗茨泵的工作原理与罗茨鼓风机相似。由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间v0内,再经排气口排出。由于吸气后v0空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。但当转子顶部转过排气口边缘,v0空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返冲到空间v0中去,使气体压强突然增高。当转子继续转动时,气体排出泵外。 如图 罗茨泵转子由0°转到180°的抽气过程。在0°位置时(图中a); 下转子从泵入口封入v0体积的气体。当转到45°位置时(图中b); 该腔与排气口相通。由于排气侧压强较高,引起一部分气体返冲过来。当转到90°位置时(图中c); 下转子封入的气体,连同返冲的气体一起排向泵外。这时,上转子也从泵入口封入v0体积的气体。当转子继续转到135°时(图中d);上转子封入的气体与排气口相通,重复上述过程。180°(图e); 位置和0°位置是一样的。转子主轴旋转一周共排出四个v0体积的气体。 水环式真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限真空为2000~4000Pa,串联大气喷射器可达270~670Pa。水环式真空泵也可用作压缩机,称为水环式压缩机,是属于低压的压缩机,其压力范围为1~2×105Pa表压力。

汽车基础电路-旋转滑阀式怠速电机工作电路(第一遍)

旋转滑阀式怠速电机工作电路 一、可以满足的教学功能 本电路板模拟发动机控制模块根据各种工况信息控制旋转滑阀式怠速电机的控制过程,并在电路的所有元件平面布置在电路板上,通过该电路板的学习,可以: 1、掌握旋转滑阀式怠速电机工作电路的组成和工作原理; 2、掌握电路构成主要部件的作用和工作原理; 3、学会电路板工作性能的检测方法; 4、学会电路板常见故障的诊断和维修方法; 5、掌握万用表、数字存储示波器的使用方法。 二、电路板工作原理 电路原理图如下:

元器件参数表: 元件编号元件名称参数 R6、R7、R9、R10 电阻1K R4、R5 电阻470Ω R1、R2、R3、R8 电阻10K RT1、RT2 电位器器10K CT1、CT2 电解电容22uf CT3 电解电容10uf C1、C2 瓷片电容0.1uf D1、D2 二极管1N4007 Q3、Q4 场效应晶体管IRF540 Q1 集成稳压电源7805 Q2 三极管9013 U1 单片机STC12C5204AD U2、U3 光耦TLP521-1 S1、S2、S3 不自锁按键SW-PB S4 自锁按键SW-PB Y1 晶振4MHz C3,C4 电容10PF 本电路可以驱动两种旋转滑阀,一种是需要驱动两组线圈的旋转滑阀,另一种是只需要驱动一组线圈的旋转滑阀。本产品中配套的旋转滑阀只需要驱动一组线圈,因此元器件参数表中,带下划线的元器件在驱动配套的旋转滑阀时不起作用。同时,在实验中,需要用一根导线将旋转滑阀接口的A测量端子与GND测量端子相连。 在电路中,单片机(U1)模拟汽车中的发动机控制模块,产生控制旋转滑阀式怠速电机的工作的信号。发动机控制模块产生的方波信号,经过光耦U2将5V方波信号转化为12V方波信号,信号频率不变。12V的方波信号作用于场效应管IRF540,使场效应管处于不停的导通、断开状态,来控制旋转滑阀的开度。通过调节方波信号的占空比可调节旋转滑阀的开度。 在电路板中,开关S2、S3分别控制旋转滑阀开度的增大和减小,

气压控制换向阀工作原理

气压控制换向阀工作原理 1、气压控制换向阀 气压控制换向阀,是利用气体压力来使主阀芯运动而使气体改变流向的。按控制方式不同分为加压控制、卸压控制和差压控制三种。加压控制是指所加的控制信号压力是逐渐上升的.当气压增加到阀芯的动作压力时,主阀便换向;卸压控制是指所加的气控信号压力是减小的,当减小到某一压力值时,主阀换向;差压控制是使主阀芯在两端压力差的作用下换向。 气控换向阀按主阀结构不同,又可分为截止式和滑阀式两种主要形式。滑阀式气控换向阀的结构和工作原理与液动换向阀基本相同。在此主要介绍截止式换向阀。 2、先导式电磁换向阀 先导式电磁换向阀是由电磁铁首先控制气路,产生先导压力,再由先导压力去推动主阀阀芯,使其换向。适用于通径较大的场合。 先导式双电控二位四通电磁换向阀。它由先导阀(Dl、D2)和主阀组成。而主阀又包括阀体1和活塞组件2两部分。图示的是Dl、D2均处于断电的状态。电磁阀的动铁芯5、6处于关闭状态。当Dl通电、D2断电时,动铁芯5被吸起,由P口来的压缩空气经孔a(虚线)进入阀的f腔。并从密封塞4(单向阀)的四周唇边进入孔‘,并进入。广腔,推动活塞组件2下移,使P与A通,B经阀芯中心孔h与T通(排气)。A口有压缩空气输出的同时,有一部分压缩空气流入孔g,其中一路经节流孔d进入c腔使密封塞4下移封住排气孔b,另一路压缩空气进入f腔,作用在活塞组件2的上端。此时,即使Dl断电,活塞组件2也不会位即该阀具有记忆功能。 先导式双电控二位四通电磁换向阀当先导阀D2通电、Dl断电时,动铁芯6被吸起,c腔内的压缩空气经T1口排出。此时从P到A的压缩空气作用在大、小活塞上,因大、小

气动控制阀的定义,分类及工作原理详解

气动控制阀(Pneumatic control valves) 气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。气动控制阀的结构可分解成阀体(包含阀座和阀孔等)和阀心两部分,根据两者的相对位置,有常闭型和常开型两种。阀从结构上可以分为:截止式、滑柱式和滑板式三类阀。 一、气动控制阀的分类 气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。控制和调节压缩空气压力的元件称为压力控制阀。国内知名的生产厂家有上海权工阀门设备有限公司和湖南新兴水电设备有限公司。其公司是机械工业部、化工部、中国化工装备总公司定点管理生产企业。其产品在业内有一定的价格优势和技术优势 控制和调节压缩空气流量的元件称为流量控制阀。改变和控制气流流动方向的元件称为方向控制阀。 除上述三类控制阀外,还有能实现一定逻辑功能的逻辑元件,包括元件内部无可动部件的射流元件和有可动部件的气动逻辑元件。在结构原理上,逻辑元件基本上和方向控制阀相同,仅仅是体积和通径较小,一般用来实现信号的逻辑运算功能。近年来,随着气动元件的小型化以及PLC控制在气动系统中的大量应用,气动逻辑元件的应用范围正在逐渐减小。从控制方式来分,气动控制可分为断续控制和连续控制两类。在断续控制系统中,通常要用压力控制阀、流量控制阀和方向控制阀来实现程序动作;连续控制系统中,除了要用压力、流量控制阀外,还要采用伺服、比例控制阀等,以便对系统进行连续控制。气动控制阀分类如图4.1。 二、气动控制阀和液压阀的比较 (一) 使用的能源不同 气动元件和装置可采用空压站集中供气的方法,根据使用要求和控制点的不同来调节各自减压阀的工作压力。液压阀都设有回油管路,便于油箱收集用过的液压油。气动控制阀可以通过排气口直接把压缩空气向大气排放。 (二) 对泄漏的要求不同 液压阀对向外的泄漏要求严格,而对元件内部的少量泄漏却是允许的。对气动控制阀来说,除间隙密封的阀外,原则上不允许内部泄漏。气动阀的内部泄漏有导致事故的危险。 对气动管道来说,允许有少许泄漏;而液压管道的泄漏将造成系统压力下降和对环境的污染。 (三) 对润滑的要求不同 液压系统的工作介质为液压油,液压阀不存在对润滑的要求;气动系统的工作介质为空气,空气无润滑性,因此许多气动阀需要油雾润滑。阀的零件应选择不易受水腐蚀的材料,或者采取必要的防锈措施。 (四) 压力范围不同 气动阀的工作压力范围比液压阀低。气动阀的工作压力通常为10bar以内,少数可达到40bar 以内。但液压阀的工作压力都很高(通常在50Mpa以内)。若气动阀在超过最高容许压力下使用。往往会发生严重事故。 (五) 使用特点不同 一般气动阀比液压阀结构紧凑、重量轻,易于集成安装,阀的工作频率高、使用寿命长。气动阀正向低功率、小型化方向发展,已出现功率只有0.5W的低功率电磁阀。可与微机和PLC 可编程控制器直接连接,也可与电子器件一起安装在印刷线路板上,通过标准板接通气电回路,省却了大量配线,适用于气动工业机械手、复杂的生产制造装配线等场合。 三、气动控制阀的结构特性 气动控制阀的结构可分解成阀体(包含阀座和阀孔等)和阀心两部分,根据两者的相对位置,

奥迪轿车中螺旋滑阀式怠速控制系统课件当发动机电控单元ec控制

奥迪轿车中螺旋滑阀式怠速控制系统课件当发动机电控单元 ec控制 奥迪轿车中螺旋滑阀式怠速控制系统课件当发动机电控单元ECU控制的内容主要包括以下几个方面: 1. 怠速控制算法: - 根据传感器采集到的信息(如进气温度、氧气传感器信号、节气门位置等),ECU通过事先设定的怠速控制算法来确定 螺旋滑阀的开度,从而控制发动机的怠速。 - 根据不同的驾驶条件(如空调开关状态、油箱燃油量等),ECU也会根据相应的算法进行调整,以确保发动机的怠速稳 定在设定值范围内。 2. 怠速控制使用的传感器: - 进气温度传感器:用于测量进气温度,供ECU计算燃油喷 射量和调整怠速控制策略。 - 氧气传感器:用于监测排气的过多或过少氧气含量,以判 断发动机燃烧是否正常,供ECU根据需要调整怠速控制策略。 - 节气门位置传感器:用于监测节气门的开度,供ECU计算 燃油喷射量和调整怠速控制策略。 3. 怠速控制使用的执行器: - 螺旋滑阀:通过控制螺旋滑阀的开度大小,改变进气量, 从而调整发动机的怠速。 - 电机:驱动螺旋滑阀的开度调整,根据ECU的控制信号对 螺旋滑阀进行精确的控制。

4. 怠速控制系统的工作流程: - ECU不断采集传感器的数据,并进行处理。 - 根据采集到的数据,ECU通过怠速控制算法计算出螺旋滑阀的开度。 - ECU发送控制信号至电机,驱动螺旋滑阀调整开度。 - 发动机根据螺旋滑阀的开度调整进气量,从而控制发动机的怠速。 这些内容会在奥迪轿车中螺旋滑阀式怠速控制系统课件中被介绍和讲解。讲解的目的是使学员能够了解和掌握奥迪轿车中螺旋滑阀式怠速控制系统的原理和运行机制,从而在维修和故障诊断中能够准确判断和解决相关问题。

燃气比例阀工作原理

典型电气比例阀、伺服阀的工作原理 电气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电气比例阀和伺服阀主要由电机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号和位移反馈信号,得到两者的差植U 3)放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号和 电压差U 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压,控制放大 放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令>0,则电压差 U

相关主题
文本预览
相关文档 最新文档