当前位置:文档之家› 积分第一中值定理及其推广证明

积分第一中值定理及其推广证明

积分第一中值定理及其推广证明
积分第一中值定理及其推广证明

2.1积分第一中值定理证明 积分第一中值定理:

如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得

()()()(),()b

b

a

a

f x

g x dx f g x dx a b ξξ=≤≤?

?

成立。 证明如下:

由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有

()()()()mg x f x g x Mg x ≤≤

成立。对上式在闭区间[,]a b 上进行积分,可以得到

()()()()b

b

b

a

a

a

m g x dx f x g x dx M g x dx ≤≤???。

此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有

()()()b

b

a

a

f x

g x dx g x dx μ=?

?

成立。

由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到

()()()()b

b

a

a

f x

g x dx f g x dx ξ=?

?,

命题得证。

2.2积分第一中值定理的推广

定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数,

()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得

()()()(),(,)b

b

a

a

f x

g x dx f g x dx a b ξξ=∈?

?

成立。

推广的第一积分中值定理很重要,在这里给出两种证明方法。

证法1:由于函数()f x 在闭区间[,]a b 上是可积的,()g x 在[,]a b 上可积且不

变号,令()()()x

a

F x f t g t dt =?,()()x

a

G x g t dt =?,很显然(),()F x G x 在[,]a b 上连续。

并且()0,()()()b a

F a F b f t g t dt ==?,()0,()()b

a

G a G b g t dt ==?,()()()F f g ξξξ'=,

()()G g ξξ'= 。由柯西中值定理即可得到

()()()

,(,)()()()

F b F a F a b

G b G a G ξξξ'-=∈'-,

化简,即

()()()()

()

()b

a

b

a

f t

g t dt

f g g g t dt

ξξξ=

?

?,

根据上式我们很容易得出

()()()(),(,)b

b

a

a

f t

g t dt f g t dt a b ξξ=∈?

?,

命题得证。

证法2:由于函数()g x 在[,]a b 上可积且不变号,我们不妨假设()0g x ≥。而函数()f x 在闭区间[,]

a b 上可积,我们令{}inf ()|[,]m f x x a b =∈,{}sup ()|[,]M f x x a b =∈。假设()F x 是()f x 在闭区间[,]a b 上的一个原函数,即

()(),[,]F x f x x a b '=∈。我们就可以得到下面等式

()()()()b

b

b

a

a

a

m g x dx f x g x dx M g x dx ≤≤???(2.2.1)

此时由于()0g x ≥,则会有()0b

a

g x dx ≥?,由于存在两种可能性,那么下面我们

就要分两种情况以下我们分两种情形来进行讨论:

(1).如果()0b

a

g x dx =?,由等式(2.2.1)可得出()()0b

a

f x

g x dx =?,那么对

于(,)a b ξ?∈ 都有

()()0()()b

b

a

a

f x

g x dx f g x dx ξ==?

?

恒成立。

(2).如果()0b a

g x dx >?,将(2.2.1)除以()b

a

g x dx ?可得

()()()b

a

b

a

f x

g x dx

m M g x dx

≤??

,(2.2.2)

我们记

()()()b

a

b

a

f x

g x dx

g x dx

μ=

??

,(2.2.3)

此时我们又分两种情形继续进行讨论:

(Ⅰ)如果(2.2.2)式中的等号不成立,即有()()()b

a

b

a

f x

g x dx

m M g x dx

<

成立,

则此时一定就存在m M μ<<,可以使得

12(),()m f x f x M μμ<≤<≤,

我们不妨假设12x x <,这其中12,[,]x x a b ∈。因为()()F x f x '=,[,]x a b ∈,则会有

1122()()()()F x f x f x F x μ''=<<=。

此时至少存在一点12(,)x x ξ∈,使得()()F f ξξμ'==,即有

12()()()(),(,)[,]b

b

a

a

f x

g x dx f g x dx x x a b ξξ=?∈∈?

?

成立,从而结论成立。

(Ⅱ)如果(2.2.2)式中仅有一个等号成立时,我们不妨假设M μ=,因为()0b

a g x dx >?,此时一定存在区间11[,](,)a

b a b ∈(其中11a b <),使得11[,]x a b ?∈,

恒有()0g x >成立,我们可以将(2.2.3)式进行简化

()()()b b

a

a

g x dx f x g x dx μ?=??,

因为M μ=,则有

[()]()0b

a

M f x g x dx -=?

(2.2.4)

而且我们已知[()]()0M f x g x -≥,则

1

1

0[()]()[()]0x b

y a

M f x g x dx M f x dx ≤-≤-=??。

于是

1

1

[()]()0x y M f x g x dx -=?

(2.2.5)

在式子(2.2.5)下必定存在11[,](,)a b a b ξ∈?,使得()f M ξμ==。

如果不存在一个11[,](,)a b a b ξ∈?,使得()f M ξμ==,则在闭区间11[,]x y 上必定有()0M f x ->及()0g x >成立,从而使得[()]()0M f x g x ->。

如果1

1[()]()0b a M f x g x dx -=?,由达布定理在11[,]a b 上有[()]()0M f x g x -,

这与[()]()0M f x g x ->矛盾。

如果 1

1[()]()0b a M f x g x dx ->?,这与(2.2.5)式矛盾。所以存在[,]a b ξ∈,

使()()()(),(,)b b

a

a

f x

g x dx f g x dx a b ξξ=∈??,定理证毕。

积分中值定理的推广与应用

积分中值定理的推广与应用 系别数学系 专业数学与应用数学姓名韩凤 指导教师张润玲 职称副教授 日期2011年6月

国内图书分类号: 吕梁学院本科毕业论文(设计) 积分中值定理的推广与应用 姓名韩凤 系别数学系 专业数学与应用数学 申请学位学士学位 指导教师张润玲 职称副教授 日期2011年6月

摘要 在微积分学中积分中值定理与微分中值定理一样有着重要的地位.微积分的许多问题和不等式的证明都以它为依据,积分中值定理在证明有关中值问题时具有极其重要的作用.它是《数学分析》、《高等数学》课程中定积分部分的基本定理之一.众所周知积分中值定理包括积分第一中值定理与积分第二中值定理,而在数学分析课本上已有过这两个定理的详细证明,但这两个定理的推广与应用尚未提及.因此,在教学过程中,学在运用这一知识点解决有关的数学问题比较困难,常常不知如何下手,本文主要讲述的是积分第一中值定理的各种形式的推广以及通过以下几方面的列举例题,加以归纳总结,并充分体现积分中值定理在学习解题练习中的应用. 关键词:积分中值定理;推广;应用

ABSTRACT The integral median value theorem and differential median value theorem has the same important position in the questions and the proof of the inequality are all based on the integral theorem,the integral median theorem has played an important role in solving the problems about is one of the basic theorems in the definite integral part of“the mathematical analysis”and“the higher mathematics”.Well-known that the integral median theorem include the first median theorem for integrals and the second median theorem for integrals and the textbooks of the mathematical analysis have the detailed proof about the two theorems,but the popularization and application of the two theorems have not been addressed .Therefore,it is difficult when students use this knowledge to solve the related problems during the process of article mainly introduce various popularization of the first median theorem for integrals and giving some example through the following aspects,and giving some summary,strive to reflect the application of integral median value theorem in studying the way which can slove the ploblems. Keywords:Integral median value theorem; Promotion; Applications.

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

第二积分中值定理

第二积分中值定理 若函数()f x 在区间[,]a b 上连续,而()p x 是区间[,]a b 上的单调有界函数,则有点()c a c b ≤≤,使 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? 其中()lim ()x a p a p x + +→=【右极限】,()lim ()x b p b p x --→=【左极限】。特别,若()0p a +=,则 ()()d () ()d b b a c p x f x x p b f x x - =? ? ()a c b ≤≤ 证明前的说明:()p x 是单调有界函数,所以它是可积的,而()()p x f x 作为可积函数的乘积也是可积的。其次,在下面的证明中, ①不妨认为()0p a +=,否则,令()()()q x p x p a +=-,则()0q a +=,于是由 ()()d () ()d b b a c q x f x x q b f x x - =? ? 即 [()()]()d [()()]()d b b a c p x p a f x x p b p a f x x + - + -=-?? ,可得一般情形 ()()d () ()d () ()d b c b a a c p x f x x p a f x x p b f x x + - =+? ? ? ②不妨认为()p x 是单调增加函数,因为若()p x 是单调减小函数,就用[()]p x -替换()p x 。 证 首先划分区间[,]a b ,即 01211i i n n a x x x x x x x b --=<<< <<<<<= 而在每一个小区间1[,]i i x x -上,都存在点1(,)i i i x x ξ-∈,使 1 1()d ()()i i x i i i x f x x f x x ξ--=-? 【第一积分中值定理】 于是,1 1() ()d ()()()i i x i i i i i x p f x x p f x x ξξξ--=-? ,求和得 1 11 1 ()()d ()()()i i n n x i i i i i x i i p f x x p f x x ξξξ--=== -∑∑? (※) 现在,将左端做变换,即 1 11 1 ()()d ()()d ()d i i i i n n x b b i i x x x i i p f x x p f x x f x x --==?? =-??????∑∑ ? ?? ξξ 1 11 2 () ()d ()()()d i n b b i i a x i p f x x p p f x x ξξξ--=??=+ -??∑? ? 因为()p x 是单调增加函数且()()0p x p a +≥=,所以11()0,()()0i i p p p ξξξ-≥-≥;再用m 和

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

积分第二中值定理证明

这个定理的推导比较复杂,牵扯到积分上限函数:Φ(x) = ∫f(t)dt(上限为自变量x,下限为常数a)。以下用∫f(x)dx表示从a到b的定积分。 首先需要证明,若函数f(x)在[a,b]内可积分,则Φ(x)在此区间内为一连续函数。 证明:给x一任意增量Δx,当x+Δx在区间[a,b]内时,可以得到 Φ(x+Δx) = ∫f(t)dt = ∫f(t)dt + ∫f(t)dt = Φ(x) + ∫f(t)dt 即 Φ(x+Δx) - Φ(x) = ∫f(t)dt 应用积分中值定理,可以得到 Φ(x+Δx) - Φ(x) = μΔx 其中m<=μ<=M,m、M分别为f(x)在[x,x+Δx]上的最小值和最大值,则当Δx->0 时,Φ(x+Δx) - Φ(x)->0,即 lim Φ(x+Δx) - Φ(x) = 0(当Δx->0) 因此Φ(x)为连续函数 其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为 Φ'(x) = f(x) 证明:由以上结论可以得到,对于任意的ε>0,总存在一个δ>0,使|Δx|<δ时,对于一切的t属于[x,x+Δx],|f(t)-f(x)|<ε恒成立(根据函数连续的ε-δ定义得到),得f(x)-ε0时, Φ'(x) = lim [Φ(x+Δx) - Φ(x)]/Δx = lim μ = f(x) 命题得证。 由以上可得,Φ(x)就是f(x)的一个原函数。设F(x)为f(x)的任意一个原函数,得到 Φ(x)=F(x)+C 当x=a时,Φ(a)=0(由定义可以得到),此时 Φ(a)=0=F(a)+C 即C=-F(a) 得到 Φ(x)=F(x)-F(a) 则当x=b时,Φ(b)=∫f(x)dx,得到 Φ(b)=∫f(x)dx = F(b)-F(a)

高等数学-中值定理证明

第三章中值定理证明

1.闭区间上连续函数定理① ② ③ ④ 2.微分中值定理 ① ② ③ ④ 3.积分中值定理 ① ② 不等式证明思路 ①构造函数(利用极值) ②拉格朗日中值定理 ③函数凹凸性定义

1.若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0 f f ξλξ'+=2.设,0a b >,证明:(,)a b ξ?∈,使得(1)() b a ae be e a b ξξ-=--3.设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1)内至少存在一点ξ,使得:()0 F ξ''=4.设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+.

5.若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

(新)积分第一中值定理及其推广证明

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数, ()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

推广的积分中值定理及其应用

推广的积分中值定理及其应用 摘要:定积分是微积分的重要组成部分,而积分中值定理是定积分的重要性质之一,所以积分中值定理在微积分中占了很重要的地位,本文系统的叙述了推广的积分中值定理包括:ξ必可以在开区间中取得,导函数的积分中值定理等多个方面,我们所学知识中积分中值定理与微分中值定理的中间点的存在区间是不统一的,但推广后的积分中值定理能够与微分中值定理的存在区间从形式上统一起来,使与其相关的理论得以联系和应用.同时,在本篇论文中以实例的形式列举了推广的积分中值定理在确定零点分布、证明积分不等式、求极限等方面的应用,显然,推广的积分中值定理的优点就在于此,它可以解决原积分中值定理无法解决的问题,这表明了积分中值定理在推广后更具有应用性. 关键词:积分中值定理;导函数;微分中值定理 Promotion of Integral Mean Value Theorem and Its Application Abstract:Definite integral is an important component of calculus, the mean value theorem is one of the important properties of the definite integral, so integral mean value theorem in calculus plays a very important position .This paper describes the system to promote the integral mean value theorem, including: ξwill be achieved in the open interval ,of the derivatives and other integral mean value theorem, we have the knowledge of the differential mean value theorem and the Intermediate Value Theorem Existence interval is not uniform, but after the promotion of integral mean value theorem and the Mean Value Theorem to the presence of range from the formal unity, so that contact can be associated with the theory and application. Meanwhile, in this paper an example to cite a form of integral mean value theorem in determining the zeros to prove inequality, such as the application of limit, obviously, to promote the advantages of integral mean value theorem in this, it Can solve the original integral mean value theorem can not solve the problem, suggesting that the integral mean value theorem in the promotion of a more applied after. Keywords: Integral mean value theorem, derivative, mean value theorem

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理?错误!未定义书签。 1.1 微分中值定理?错误!未定义书签。 1.2 积分中值定理?错误!未定义书签。 2 微积分中值定理的应用 ...................... 错误!未定义书签。 4.1 证明方程根(零点)的存在性?错误!未定义书签。 4.2 进行估值运算?错误!未定义书签。 4.3 证明函数的单调性?错误!未定义书签。 4.4 求极限?8 4.5 证明不等式?错误!未定义书签。 引言? Ro lle 定理,La grange 中值定理,Cauch y中值定理统称为微分中值定理。微 分中值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(R oll e)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a ,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagr an ge)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b)上可导;

则在(a,b)内至少存在一点ξ,使得 a b a f b f f --=') ()()(ξ. 柯西中值定理: 设函数f 和g 满足 (ⅰ)在[a,b]上都连续; (ⅱ)在(a,b)内都可导; (ⅲ))('x f 和)('x g 不同时为零; (ⅳ))()(b g x g ≠, 则存在),(b a ∈ξ,使得 )()() ()()()(a g b g a f b f g f --= ''ξξ. 微分中值定理的推广 罗尔定理的推广 定理1: 设函数)(x f 在(a,b)内可导,且有 )()(lim )0()0()(lim ∞-∞+==-=+=-+ →→或为有限值或A A x f b f a f x f b x a x ,则存在点 ),(b a ∈ξ,使得0)(='ξf . 证明:首先对A 为有限值进行论证: 令? ? ?==∈=b x a x A b a x x f x F 或,),(),()( 则易知函数)(x f 在[a,b]上连续,在(a,b )内可导且)()(b F a F =.由Ro lle 定理可知,在(a,b)内至少存在一点ξ,使得0)(='ξF ,而在(a,b)内有)()(x f x F '=',所以0)(='ξf . 其次对A=∞+(∞-)进行论证: 由引理1,)(x f 在(a,b )内能取得最小值(最大值).不妨设:函数)(x f 在),(b a ∈ξ处取得最小值(最大值).此时函数)(x f 在),(b a ∈ξ处也就取得极小值(极大值).又因为)(x f 在),(b a ∈ξ处可导,由Fer mat 引理,可得0)(='ξf . 综上所述,从而定理得证. 定理2: 设函数)(x f 在(a,∞+),内可导,且)(lim )(lim x f x f x a x +∞ →→=+,证明:在(a ,∞+) 中存在一点ξ,使得0)(='ξf . 定理3: 设函数)(x f 在(∞-,b),内可导,且)(lim )(lim x f x f b x x -→-∞ →=,证明:在(∞-,b)

积分第一中值定理及其推广证明备课讲稿

2.1积分第一中值定理证明 积分第一中值定理: 如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在闭区间[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得 ()()()(),()b b a a f x g x dx f g x dx a b ξξ=≤≤? ? 成立。 证明如下: 由于()g x 在闭区间[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在闭区间[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,我们将不等式两边同乘以()g x 可以推出,此时对于任意的[,]x a b ∈都会有 ()()()()mg x f x g x Mg x ≤≤ 成立。对上式在闭区间[,]a b 上进行积分,可以得到 ()()()()b b b a a a m g x dx f x g x dx M g x dx ≤≤???。 此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有 ()()()b b a a f x g x dx g x dx μ=? ? 成立。 由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立。此时即可得到 ()()()()b b a a f x g x dx f g x dx ξ=? ?, 命题得证。 2.2积分第一中值定理的推广 定理:(推广的第一积分中值定理)若函数()f x 是闭区间[,]a b 上为可积函数,()g x 在[,]a b 上可积且不变号,那么在开区间(,)a b 上至少存在一点ξ,使得 ()()()(),(,)b b a a f x g x dx f g x dx a b ξξ=∈? ?

积分第二中值定理的证明

上一篇文章讲了积分第一中值定理的证明,并给出了积分第一中值定理更一般的形式,这篇主要讲积分第二中值定理的证明。 积分第二中值定理: ()f x 在区间[,]a b 上可积,()x ?在区间[,]a b 上单调,那么在[,] a b 上存在内点ξ,使得: ()()(0)()(0)()b b a a f x x dx a f x dx b f x dx ξξ ???=++-? ?? 特别的,当()x ?在区间[,]a b 两端连续时,有 ()()()()()()b b a a f x x dx a f x dx b f x dx ξ ξ ???=+? ? ? 积分第二中值定理是一个更为精确的分析工具,在证明这个定理之前,先介绍Abel 引理。 Abel 引理:数列{}n a 和{}n b ,对于任意的2 10 n n >>,有 2 2 22111 1 1111()()n n n n n n n n n n n n n n n n a b b b a a a b a b -++-==-= -+-∑∑ 实际上: 2 1111112221 1111111122222 1111111122111111111211111121()()()...() ()()...()()()...(n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n a b b a b b a b b a b b a b b a a b a a b a a a b a b b a a b a a b a --++-=-++++---++++---=-+-++-=-+-+-++-+=-+-+-++∑222222 2 22111 111111 )()()n n n n n n n n n n n n n n n n a b a a a b b a a a b a b ++++-=-+-+-+-∑ 下面给出Abel 引理的一个理解方式,便于记忆。众所周知,积分与求和,微分与差分有许多相似之处,一个是对连续函数而言,一

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

微分中值定理的证明题[1](1)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 证:构造函数()()x F x f x e λ=,则()F x 在[,]a b 上连续,在(,)a b 内可导, 且()()0F a F b ==,由罗尔中值定理知:,)a b ξ?∈ (,使()0F ξ'= 即:[()()]0f f e λξξλξ'+=,而0e λξ≠,故()()0f f ξλξ'+=。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 证:将上等式变形得:1111 111111 (1)()b a e e e b a b a ξξ-=-- 作辅助函数1 ()x f x xe =,则()f x 在11[,]b a 上连续,在11 (,)b a 内可导, 由拉格朗日定理得: 11()()1()11f f b a f b a ξ-'=- 1ξ11(,)b a ∈ , 即 1111(1)11b a e e b a e b a ξξ-=-- 1ξ11(,)b a ∈ , 即: )()1(b a e be ae a b --=-ξξ (,)a b ξ∈。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证:显然()F x 在[0,1]上连续,在(0,1)内可导,又(0)(1)0F F ==,故由罗尔定理知:0(0,1)x ?∈,使得0()0F x '= 又2()2()()F x xf x x f x ''=+,故(0)0F '=, 于是()F x '在0[0]x ,上满足罗尔定理条件,故存在0(0,)x ξ∈, 使得:()0F ξ''=,而0(0,)x ξ∈?(0,1),即证

对积分中值定理的一点思考

对于积分中值定理的一点思考 摘要 积分中值定理是高等数学中重要的一部分,中值定理是人们认识高等数学世界、解决数 学问题的重要武器,本文在数学分析教材中第一积分中值定理的条件下,证明了介值点ξ必可在开区间 ),(b a 内取得,并且给出几分中值定理及其推广的一些应用. 关键词 积分中值定理 积分中值定理应用 积分中值定理的推广 第一积分中值定理 极限 一 引言 推广的积分第一中值定理: 若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在[a, b]上至少存在一点ξ使得 ??=b a b a x d x g f x d x g x f )()()()()()(ξ (1) 推广的积分中值定理可改进如下: 定理1:若函数f(x)与g(x)在闭区间[a, b]上连续,且g(x)在[a, b]上不变号,则在) ,(b a 上至少存在一点ξ使得??=b a b a x d x g f x d x g x f )()()()()()(ξ。 对其证明如下: 因为)(x f 在],[b a 上连续,故)(x f 在],[b a 上存在最大值和最小值,不妨分别设为M 和m,即M x f m ≤≤)(,则必存在x x x x b a 2 1 2 1 ],,[,<∈,使m f x =)(1 ,M f x =)(2 , 又因为 )(x g 在],[b a 上不变号,不妨设0)(≥x g ,则?≥b a dx x g 0)(, 且有)()()()(x Mg x g x f x mg ≤≤,又)(x f 和)(x g 都在],[b a 可积,则)()(x g x f 在] ,[b a 也可积,从而有 ???≤≤ b a b a b a dx x g M dx x g x f dx x g m )()()()( (2)

拉格朗日中值定理证明中辅助函数构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

相关主题
文本预览
相关文档 最新文档