当前位置:文档之家› 数学分析第一积分中值定理与微积分学基本定理

数学分析第一积分中值定理与微积分学基本定理

数学分析第一积分中值定理与微积分学基本定理
数学分析第一积分中值定理与微积分学基本定理

牡丹江师范学院教案

学院系别:理学院教师姓名:许宏文授课时间:2014年5月29日

系主任年月日

数学分析教学现状调查与分析

作为学院院级精品课程,我们以素质教育观为指导思想,对数学分析教学现状进行了调查与研究.调查地目标是教学内容、教学方法和手段.调查地方式有:.在全省范围内向师范院校毕业地中学数学分析教师发出问卷(以下简称卷Ⅰ),(回收份);.向学院在职与退休地数学分析教师发出问卷(以下简称卷Ⅱ),(回收份);.对在职和退休地数学分析教师是行访谈;.召开在校学生座谈会;.查阅部分学校地数学分析教学档案.现梳理出调查结果并作出分析.数学分析在数学教育专业中所处地地位 教学管理机构,院、系对数学分析课地重视程度. 数学分析地形成发展有着悠久地历史,它地内容丰富、诚厚,很多数学分支是由它派生地.也有很多数学分支要以它为思想、知识、方法地基础,同时它还直接或间接地应用于自然、人文、社会科学地诸多方面.无论是哪方面地现代人才,都必须掌握足够地数学分析知识.对此,我省有关教学管理机构,各学院地院、系两级认识深刻、清楚,在学院数学教育专业地课程体系中始终把数学分析课放在“基础、主干”地地位.个人收集整理勿做商业用途 第一,保证了课时.各校给数学分析地排课都是三,四学期课时以上.年全省各校为拓宽专业口径,压缩了专业课,甚至提出淡化专业课地口号,但各校均未减少数学分析地课时.个人收集整理勿做商业用途 第二,在恢复高考招生制度后,全省高师系统首次组织地统考,就是对数学分析地统考.年省教委又组织了部分院校为数学分析摸底考试而命题.个人收集整理勿做商业用途 第三,各校都重视数学分析课地课程建设.象咸阳师院、渭南师院、安康学院都把数学分析定为校级重点建设课程.个人收集整理勿做商业用途 学生心目中地数学分析 卷Ⅰ题地统计结果是:有地人在校学习期间对数学分析课最感兴趣;地人对数学分析学习投入地精力最大;地人认为毕业后仍留下深刻影响地课是数学分析课.但只有地人将该课列为对中学数学教学作用最大地课.个人收集整理勿做商业用途 教学内容现状及分析 教学文件 2.1.1教学大纲 年原教育部委托部分院校编过一部数学分析教学大纲,其内容扎实、结构严谨.它是此后近二十年各师专数学教育专业选择教材、编写讲义、命题考试地主要依据,其作用不可低估.但用现在地眼光看,不对其“革新”就不能适应发展地教育形势,在幅员辽阅地国土上,各地经济、文化发展不平衡,生源素质不一,办学特色不同,用一个大纲覆盖万平方米是不现实地.再之,年地大纲没用具体地教学要求.仅列教学目录,不便操作.这部大纲看不出师范特点,也没能考虑专科生地接受能力,盲目向本科看齐,这个大纲是不能进入世纪地.此后,原国家教委及现教育部都从未颁过统一地数学分析教学大纲,师专数学分析教学内容地遴选无“法”学可依由来已久.年调整教学计划后,各校都自行编写了数学分析教学大纲,以教学内容地遴选、组织起到了一定地规范作用.个人收集整理勿做商业用途 2.1.2原国家教委年地“教学方案” 年原国家教委颁发了《高等师范专科研教育二、三年制教学方案》.随后陕西省教委通知各师专自级执行这一方案.这是一次力度较大地改革.其中学科必修课改革力度最大,表现在课程门类地精减和课时地压缩上,这个方案没有配置相应地大纲,只有一个学科必修课地“课程设置说明”,各科地说明都很原则.对数学分析地“说明”列举有内容要点及课程设置目地.它指出:“设置课程地目地是使学生系统地掌握数学分析地基本理论、基础知识、能熟练地进行基本运算,具有较强地分析论证能力,能深入分析和处理中学数学教材,具备一定地解决实际问题地能力,办学习后继课程打下基础”.这是适应时代要求地.“方案”不配大纲,我们要作积极地理解,这本身就是改革,是在统一目地、统一要求地前提下,充分发挥各院校在

数值分析公式、定理等

第一章 绪论 1. *x = n 21k a a a .010?±,如果|*x -x|≤0.5n k 10-?(这里n 是使此式成立的最大正整数),则称*x 为x 的具有n 位有效数字的近似值。 2.定理:设x 的近似值*x 有(1-1)的表示式: (1)如果*x 有n 位有效数字,则 n 11 10a 21|x ||x x |-**?≤ - (2)如果n 1110) 1a (21 | x ||x x |-* *?+≤ -,则*x 至少有n 位有效数字。 第二章 非线性方程根求解 1. (零点存在定理)如果f(x)在[a,b]上连续,使f(a)?f(b)<0,则必存在α∈(a,b),使f(α)=0。 2.二分法的误差: |1 k 1k k k 2a b |x x ||x x +-*-=-≤- 3. 局部收敛性:设α是f(x)=0的根,若存在α的一个邻域?,当迭代初值属于?时,迭代法得到的序列{k x }收敛到α,则称该迭代法关于根α具有局部收敛性。 4. 收敛速度:设i x 为第i 次迭代值,α是f(x)=0的根,令α-=εi i x ,且假设迭代收敛,即α=∞ →i i x lim 。若存在实数P ≥1,使 c | |||lim p i 1i i =εε+∞ →≠0 ,则称此方法关于根α具有P 阶收敛速度。C 称为渐近误差常数,渐近误差常数C 与f(x)有关。C ≠0保证了P 的唯一性。对于特殊的函数,C 可能为零,此时,由这个函数针对此方法迭代产生的序列收敛得更快。一般情况下,P 越大,收敛就越快。当P=1时,我们称为线性收敛。P>1,称为超线性收敛。P=2,称为平方收敛。 5.牛顿迭代法:) x (f ) x (f x x k k k 1k '- =+ 定理3:如果方程f(x)=0的根α是单根,且在α的某领域内f(x)具有二阶的连续导数,则Newton 迭代法必是局部收敛的 且 ) (f 2)(f lim 2i 1 i i α'α''- =εε+∞ →(即具有二阶收敛速度) 定理4:如果α是方程f(x)=0的r 重根(r>1),且f(x)在α的某邻域内具有r 阶连续导数,则Newton 法具有局部收敛性,且具有线性收敛速度。 定理5:如果α是方程f(x)=0的r 重根(r>1),且f(x)在α的某邻域内具有r+2阶连续导数,则修正Newton 迭代公式:)x ()x (f r x x i i i 1i '?-=+,具有局部收敛性,且具有二阶收敛速度。

关于实数完备性的基本定理

第七章 实数的完备性 §1 关于实数完备性的基本定理 1. 验证数集? ?? ? ??+-n n 1) 1(有且只有两个聚点11 -=ξ 和12 =ξ. 分析:根据聚点定义2'',分别找各项互异的收敛数列 {}n x ,{}n y ?? ?? ? ??+-n n 1) 1(,使其极限分别为-1和1.再由聚点定义2,用反证法,对1,±≠∈?a R a ,关键在找存在ε,使U(ε,a )内含有? ????? + -n n 1)1(中有限多个点. 解:记()()() 2,11 211,2111 22=-= -=+ -=-n n y n x n n n n 则 {}n x ,{} n y ? ? ?? ? ??+-n n 1)1(,且1lim ,1lim -==∞ →∞→n n n n y x .由定义2''知, 1,121=-=ξξ为???? ?? +-n n 1)1(的两个聚点. 对1,±≠∈?a R a ,则取{}1 ,1min 2 1 0+-=a a ε, ? ?? ??? + -n n 1)1(落在U(0,εa )内部至多只有有限点, 则α不是其聚点. 2.证明 任何有限数集都没有聚点. 分析:由聚点定义2即可证明.

证明:由定义2知,聚点的任何邻域内都含有数集的无穷多个点,而对于有限数集,不可能满足此定义,因此,任何有限数集都没有聚点。 3.设{}),(n n b a 是一个严格开区间套,即满足 ,1221b b b a a a n n <<<<<<< 且0)(lim =-∞ →n n n a b .证明:存在唯一的一点 ξ,使),2,1( =<

实数的基本定理

第三章 关于实数的基本定理及闭区间上连续函数性质的证明 六个基本定理: 1实数戴德德公理 确界原理 2数列的单调有界定理 3区间套定理 4聚点定理 致密性定理 5数列柯西收敛准则 6有限覆盖定理 定理(确界原理) 设S 为非空数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界. 定理 单调有界数列必收敛. 证明 不妨设{}n a 为有上界的递增数列.由确界原理,数列{}n a 有上确界,记{}n a a sup =.下面证明a 就是{}n a 的极限. 事实上,任给0>ε,按上确界的定义,存在数列{}n a 中某一项N a ,使得N a a ε-<.又由{}n a 的递增性,当N n ≥时有 n N a a a <<-ε. 另一方面,由于a 是{}n a 的一个上界,故对一切n a 都有ε+<≤a a a n .所以当N n ≥时有 εε+<<-a a a n , 即a a n n =∞ →lim .同理可证有下界的递增数列必有极限,且其极限即为它的下确界. (区间套定理) 若[]{}n n b a ,是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[]n n b a ,, ,2,1=n ,即 ξ≤n a n b ≤, .,2,1 =n (2) 证 由(1)式,{}n a 为递增有界数列,依单调有界定理,{}n a 有极限ξ,且有 .,2,1, =≤n a n ξ (3) 同理,递减有界数列{}n b 也有极限,并按区间套的条件(??)有 ξ==∞ →∞ →n n n n a b lim lim , (4) 且 .,2,1, =≥n b n ξ (5) 联合(3)、(5)即得(2)式。 最后证明满足(2)的ξ是唯一的。设数ξ'也满足 ,,2,1, =≤'≤n b a n n ξ

微分学的基本定理

微分学的基本定理 【费马(Fermat)定理】 若(i)函数)(x f 在0x 点得某一邻域),(0δx O 内有定义,并且在此邻域内恒有 )(x f )(0x f ≤, 或者)(x f )(0x f ≥; (ii)函数)(x f 在0x 点可导, 则有 0)(0='x f 证明我们对)(x f 的情形给出假设证明.由于假设)(0x f '存在,按定义,也就是 +'f (0x )=-'f (0x )=f '(0x ), 另一方面,由于)(x f )(0x f ≤,所以对(δ+00,x x )内的各点x ,有 ≤--0 0)()(x f x f 0;而对(00,x x δ-)内的各点x ,有 0)()(0 0≥--x f x f .再由极限性质得 )(0x f '=+'f (0x )=lim 0+→o x x ≤--00)()(x x x f x f 0,)(0x f '=-'f (0x )=lim 0 -→o x x 0)()(00≥--x x x f x f .而)(0x f '是一个定数,因此它必须等于零,即)(0x f '=0. 对于)(x f )(0x f ≥的情形,也可相仿证明. 这个定理的几何意义是:如果曲线)(x f y =在0x 点具有极大值(也就是函数)(x f 在0x 点的值不小于)(x f 在0x 点近旁的其他点上的值)或者曲线)(x f y =在0x 点具有极小值(也就是函数)(x f 在0x 点的值不大于)(x f 在0x 点近旁的其他点上的值),并且曲线

)(x f y =在0x 点具有切线l ,那么,费马定理就表明了切线l 必为水平线. 【拉格朗日(Lagrange)中值定理】 这个定理也称为微分学的中值定理,它是微分学中的一个很重要的定理. 若函数)(x f 满足 (i) 在[]b a ,连续;(ii)在(b a ,)可导, 则在(b a ,)内至少存在一点ξ,使 )(ξf '=a b a f b f --)()(.这个定理从几何图形上看是很明显的.画出[]b a ,上的一条曲线)(x f y =,连接A,B 两点,作弦AB,它的斜率是 = ?tan a b a f b f --)()(.下面对此定理给以证明. 证明不妨假设)(x f 在[]b a ,上不恒为常数.因为如果)(x f 恒为常数,则0)(='x f 在(b a ,)上处处成立,这时定理的结论是明显的. 由于)(x f 在[]b a ,连续,由闭区间连续函数的性质,)(x f 必在[]b a ,上达到其最大值M 和最小值m,我们分两种情形来证明. (1)考虑特殊情形,)()(b f a f =.由于)(x f 不恒为常数,所以此时必有M >m,且M 和m 中至少有一个不等式.这时根据闭区间上连续函数的性质,在(b a ,)内至少有一点ξ,使得))(()(m f M f ==ξξ或者,于是对(b a ,)内任一点x ,必有 )) ()()(()(ξξf x f f x f ≥≤或于是由费马定理,即得 0)(='ξf . 而此时0)()(=-a f b f ,这就证明了定理成立. 对于这样特殊情况的中值定理,也叫【罗尔(Rolle)定理】. (2)考虑一般情形,)()(b f a f ≠.此时,作辅助函数[] 1

数学分析课本-习题及答案01

第一章 实数集与函数 习题 §1实数 1、 设a 为有理数,x 为无理数。证明: (1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。 2、 试在数轴上表示出下列不等式的解: (1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。 3、 设a 、b ∈R 。证明:若对任何正数ε有|a-b|<ε,则a = b 。 4、 设x ≠0,证明|x+x 1|≥2,并说明其中等号何时成立。 5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。 6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。证明 |22b a +-22c a +|≤|b-c|。 你能说明此不等式的几何意义吗 7、 设x>0,b>0,a ≠b 。证明x b x a ++介于1与b a 之间。 8、 设p 为正整数。证明:若p 不是完全平方数,则p 是无理数。 9、 设a 、b 为给定实数。试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|0(a ,b ,c 为常数,且a

数学分析定义、定理、推理一览表

定义1 给定两个非负实数 其中00,a b 为非负整数,(),1,2,k k a b k =L 为整数,若有 则称x 与y 相等,记为x y =. 定义2 定义3 绝对值得一些性质 定义4 区间和邻域 定义5 有界的定义 定义6 确界的定义 定理1 定理一 确界原理 定理2 推广的确界原理 任一非空数集必有上、下确界(正常的或非正常的). 函数的概念 定义1 函数的四则运算 初等函数 定义2 几个重要的等式(不等式) 数列极限 定义1 收敛数列的性质 定义1 设{}n a 为数列,{}k n 为正整数集N +的无限子集,且12k n n n <<<

无穷小量阶的比较(定义见下页末) 函数极限存在的条件 两个重要极限 常见的几个等价无穷小量 函数的连续 区间上的连续函数 连续函数的性质 导数和微分 定义2单侧导数 导函数 导数的几何意义 求导法则 反函数的导数 复合函数的导数 基本求导法则 基本初等函数导数公式 参变量函数的导数

高阶导数 定义略 微分 定义1 定理5.10 可微函数 若函数在定义区间上每一点都可微,则称函 数为可微函数. 微分的运算法则 高阶微分

相关主题
文本预览