当前位置:文档之家› 北师大版版高考数学一轮复习高考大题增分课平面解析几何中的高考热点问题教学案理解析版

北师大版版高考数学一轮复习高考大题增分课平面解析几何中的高考热点问题教学案理解析版

北师大版版高考数学一轮复习高考大题增分课平面解析几何中的高考热点问题教学案理解析版
北师大版版高考数学一轮复习高考大题增分课平面解析几何中的高考热点问题教学案理解析版

错误!

[命题解读] 圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对运算能力、分析问题、解决问题的能力要求较高,难度较大,常以压轴题的形式出现.

圆锥曲线中的几何证明问题

圆锥曲线中的几何证明一般包括两大方面:一是位置关系的证明,如证明相切、垂直、过定点等,二是数量关系的证明,如存在定值、恒成立、线段或角相等等.

【例1】(2018·全国卷Ⅰ)设椭圆C:错误!+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).

(1)当l与x轴垂直时,求直线AM的方程;

(2)设O为坐标原点,证明:∠OMA=∠OMB.

[解] (1)由已知得F(1,0),l的方程为x=1.

由已知可得,点A的坐标为错误!或错误!.

又M(2,0),所以AM的方程为y=—错误!x+错误!或y=错误!x—错误!.

(2)证明:当l与x轴重合时,∠OMA=∠OMB=0°.

当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.

当l与x轴不重合也不垂直时,设l的方程为y=k(x—1)(k≠0),A(x1,y1),B(x2,y2),则x1<错误!,x2<错误!,直线MA,MB的斜率之和为k MA+k MB=错误!+错误!.

由y1=kx1—k,y2=kx2—k得

k MA+k MB=错误!.

将y=k(x—1)代入错误!+y2=1得

(2k2+1)x2—4k2x+2k2—2=0.

所以,x1+x2=错误!,x1x2=错误!.

则2kx1x2—3k(x1+x2)+4k=错误!=0.

从而k MA+k MB=0,故MA,MB的倾斜角互补.所以∠OMA=∠OM

综上,∠OMA=∠OMB.

[规律方法] 对于圆锥曲线中的证明问题,常采用直接法证明,证明时常借助等价转化思想,化几何关系为数量关系,然后借助方程思想给予解答.

圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,—2),求直线l与圆M的方程.

[解] (1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.

由错误!可得y2—2my—4=0,则y1y2=—4.

又x1=错误!,x2=错误!,故x1x2=错误!=4.

因此OA的斜率与OB的斜率之积为错误!·错误!=错误!=—1,

所以OA⊥OB.

故坐标原点O在圆M上.

(2)由(1)可得y1+y2=2m,

x1+x2=m(y1+y2)+4=2m2+4,

故圆心M的坐标为(m2+2,m),

圆M的半径r=错误!.

由于圆M过点P(4,—2),因此错误!·错误!=0,

故(x1—4)(x2—4)+(y1+2)(y2+2)=0,

即x1x2—4(x1+x2)+y1y2+2(y1+y2)+20=0.

由(1)知y1y2=—4,x1x2=4.

所以2m2—m—1=0,解得m=1或m=—错误!.

当m=1时,直线l的方程为x—y—2=0,圆心M的坐标为(3,1),圆M的半径为错误!,圆M的方程为(x—3)2+(y—1)2=10.

当m=—错误!时,直线l的方程为2x+y—4=0,圆心M的坐标为错误!,圆M的半径为错误!,

圆M 的方程为错误!2+错误!2

=错误!.

最值、范围问题

圆锥曲线中的最值与取值范围问题是高考中的常考题型,以解答题为主,难度一般较大,注重方程思想、数形结合思想、分类讨论思想的应用.主要的命题角度有:

(1)涉及距离、面积的最值以及与之有关的一些问题;

(2)求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时与之有关的一些问题.

【例2】 (本题满分12分)(2016·全国卷Ⅰ)设圆x 2+y 2+2x —15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明错误!1,并写出点E 的轨迹方程;

(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求错误!2.

[信息提取] 1看到|EA |+|EB |为定值,想到点E 的轨迹方程可能是椭圆.

2看到四边形MPNQ 面积的取值范围,想到四边形MPNQ 对角线是否垂直,如何将四边形分成三角形求面积,可能利用弦长公式.

[规范解答] (1)证明:因为|AD |=|AC |,EB ∥AC ,

故∠EBD =∠ACD =∠AD C.所以|EB |=|ED |,

故|EA |+|EB |=|EA |+|ED |=|AD |.

又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,

所以|EA |+|EB |=4. ·2分

由题设得A (—1,0),B (1,0),|AB |=2,

由椭圆定义可得点E 的轨迹方程为错误!+错误!=1(y ≠0). ·4分

(2)当l 与x 轴不垂直时,设l 的方程为y =k (x —1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由错误!得(4k 2+3)x 2—8k 2x +4k 2—12=0,

则x 1+x 2=错误!,x 1x 2=错误!.

所以|MN|=错误!|x1—x2|=错误!.·6分

过点B(1,0)且与l垂直的直线m:y=—错误!(x—1),点A到直线m的距离为错误!,所以|PQ|=2错误!=4错误!.

故四边形MPNQ的面积S=错误!|MN|| PQ|=12错误!.·10分

可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8错误!).

当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,

故四边形MPNQ的面积为12.

综上,四边形MPNQ面积的取值范围为[12,8错误!).·12分

[易错与防范]

易错点防范措施

点E的轨迹方程没有限定“y≠0”.审题要细心,在求出轨迹方程错误!+错误!=1后要验证其完备性,既不能多点,也不能少点.

忽视直线l斜率不存在的情况应树立分类讨论的意识,求解时应以直线斜率是否存在为标准分类求解.

(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数或等量关系,利用判别式、基本不等式、函数的性质、导数法进行求解.

在平面直角坐标系xOy中,椭圆C:错误!+错误!=1(a>b>0)的离心率为错误!,点M错误!在椭圆C上.

(1)求椭圆C的方程;

(2)已知P(—2,0)与Q(2,0)为平面内的两个定点,过点(1,0)的直线l与椭圆C交于A,B两点,求四边形APBQ面积的最大值.

[解] (1)由错误!=错误!,可得a=2c,

又因为b2=a2—c2,所以b2=3c2,

所以椭圆C的方程为错误!+错误!=1,

又因为M错误!在椭圆C上,所以错误!+错误!=1,

所以c2=1,所以a2=4,b2=3,

故椭圆C的方程为错误!+错误!=1.

(2)设l的方程为x=my+1,联立错误!

消去x得(3m2+4)y2+6my—9=0,

设点A(x1,y1),B(x2,y2),

由题知Δ>0,y1+y2=错误!,y1y2=错误!,

|y1—y2|=错误!

=错误!

=错误!,

设四边形APBQ的面积为S,

所以S=错误!×4×错误!=错误!,

令t=错误!,t≥1,

有S=错误!=错误!,

设函数f(t)=3t+错误!,t∈[1,+∞),

所以f′(t)=3—错误!>0,t∈[1,+∞),

故函数f(t)=3t+错误!在[1,+∞)上递增,

故3t+错误!≥f(1)=4,

故S=错误!=错误!≤6,

当且仅当t=1,即m=0时等号成立,

即四边形APBQ面积的最大值为6.

圆锥曲线中的探索性问题

圆锥曲线中的探索性问题具有开放性和发散性,此类问题的条件和结论不完备,需要结合已知条件或假设新的条件进行探究、观察、分析、抽象、概括等,是高考的常考题型,以解答题的形式出现,难度一般较大.主要的命题角度有:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.【例3】(2015·全国卷Ⅱ)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.

(1)证明:直线OM的斜率与l的斜率的乘积为定值;

(2)若l过点错误!,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

[解] (1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2,得(k2+9)x2+2kbx+b2—m2=0,

故x M=错误!=错误!,y M=kx M+b=错误!.

于是直线OM的斜率k OM=错误!=—错误!,即k OM·k=—9.

所以直线OM的斜率与l的斜率的乘积为定值.

(2)四边形OAPB能为平行四边形.

因为直线l过点错误!,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.

由(1)得OM的方程为y=—错误!x.

设点P的横坐标为x P.

由错误!得x错误!=错误!,

即x P=错误!.

将点错误!的坐标代入直线l的方程得b=错误!,

因此x M=错误!.

四边形OAPB为平行四边形,当且仅当线段AB与线段OP互相平分,即x P=2x M.

于是错误!=2×错误!,解得k1=4—错误!,k2=4+错误!.

因为k i>0,k i≠3,i=1,2,所以当直线l的斜率为4—错误!或4+错误!时,四边形OAPB为平行四边形.

[规律方法] 探索性问题的求解方法

(1)探索性问题通常采用“肯定顺推法”.其步骤如下:假设满足条件的元素(点、直线、曲线或参数)存在,列出与该元素相关的方程(组),若方程(组)有实数解,则元素存在,否则,元素不存在.(2)反证法与验证法也是求解探索性问题的常用方法.

上顶点,B(2,0)为右顶点,若错误!|错误!|=2|错误!|,抛物线C2的顶点在坐标原点,焦点为F.

(1)求椭圆C1的标准方程;

(2)是否存在过F点的直线,与椭圆C1和抛物线C2的交点分别是P,Q和M,N,使得S△OPQ =错误!S△OMN?如果存在,求出直线的方程;如果不存在,请说明理由.

[解] (1)依题意可知错误!|错误!|=2|错误!|,即错误!a=2错误!,由B(2,0)为右顶点,得a=2,解得b2=3,

所以C1的标准方程为错误!+错误!=1.

(2)依题意可知C2的方程为y2=—4x,假设存在符合题意的直线,

设直线方程为x=ky—1,

P(x1,y1),Q(x2,y2),M(x3,y3),N(x4,y4),

联立错误!得(3k2+4)y2—6ky—9=0,

由韦达定理得y1+y2=错误!,y1y2=错误!,

则|y1—y2|=错误!=错误!,

联立错误!得y2+4ky—4=0,

由韦达定理得y3+y4=—4k,y3y4=—4,

所以|y3—y4|=错误!=4错误!,

若S△OPQ=错误!S△OMN,则|y1—y2|=错误!|y3—y4|,

即错误!=2错误!,解得k=±错误!,

所以存在符合题意的直线,直线的方程为x+错误!y+1=0或x—错误!y+1=0.

[大题增分专训]

1.(2018·重庆二模)已知椭圆C:错误!+错误!=1(a>b>0)的离心率为错误!,且点A错误!在椭圆C上.

(1)求椭圆C的方程;

(2)已知不经过A点的直线l:y=错误!x+t与椭圆C交于P,Q两点,P关于原点的对称点为R (与点A不重合),直线AQ,AR与y轴分别交于两点M,N,证明:AM=AN.

[解] (1)由错误!=错误!可得错误!=错误!,所以错误!

解得错误!

所以椭圆的方程为错误!+y2=1.

(2)证明:设P(x1,y1),Q(x2,y2),R(—x1,—y1),

联立直线l与椭圆C的方程,得错误!

整理得x2+错误!tx+t2—1=0,

所以Δ=4—t2>0,即—2<t<2,

x1+x2=—错误!t,x1x2=t2—1,

易知直线AM与直线AN的斜率存在且不同时为0,

所以k AN+k AM=错误!+错误!

=错误!,

因为错误!(x2—1)+(x1+1)错误!

=错误!x1x2+t(x1+x2)+错误!

=错误!(t2—1)+t(—错误!t)+错误!=0,

所以k AN+k AM=0,

则直线AN与直线AM的倾斜角互补,

所以∠AMN=∠ANM,所以AM=AN.

2.已知点F1(—错误!,0),圆F2:(x—错误!)2+y2=16,点M是圆上一动点,MF1的垂直平分线与线段MF2交于点N.

(1)求点N的轨迹方程;

(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△PAB′面积的最大值.

[解] (1)由已知得|NF1|=|NM|,

所以|NF1|+|NF2|=|MN|+|NF2|=4,

又|F1F2|=2错误!,所以点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,

所以点N的轨迹方程是错误!+错误!=1.

(2)易知直线l的斜率k存在,则直线AB:y=kx+1(k≠0),

A(x1,y1),B(x2,y2),则B′(—x2,y2),

联立错误!

得(1+2k2)x2+4kx—2=0,

∴错误!∴k AB′=错误!,

∴直线AB′∶y—y1=错误!(x—x1),

令x=0,

得y=错误!=错误!

=错误!+1=2,

∴直线AB′过定点Q(0,2),

∴△PAB′的面积S=|S△PQB′—S△PQA|=错误!|x1+x2|=错误!=错误!≤错误!,当且仅当k=±错误!时,等号成立.

∴△PAB′面积的最大值是错误!.

3.(2019·厦门模拟)已知M(—1,0),F(1,0),|错误!|=2错误!,错误!=2错误!,错误!=λ错误!(λ∈R),且错误!·错误!=0.

(1)当R在该坐标平面上运动时,求点P运动的轨迹C的方程;

(2)经过点H(2,0)作不过F点且斜率存在的直线l,若直线l与轨迹C相交于A,B两点.1探究:直线FA,FB的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由;

2求△FAB面积的取值范围.

[解] (1)由|错误!|=2错误!知,点R在以M(—1,0)为圆心,以2错误!为半径的圆周上运动.由错误!=2错误!知,Q为FR的中点,

又错误!=λ错误!(λ∈R),且错误!·错误!=0,

得点P为线段FR的中垂线与MR的交点,

所以|PF|=|PR|,所以|PM|+|PF|=2错误!(定值),

因此点P的轨迹C是以M,F为焦点的椭圆,

由a=错误!,c=1,得b=1,

所以轨迹C的方程为错误!+y2=1.

(2)1由已知,设直线l的方程为y=k(x—2)(k≠0),

直线l与椭圆C的交点A,B分别设为A(x1,y1),B(x2,y2).

联立错误!

化简得(1+2k2)x2—8k2x+8k2—2=0,

则x1+x2=错误!,x1x2=错误!,

又直线FA,FB的斜率之和为错误!+错误!=错误!+错误!=错误!,

又2kx1x2—3k(x1+x2)+4k=2k·错误!—错误!+4k=错误!=0(定值),所以错误!+错误!=0,

即直线FA,FB的斜率之和为定值0.

2由1得Δ=64k4—4(1+2k2)(8k2—2)=8—16k2,

由Δ>0,得k2∈错误!,

因为|AB|=|x1—x2|错误!

=错误!

=错误!·错误!,

又点F到直线l的距离d=错误!,

所以S△FAB=错误!|AB|·d=错误!

=错误!,

令t=2k2+1∈(1,2),φ(t)=错误!=错误!—2错误!2,

因为错误!∈错误!,所以φ(t)∈错误!,

所以S△FAB=错误!∈错误!,

当且仅当t=错误!,即k=±错误!时,S△FAB取到最大值错误!.

所以△FAB面积的取值范围为错误!.

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

2018届高考数学(理)热点题型:立体几何(含答案解析)

4 42 立体几何 热点一空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. π 【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO. (1)求证:平面PBD⊥平面COD; (2)求直线PD与平面BDC所成角的正弦值. (1)证明∵OB=OC,又∵∠ABC= π 4 , ππ ∴∠OCB=,∴∠BOC=. ∴CO⊥AB. 又PO⊥平面ABC, OC?平面ABC,∴PO⊥OC. 又∵PO,AB?平面PAB,PO∩AB=O, ∴CO⊥平面PAB,即CO⊥平面PDB. 又CO?平面COD, ∴平面PDB⊥平面COD. (2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.

? →·n ? 则 sin θ=? ?|PD||n|? PD BC BD BC BD =? ?= 02+(-1)2+(-1)2× 12+12+32 ? 11 1×0+1×(-1)+3×(-1) 设 OA =1,则 PO =OB =OC =2,DA =1. 则 C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴→=(0,-1,-1),→=(2,-2,0),→=(0,-3,1). 设平面 BDC 的一个法向量为 n =(x ,y ,z), ??n·→=0, ?2x -2y =0, ∴? ∴? ??n·→=0, ?-3y +z =0, 令 y =1,则 x =1,z =3,∴n=(1,1,3). 设 PD 与平面 BDC 所成的角为 θ, ? PD ? → ? ? ? ? 2 22 . 即直线 PD 与平面 BDC 所成角的正弦值为 2 22 11 . 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【对点训练】 如图所示,在多面体 A B D DCBA 中,四边形 AA B B ,ADD A ,ABCD 均为正方 1 1 1 1 1 1 1 形,E 为 B D 的中点,过 A ,D ,E 的平面交 CD 于 F. 1 1 1 1 (1)证明:EF∥B C. 1 (2)求二面角 EA D B 的余弦值. 1 1 (1)证明 由正方形的性质可知 A B ∥AB∥DC,且 A B =AB =DC ,所以四边形 A B CD 为平行 1 1 1 1 1 1

2019高考数学真题(理)分类汇编-平面解析几何含答案解析

专题05 平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠, ,得

高考数学新题型测试研究

第24卷第1期 数 学 教 育 学 报 Vol.24, No.1 2015年2月 JOURNAL OF MATHEMATICS EDUCATION Feb., 2015 收稿日期:2014–10–18 基金项目:全国教育科学规划教育部重点课题——高考能力考查与内容改革创新研究(GFA111006) 高考数学新题型测试研究 任子朝,章建石,陈 昂 (教育部考试中心,北京 100084) 摘要:为深化高考内容和形式改革,数学科研制了5种新题型:多选题、逻辑题、数据分析题、举例题和开放题.从中国东部、中部、西部省份中各选取一省,每个省抽取省重点、市重点和普通中学3个层次学校的高三学生进行试测,各省抽样一千多人,总共有4 205人参加测试.试测统计数据、问卷调查和考后座谈表明:数学科开发的题型新颖别致,能有效考查数学能力,区分度良好,促进中学教学方式的转变,受到学生和教师的欢迎. 关键词:高考;新题型;试测 中图分类号:G420 文献标识码:A 文章编号:1004–9894(2015)01–0021–05 1 研究背景 1.1 问题提出 党的十八届三中全会提出“推进考试招生制度改革”的目标:“探索全国统考减少科目、不分文理科”.改革的出发点主要有两方面:首先是更好地体现高考的选拔功能.高考选拔的目标发生了巨大转变,已经从对学科知识的全面评价向学习能力的重点测量转变,高考成为有力推动选拔有创造力的高素质人才的重要途径.其次是有利于推进素质教育、促进学生全面发展、个性发展和可持续发展.高考科目的设置主要着眼于在高校人才选拔中发挥基础性和通用性的作用,这样的科目设置模式可以为学生个性潜能和学科特长发展提供更大的空间.数学作为高考中重要的基础学科,要积极进行考试内容和形式的改革,发挥基础学科的重要作用. 1.2 题型试测 题型是题目的呈现方式,是实现考查目的的重要手段.高考的考查目标和考查重点进行改革以后,需要新的题型呈现考查要求,实现考查目的.为更好地考查考生的数学能力,高考数学科进行了题型创新设计的专题研究,开发了5种新题型.为检验新题型的考查效果,抽取考生进行试测. 2 研究方法 2.1 样本的选取 试测的考生为当年参加高考高三学生,考虑到中国教育地区之间存在差异,不同学校的学生之间也存在差异,为了检测新题型的效果,选取不同地区的学生作为被试.根据被试样本的抽样原则,从东部、中部、西部省份中各选取一省进行试测,每个省抽取省重点、市重点和一般学校的高三学生进行试测,每省抽样一千多人,样本基本代表了中国高三学生的平均水平.这次试测总共发放试卷4 205份,其中有效试卷3 800份,有效率90.36%.试卷不分文理科,所有考生使用相同的试卷,试测考生中文科考生占38%,理科考生 占62%. 2.2 研究内容 这次试测研究的主要内容包括:试题的难度[1]、区分 度[1],新题型与传统题型的相关性[1],学生对新题型的适应程度,教师和学生对新题型的接受程度和改进建议. 2.3 研究工具 2.3.1 试测试卷 数学科开发了5种新题型(参见附录),分别是: 1. 多项选择题:选择题的答案不唯一,存在多个正确选项. 2. 逻辑题:以日常生活的语言和情景考查推理、论证、比较、评价等逻辑思维能力. 3. 数据分析题:给出一些材料背景以及相关数据,要求考生自己读懂材料,获取信息,根据材料给出的情境、原理以及猜测等,自主分析数据,得出结论,并解决问题. 4. 举例题:要求考生通过给出已知结论、性质和定理等条件,从题干中获取信息,整理信息,写出符合题干的结论或是具体实例. 5. 开放题:试题开放设问,答案并不唯一,要求考生能综合运用所学知识,进行探究,分析问题并最终解决问题. 试测试卷将新题型和高考中现有的题型组合成卷,测试时长60分钟,满分75分,时间和满分都是正式高考的一半.高考中现有题型选取了单项选择题,目的是为和新题型进行对比,测试新题型的考查效果.试卷测试结构如表1所示. 1 需要指出的是,有些新题型是在现有题型的基础上发展

2021届新高考高三数学新题型专题01三角函数解答题 开放性题目 第三篇(原卷版)

第三篇备战新高考狂练新题型之高三数学提升捷径 专题01 三角函数解答题

1. 已知OA =(2asin 2x ,a),(1,cos 1)OB x x =-+,O 为坐标原点,a≠0,设f(x)=OA OB ?+b ,b>a. (1)若a>0,写出函数y =f(x)的单调递增区间; (2)若函数y =f(x)的定义域为[ 2 π ,π],值域为[2,5],求实数a 与b 的值. 2. 已知直线12,x x x x ==分别是函数()2sin(2)6f x x π=-与3()sin(2)2g x x π=+图象的对称轴. (1)求12()f x x +的值; (2)若关于x 的方程()()1g x f x m =+-在区间[0,]3π 上有两解,求实数m 的取值范围. 3. 已知函数f (x ),g (x )满足关系g (x )=f (x )?f (x +α),其中α是常数.

(1)设()cos sin f x x x =+,2 πα=,求g (x )的解析式; (2)设计一个函数f (x )及一个α的值,使得()()2g x cosx cosx =+; (3)当()sin cos f x x x =+,2π α=时,存在x 1,x 2∈R ,对任意x ∈R ,g (x 1)≤g (x )≤g (x 2)恒成立, 求|x 1-x 2|的最小值. 4. 已知函数()21111cos cos sin ,2222f x x x x x x R ??=-+∈ ???. (1)求函数()f x 的值域; (2)在ABC ?中,角,,A B C 所对的边分别为,,a b c ,()2,f B b ==ABC S ?=,求a c +的值; (3)请叙述余弦定理(写出其中一个式子即可)并加以证明. 5. 已知函数()2sin cos sin .f x x x x =- (1)求()f x 的最小正周期; (2)设ABC ?为锐角三角形,角A 角B 若()0f A =,求ABC ?的面积. 6. 已知函数()sin cos f x a x b x =+,其中a 、b 为非零实常数. (1)若4f π??= ??? ()f x ,求a 、b 的值. (2)若1a =,6x π =是()f x 图像的一条对称轴,求0x 的值,使其满足0()f x =0[0,2]x ∈π. 7. 已知函数()2sin 2sin 2cos2f x x x x =-. (1)化简函数()f x 的表达式,并求函数()f x 的最小正周期; (2)若点()00,A x y 是()y f x =图象的对称中心,且00,2x π??∈???? ,求点A 的坐标. 8. 已知函数21()2cos 22 f x x x x R =--∈,. (1)求函数()f x 的最小正周期和单调递减区间; (2)设△ABC 的内角A B C ,,的对边分别为a b c ,,且c =,()0f C =,若sin 2sin B A =,求a b , 的

平面解析几何初步测试题

平面解析几何初步测试题 一、选择题:(包括12个小题,每题5分,共60分) 1.已知直线l 过(1,2),(1,3),则直线l 的斜率() A. 等于0 B . 等于1 C . 等于21 D. 不存在 2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A.1 B .-1 C .0 D.7 3. 已知A (x 1,y 1)、B(x2,y 2)两点的连线平行y 轴,则|AB |=( ) A、|x 1-x 2|B 、|y 1-y 2|C、 x 2-x1D 、 y 2-y 1 4. 若0ac >,且0bc <,直线0ax by c ++=不通过( ) A.第三象限B.第一象限 C.第四象限D.第二象限 5. 经过两点(3,9)、(-1,1)的直线在x轴上的截距为() A.23- B .32- C .32 D .2 6.直线2x -y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.满足下列条件的1l 与2l ,其中12l l //的是( ) (1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,; (2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点; (3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,. A.(1)(2)B .(2)(3) C.(1)(3)D.(1)(2)(3) 8.已知直线01:1=++ay x l 与直线22 1:2+=x y l 垂直,则a 的值是( ) A 2 B -2 C.21 D .2 1- 9. 下列直线中,与直线10x y +-=的相交的是 A 、226x y += B 、0x y += C 、3y x =-- D 、1y x =-

《平面解析几何》复习试卷及答案解析

2021年新高考数学总复习第九章《平面解析几何》 复习试卷及答案解析 一、选择题 1.已知椭圆C :16x 2+4y 2=1,则下列结论正确的是( ) A .长轴长为12 B .焦距为34 C .短轴长为14 D .离心率为 32 答案 D 解析 由椭圆方程16x 2+4y 2=1化为标准方程可得 x 2116+y 214 =1,所以a =12,b =14,c =34 , 长轴2a =1,焦距2c =32,短轴2b =12, 离心率e =c a =32 .故选D. 2.双曲线x 23-y 2 9 =1的渐近线方程是( ) A .y =±3x B .y =±13x C .y =±3x D .y =±33 x 答案 C 解析 因为x 23-y 2 9 =1, 所以a =3,b =3,渐近线方程为y =±b a x , 即为y =±3x ,故选C. 3.已知双曲线my 2-x 2=1(m ∈R )与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为( ) A .y =±3x B .y =±3x C .y =±13 x D .y =±33x 答案 A

解析 ∵抛物线x 2=8y 的焦点为(0,2), ∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13 , ∴双曲线的渐近线方程为y =±3x ,故选A. 4.(2019·河北衡水中学模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y 3 =1,若过C 的左焦点和下顶点的直线与l 平行,则椭圆C 的离心率为( ) A.45 B.35 C.34 D.15 答案 A 解析 直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以b c =34 , 又b 2+c 2=a 2?????34c 2+c 2=a 2?2516c 2=a 2, 所以e =c a =45 ,故选A. 5.(2019·洛阳、许昌质检)若双曲线x 2-y 2 b 2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是( ) A .(1,2] B .[2,+∞) C .(1,3] D .[3,+∞) 答案 A 解析 双曲线x 2-y 2 b 2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即 2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A. 6.(2019·河北武邑中学调研)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|F A |=2|FB |,则k 等于( ) A.13 B.23 C.23 D.223 答案 D 解析 由????? y =k (x +2),y 2=8x ,消去y 得 k 2x 2+(4k 2-8)x +4k 2=0, Δ=(4k 2-8)2-16k 4>0,又k >0,解得0

高考数学新题型归纳

2019年高考数学新题型归纳 (一)解析几何中的运动问题 解析几何中的创新小题是新课标高考中出现频率最高的题型,09、10、11年高考数学选择填空压轴题都出现了运动问题。即新课标高考数学思维从传统分析静态模型转变为分析动态模型。因此考生需要掌握在运动过程中对于变量与不变量的把握、善于建立运动过程中直接变量与间接变量的关系、以及特殊值情境分析、存在问题与任意问题解题方法的总结。 在解此类创新题型时,往往需要融入生活中的很多思想,加上题目中所给信息相融合。在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。 (二)新距离 近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要懂得坐标系中坐标差的原理,对于对应两点构成的矩形中坐标差的关系弄清楚就行了。近两年高考大题中均涉及到了新距离问题,可是高考所考察的内容不再新距离本身,而在于建立新的数学模型情况下,考生能否摸索出建立数学模型与数学思维的关系。比如2019年压轴题,对于一个数列各个位做差取绝对值求和的问题,由于每个位取值情况均相同,故只需考虑一个位就行了。在大题具体解题中

笔者会详细叙述。 (三)新名词 对于题目中出现了新名词新性质,考生完全可以从新性质本身出发,从数学思维角度理解新性质所代表的数学含义。此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。新课标数学追求对数学思维的自然描述,即不会给学生思维断层、非生活常规思路(北京海淀区2019届高三上学期期末考试题的解析几何大题属于非常规思路)。比如2009年北京卷文科填空压轴题,就是让学生直观形象的去理解什么叫做孤立元,这样肯快就可以得到答案。 (四)知识点性质结合 此类题型主要结合函数性质、图象等知识点进行出题,此类题一般只要熟悉知识点网络结构与知识点思维方式就没有问题。比如2019年高考北京卷填空压轴题,需要考生掌握轨迹与方程思想,方程与曲线关于变量与坐标的一一对应关系。再比如2009年北京卷填空压轴题,就是对数列递推关系进行了简单的扩展,考生只要严格按照题目的规则代入就可得到答案。此类题型需要考生对于知识点的原理、思维方法有深层次的理解才能够很快做出答案。上面提到的两道题均没有考对应知识点的细节处理问题,而是上升的数学思维方法的层次。

高考数学压轴专题最新备战高考《平面解析几何》真题汇编及答案解析

数学《平面解析几何》复习知识要点 一、选择题 1.已知,A B 两点均在焦点为F 的抛物线()2 20y px p =>上,若4AF BF +=,线段 AB 的中点到直线2 p x = 的距离为1,则p 的值为 ( ) A .1 B .1或3 C .2 D .2或6 【答案】B 【解析】 4AF BF +=1212442422 p p x x x x p x p ?+ ++=?+=-?=-中 因为线段AB 的中点到直线2 p x = 的距离为1,所以121132 p x p p - =∴-=?=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若 00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02 p PF x =+ ;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系 数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到. 2.已知双曲线2 2x a -22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4, 且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( ) A . B . C . D .【答案】A 【解析】 【分析】 【详解】 解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2 p x =-,则p=4, 则抛物线的焦点为(2,0); 则双曲线的左顶点为(-2,0),即a=2; 点(-2,-1)在双曲线的渐近线上,则其渐近线方程为1 2 y x =±, 由双曲线的性质,可得b=1;

2021届新高考版高考数学专项突破训练:专项4 新高考·新题型专练

2021届新高考版高考数学专项突破训练 专项4 新高考·新题型专练 一、多项选择题:在每小题给出的选项中,有多项符合题目要求. 1.已知集合M={0,1,2},N={x||x - 1|≤1},则() A.M=N B.N?M C.M∩N=M D.(?R M)∪N=R 2.已知i为虚数单位,则下列结论正确的是() A.复数z=的虚部为 B.复数z=的共轭复数= - 5 - 2i C.复数z=i在复平面内对应的点位于第二象限 D.若复数z满足∈R,则z∈R 3.采购经理指数(简称PMI)是国际上通行的宏观经济监测指标体系之一,对国家经济活动的监测和预测具有重要作用.制造业PMI在50%以上,通常反映制造业总体扩张,低于50%,通常反映制造业总体衰退.如图1 - 1是2018年10月到2019年10月我国制造业PMI的统计图,下列说法正确的是() 图1 - 1 A.大部分月份制造业总体衰退 B.2019年3月制造业总体扩张最大 C.2018年11月到2019年10月中有3个月的PMI比上月增长 D.2019年10月的PMI为49.3%,比上月下降0.5个百分点 4.已知函数f (x)=则下列结论中正确的是() A.f ( - 2)=4 B.若f (m)=9,则m=±3

C.f (x)是偶函数 D.f (x)在R上单调递减 5.已知(ax2+)n(a>0)的展开式中第5项与第7项的二项式系数相等,且展开式中各项系数之和 为1 024,则下列说法正确的是() A.展开式中奇数项的二项式系数之和为256 B.展开式中第6项的系数最大 C.展开式中存在常数项 D.展开式中含x15项的系数为45 6.已知向量a=(1,2),b=(m,1)(m<0),且满足b·(a+b)=3,则() A.|b|= B.(2a+b)∥(a+2b) C.向量2a- b与a- 2b的夹角为 D.向量a在b方向上的投影为 7.已知函数f (x)=sin(2x - ),下列结论正确的是() A.f (x)的最小正周期是π B.f (x)=是x=的充分不必要条件 C.函数f (x)在区间(,)上单调递增 D.函数y=|f (x)|的图象向左平移个单位长度后所得图象的对称轴方程为x=π(k∈Z) 8.同时抛掷两个质地均匀的四面分别标有1,2,3,4的正四面体一次,记事件A={第一个四面体向下的一面出现偶数},事件B={第二个四面体向下的一面出现奇数},事件C={两个四面体向下的一面同时出现奇数,或者同时出现偶数}.则下列说法正确的是() A.P(A)=P(B)=P(C) B.P(AB)=P(AC)=P(BC) C.P(ABC)= D.P(A)P(B)P(C)=

平面解析几何直线练习题含答案

直线测试题 一.选择题(每小题5分共40分) 1. 下列四个命题中的真命题是( ) A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示; B.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程 (y -y 1)·(x 2-x 1)=(x -x 1)(y 2-y 1)表示; C.不经过原点的直线都可以用方程 1=+b y a x 表示; D.经过定点A (0, b )的直线都可以用方程y =kx +b 表示。 【答案】B 【解析】A 中过点P 0(x 0,y 0)与x 轴垂直的直线x =x 0不能用y -y 0=k (x -x 0)表示,因为其斜率k 不存在;C 中不过原点但在x 轴或y 轴无截距的直线y =b (b ≠0)或x =a (a ≠0)不能用方程b y a x +=1表示;D 中过A (0, b )的直线x =0不能用方程y =kx +b 表示. 评述:本题考查直线方程的知识,应熟练掌握直线方程的各种形式的适用范围. 2. 图1中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ) A.k 1<k 2<k 3 B.k 3<k 1<k 2 C.k 3<k 2<k 1 D.k 1<k 3<k 2 【答案】D 【解析】直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2、α3 均为锐角, 且α2>α3,所以k 2>k 3>0,因此k 2>k 3>k 1,故应选D. 3. 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( ) A. A 1A 2+B 1B 2=0 B.A 1A 2-B 1B 2=0 C.12121-=B B A A D.2 121A A B B =1 【答案】A 【解析】法一:当两直线的斜率都存在时,- 11B A ·(2 2B A -)=-1,A 1A 2+B 1B 2=0. 当一直线的斜率不存在,一直线的斜率为0时,???==???==0 001221B A B A 或,

2018届高考数学(理)热点题型:数列(含答案)

数列 热点一 等差数列、等比数列的综合问题 解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用. 【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且 S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式; (2)设T n =S n -1S n (n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3 =14. 又{a n }不是递减数列且a 1=32,所以q =-12. 故等比数列{a n }的通项公式为a n =32×? ?? ??-12n -1 =(-1)n -1·32n . (2)由(1)得S n =1-? ????-12n =?????1+12n ,n 为奇数,1-12n ,n 为偶数, 当n 为奇数时,S n 随n 的增大而减小, 所以1

所以34=S 2≤S n <1, 故0>S n -1S n ≥S 2-1S 2 =34-43=-712. 综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712. 【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口. 【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列??????????1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d (d ≠0), ∴?????? ????5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ), 解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9, ∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下: ∵1a n a n +1=1(2n +1)(2n +3)=12? ?? ??12n +1-12n +3, ∴T n =12???? ??? ????13-15+? ????15-17+…+? ????12n +1-12n +3 =12? ?? ??13-12n +3,

高考数学2019真题汇编-平面解析几何(学生版)

2019真题汇编--平面解析几何 1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与 C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为 A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 2.【2019年高考全国Ⅱ卷理数】若抛物线y 2 =2px (p >0)的焦点是椭圆2231x y p p + =的一个焦 点,则p = A .2 B .3 C .4 D .8 3.【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为 坐标原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为 A B .2 D 4.【2019年高考全国Ⅲ卷理数】双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐 近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A . 4 B .2 C . D .5.【2019年高考北京卷理数】已知椭圆22 22 1x y a b +=(a >b >0)的离心率为12,则 A .a 2 =2b 2 B .3a 2 =4b 2 C .a =2b D .3a =4b 6.【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线C : 221||x y x y +=+就是其中之一(如图).给出下列三个结论: ①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是

高考数学新题型分类

2019年高考数学新题型分类 新课标以来,高考数学中出现了创新题型,以第8、14、20题为主,创新题型是建立在高中数学思维体系之上的一中新数学题型。2019年高考数学新题型分类为以下几点: (一)解析几何中的运动问题 解析几何中的创新小题是新课标高考中出现频率最高的题型,09、10、11年高考数学选择填空压轴题都出现了运动问题。即新课标高考数学思维从传统分析静态模型转变为分析动态模型。因此考生需要掌握在运动过程中对于变量与不变量的把握、善于建立运动过程中直接变量与间接变量的关系、以及特殊值情境分析、存在问题与任意问题解题方法的总结。 在解此类创新题型时,往往需要融入生活中的很多思想,加上题目中所给信息相融合。在数学层面上,需要考生善于从各个角度与考虑问题,将思路打开,同时善于用数学思维去将题目情境抽象成数学模型。 (二)新距离 近几年兴起的关于坐标系中新距离d=|X1-X2|+|Y1-Y2|的问题,考生需要懂得坐标系中坐标差的原理,对于对应两点构成的矩形中坐标差的关系弄清楚就行了。近两年高考大题中均涉及到了新距离问题,可是高考所考察的内容不再新距离本身,而在于建立新的数学模型情况下,考生能否摸索出建立数学模型与数学思维的关系。比如2019年压轴题,对于一个数列各个位做差取绝对值求和的问题,由于每个位取值情况均相同,故只需考虑一个位就行了。在大题具体解题中笔者

会详细叙述。 (三)新名词 对于题目中出现了新名词新性质,考生完全可以从新性质本身出发,从数学思维角度理解新性质所代表的数学含义。此类创新题型就像描述一幅画一样去描述一个数学模型,然后描述的简洁透彻,让考生通过此类描述去挖掘性质。新课标数学追求对数学思维的自然描述,即不会给学生思维断层、非生活常规思路(北京海淀区2019届高三上学期期末考试题的解析几何大题属于非常规思路)。比如2009年北京卷文科填空压轴题,就是让学生直观形象的去理解什么叫做孤立元,这样肯快就可以得到答案。 (四)知识点性质结合 此类题型主要结合函数性质、图象等知识点进行出题,此类题一般只要熟悉知识点网络结构与知识点思维方式就没有问题。比如2019年高考北京卷填空压轴题,需要考生掌握轨迹与方程思想,方程与曲线关于变量与坐标的一一对应关系。再比如2009年北京卷填空压轴题,就是对数列递推关系进行了简单的扩展,考生只要严格按照题目的规则代入就可得到答案。此类题型需要考生对于知识点的原理、思维方法有深层次的理解才能够很快做出答案。上面提到的两道题均没有考对应知识点的细节处理问题,而是上升的数学思维方法的层次。(五)情境结合题 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、

平面解析几何初步测试题

平面解析几何初步测试题 一、选择题:(包括12个小题,每题5分,共60分) 1.已知直线l 过(1,2),(1,3),则直线l 的斜率( ) A. 等于0 B. 等于1 C. 等于21 D. 不存在 2. 若)0,(),4,9(),2,3(x C B A --三点共线,则x 的值是( ) A .1 B .-1 C .0 D .7 3. 已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB|=( ) A 、|x 1-x 2| B 、|y 1-y 2| C 、 x 2-x 1 D 、 y 2-y 1 4. 若0ac >,且0bc <,直线0ax by c ++=不通过( ) A.第三象限 B.第一象限 C.第四象限 D.第二象限 5. 经过两点(3,9)、(-1,1)的直线在x 轴上的截距为( ) A .23 - B .32- C .32 D .2 6.直线2x-y=7与直线3x+2y-7=0的交点是( ) A (3,-1) B (-1,3) C (-3,-1) D (3,1) 7.满足下列条件的1l 与2l ,其中12l l //的是( ) (1)1l 的斜率为2,2l 过点(12)A ,,(48)B ,; (2)1l 经过点(33)P ,,(53)Q -,,2l 平行于x 轴,但不经过P ,Q 两点; (3)1l 经过点(10)M -,,(52)N --,,2l 经过点(43)R -,,(05)S ,. A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(2)(3) 8.已知直线01:1=++ay x l 与直线221 :2+=x y l 垂直,则a 的值是( ) A 2 B -2 C .21 D .21 - 9. 下列直线中,与直线10x y +-=的相交的是 A 、226x y += B 、0x y += C 、3y x =-- D 、1 y x =-

2019高考六大高考热点题型:概数列

数列 热点一 数列的通项与求和 数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等. 【例1】 (满分12分)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式; (2)求数列??????????a n 2n +1的前n 项和. 教材探源 本题第(1)问源于教材必修5P44例3,主要考查由S n 求a n ,本题第(2)问源于教材必修5P47B 组T4,主要考查裂项相消法求和. 满分解答 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,① 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),②1分 (得分点1) ①-②得(2n -1)a n =2,所以a n =22n -1 ,4分 (得分点2) 又n =1时,a 1=2适合上式,5分 (得分点3) 从而{a n }的通项公式为a n =22n -1 .6分 (得分点4) (2)记?????? ????a n 2n +1的前n 项和为S n , 由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1 ,8分 (得分点5) 则S n =? ????1-13+? ????13-15+…+? ?? ??12n -1-12n +1 10分 (得分点6) =1-12n +1=2n 2n +1 .12分 (得分点7) 得分要点 ?得步骤分:抓住得分点的解题步骤,“步步为赢”,在第(1)问中,由a n 满足的关系式,通过消项求得a n ,验证n =1时成立,写出结果.在第(2)问中观察数列的结构特征进行裂项→利用裂项相消法求得数列的前n 项和S n . ?得关键分:(1)a n -1满足的关系式,(2)验证n =1,(3)对通项裂项都是不可少的过程,有则给分,无则没分. ?得计算分:解题过程中的计算准确是得满分的根本保证,如(得分点2),(得分

高考数学真题分类汇编专题18:平面解析几何(综合题)

高考数学真题分类汇编专题 18:平面解析几何(综合题)
姓名:________
班级:________
成绩:________
一、 平面解析几何 (共 13 题;共 110 分)
1. (10 分) (2019·鞍山模拟) 在直角坐标系 于 、 两点.
(1) 求 的取值范围;
中,过点
且斜率为 的直线交椭圆
(2) 当
时,若点 关于 轴的对称点为 ,直线 交 轴于 ,证明:
为定值.
2. (10 分) (2017·舒城模拟) 如图,O 为坐标原点,点 F 为抛物线 C1:x2=2py(p>0)的焦点,且抛物线 C1 上点 M 处的切线与圆 C2:x2+y2=1 相切于点 Q.
(Ⅰ)当直线 MQ 的方程为
时,求抛物线 C1 的方程;
(Ⅱ)当正数 p 变化时,记 S1 , S2 分别为△FMQ,△FOQ 的面积,求 的最小值.
3. (10 分) (2018 高二上·蚌埠期末) 已知抛物线 :
的焦点为 ,直线
交于点 ,抛物线 交于点 ,且
.
(1) 求抛物线 的方程;
(2) 过原点 作斜率为 和 的直线分别交抛物线 于 是否为定值,若为定值,求出该定值,若不是,则说明理由.
两点,直线 过定点
与轴 ,
第 1 页 共 10 页

4. (10 分) (2018 高二下·遂溪月考) 已知椭圆 点到两焦点 , 的距离之和为 4.
的长轴与短轴之和为 6,椭圆上任一
(1) 求椭圆的标准方程;
(2) 若直线 :
与椭圆交于 , 两点, , 在椭圆上,且 , 两点关于直线
对称,问:是否存在实数 ,使
,若存在,求出 的值;若不存在,请说明理由.
5. (10 分) (2017·晋中模拟) 已知椭圆 C:
的右焦点在直线 l: x﹣y﹣3=0 上,且
椭圆上任意两个关于原点对称的点与椭圆上任意一点的连线的斜率之积为﹣ .
(1)
求椭圆 C 的方程;
(2)
若直线 t 经过点 P(1,0),且与椭圆 C 有两个交点 A,B,是否存在直线 l0:x=x0(其中 x0>2)使得 A,B 到
l0 的距离 dA,dB 满足
恒成立?若存在,求出 x0 的值,若不存在,请说明理由.
6. (10 分) (2018·全国Ⅲ卷理) 在平面直角坐标系
中,
过点
且倾斜角为 的直线 与
交于
两点
的参数方程为
( 为参数),
(1) 求 的取值范围
(2) 求 中点 的轨迹的参数方程
7. (5 分) (2017·莆田模拟) 已知点 P 是圆 F1:(x﹣1)2+y2=8 上任意一点,点 F2 与点 F1 关于原点对称, 线段 PF2 的垂直平分线分别与 PF1 , PF2 交于 M,N 两点.
(1) 求点 M 的轨迹 C 的方程;
(2) 过点
的动直线 l 与点 M 的轨迹 C 交于 A,B 两点,在 y 轴上是否存在定点 Q,使以 AB 为直径的
圆恒过这个点?若存在,求出点 Q 的坐标;若不存在,请说明理由.
第 2 页 共 10 页

相关主题
文本预览
相关文档 最新文档