当前位置:文档之家› 高考数学压轴专题本溪备战高考《平面解析几何》基础测试题附解析

高考数学压轴专题本溪备战高考《平面解析几何》基础测试题附解析

高考数学压轴专题本溪备战高考《平面解析几何》基础测试题附解析
高考数学压轴专题本溪备战高考《平面解析几何》基础测试题附解析

数学《平面解析几何》复习知识点

一、选择题

1.如图,12,F F 是双曲线22

1:13

y

C x -=与椭圆2C 的公共焦点,点A 是1C ,2C 在第一

象限的公共点,若112F A F F =,则2C 的离心率是( )

A .

1

3

B .

15

C .

23

D .

25

【答案】C 【解析】

由2

2

1:13

y C x -=知2c =,1124F A F F ==

∵122F A F A -= ∴22F A =

∵由椭圆得定义知1226a F A F A =+= ∴2

3,3

c a e a === 故选C

2.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .(1,14

) B .1(,1)4

-

C .(1,2)

D .(1,2)-

【答案】A 【解析】 【分析】 【详解】

试题分析:抛物线2

4y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为

M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,

直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;所以点P 纵坐标为1,则横坐标为

14,即(1

,14

),故选A

考点:抛物线的定义及几何性质的运用.

3.如图所示,已知双曲线C :()22

2210,0x y a b a b

-=>>的右焦点为F ,双曲线的右支上

一点A ,它关于原点O 的对称点为B ,满足120AFB ∠=?,且3BF AF =,则双曲线

C 的离心率是( )

A .

27

B .

52

C .

7 D .7

【答案】C 【解析】 【分析】

利用双曲线的性质,推出AF ,BF ,通过求解三角形转化求解离心率即可. 【详解】

解:双曲线22

22:1(0,0)x y C a b a b

-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于

原点O 的对称点为B ,满足120AFB ∠=?,且||3||BF AF =,可得||||2BF AF a -=,||AF a =,||3BF a =,

60F BF ∠'=?,所以2222cos60F F AF BF AF BF '=+-?g ,可得22221

4962

c a a a =+-?,

2247c a =,

所以双曲线的离心率为:72

e =. 故选:C .

【点睛】

本题考查双曲线的简单性质的应用,三角形的解法,考查转化思想以及计算能力,属于中档题.

4.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、

对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.

给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程

()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是

( ) A .①③ B .②④ C .①②③ D .②③④

【答案】B 【解析】 【分析】

利用基本不等式得2

2

4x y +≤,可判断②;22

4x y +=和()

3

22

2216x y x y +=联立解得

222x y ==可判断①③;由图可判断④.

【详解】

()

2

223

2

222

16162x y x

y

x y ??++=≤ ???

解得2

2

4x y +≤(当且仅当22

2x y ==时取等号),则②正确; 将2

2

4x y +=和(

)

3

2

22216x y

x y +=联立,解得222x y ==,

即圆2

2

4x y +=与曲线C 相切于点

2,2,(2,2-,(2,2,

2,2-,

则①和③都错误;由0xy <,得④正确. 故选:B. 【点睛】

本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.

5.已知双曲线22

22:1(0,0)x y C a b a b

-=>>)的左,右焦点分别为12,F F ,其右支上存在一点

M ,使得210MF MF ?=u u u u r u u u r

,直线:0l bx ay +=,若直线2//MF l 则双曲线C 的离心率为

( ) A .2

B .2

C .5

D .5

【答案】C 【解析】 【分析】

易得且1MF l ⊥,从而l 是线段1MF 的垂直平分线求出直线1MF 的方程与渐近线方程联立求出交点坐标,进而求得M 坐标,根据勾股定理即可求解离心率. 【详解】

由120

MF MF ?=u u u u v u u u u v 可得12MF MF ⊥易知直线:0l bx ay +=为双曲线的一条渐近线,

可知l 的方程为b

y x a

=-,且1MF l ⊥,从而l 是线段1MF 的垂直平分线,且直线1MF 的方程为()a

y x c b

=

+设1MF ,与l 相交 于点(),N x y .由 ()a y x c b b y x a ?

=+????=-??得2a x c ab

y c ?=-????=??

即2,a ab N c c ??-

???,又()1,0F c -,由中点坐标公式,得222,.a ab M c c c ??

- ??

?由双曲线性质可得122MF MF a -=①,由12MF MF ⊥得22

2124MF MF c +=②,①②联立,可得2

122MF MF b ?=所以点M 的纵坐标为2b c ,所以22b ab c c =

即2b a =所以2

1 5.b e a ??=+= ???

故选:C 【点睛】

本题考查双曲线性质的综合问题,考查数形结合思想,对于学生的数学运算和逻辑推理能力要求较高,属于一般性题目.

6.已知1F 、2F 分别为双曲线22

146

x y -=的左、右焦点,M 为双曲线右支上一点且满足

120MF MF ?=u u u u v u u u u v

,若直线2MF 与双曲线的另一个交点为N ,则1MF N ?的面积为( )

A .12

B .122

C .24

D .242

【答案】C 【解析】 【分析】

设1MF m =,2MF n =,根据双曲线的定义和

12MF MF ⊥,可求出6m =,2n =,再设2NF t =,则14NF t =+根据勾股定理求出6t =即可求出三角形的面积. 【详解】

解:设1MF m =,2MF n =,

∵1F 、2F 分别为双曲线22

146

x y -=的左、右焦点,

∴24m n a -==,122210F F c ==.

∵120

MF MF ?=u u u u v u u u u v

, ∴12MF MF ⊥,

∴222440m n c +==, ∴()2

222m n m n mn -=+-, 即2401624mn =-=, ∴12mn =, 解得6m =,2n =,

设2NF t =,则124NF a t t =+=+, 在1Rt NMF ?中可得()()2

2

2426t t +=++, 解得6t =, ∴628MN =+=, ∴1MF N ?的面积111

862422

S MN MF =?=??=. 故选C .

【点睛】

本题考查了双曲线的定义和向量的数量积和三角形的面积,考查了运算能力和转化能力,

属于中档题.

7.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ?是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( ) A .2 B .3 C .4 D .5

【答案】A 【解析】 【分析】

设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值. 【详解】

如图,易知该直角三角形三边可设为3,4,5x x x .

①若23c x =,则254a x x x =-=,得232c

e a =

=; ②若24c x =,则2532a x x x =-=,得222c

e a

==; ③若25c x =,则243a x x x =-=,得252c

e a

==. 故选:A 【点睛】

本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.

8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )

A .

125 B .6

5

C .2

D 5【答案】A 【解析】

试题分析:根据抛物线的定义可知抛物线2

4y x =上的点P 到抛物线的焦点距离1PF d =,所以122d d MF d +=+,其最小值为()1,0F 到直线3490x y -+=的距离,由点到直线的距离公式可知()()

122

min min

22

3912

5

34d d MF d ++=+=

=

+,故选A.

考点:抛物线定义的应用.

9.若双曲线223mx my -=3的一个焦点是()0,2,则m 的值是 A .-1 B .1

C .1020

-

D .

102

【答案】A 【解析】

双曲线22

3mx my -=3的标准方程为22

113

x y m m

-=, ∵焦点在y 轴上,∴134m m

+=,且0m <, ∴ 1.m =- 故选A .

10.已知点P 是椭圆22

221(0,0)x y a b xy a b

+=>>≠上的动点,1(,0)F c -、2(,0)F c 为椭圆

的左、右焦点,O 为坐标原点,若M 是12F pF ∠的角平分线上的一点,且F 1M ⊥MP ,则|OM|的取值范围是( ) A .(0,)c B .(0,)a

C .(,)b a

D .(,)c a

【答案】A 【解析】 【分析】 【详解】

解:如图,延长PF 2,F 1M ,交与N 点,∵PM 是∠F 1PF 2平分线,且F 1M ⊥MP , ∴|PN|=|PF 1|,M 为F 1F 2中点,

连接OM ,∵O 为F 1F 2中点,M 为F 1F 2中点 ∴|OM|=|F 2N|=||PN|﹣|PF 2||=||PF 1|﹣|PF 2|| ∵在椭圆

中,设P 点坐标为(x 0,y 0)

则|PF 1|=a+ex 0,|PF 2|=a ﹣ex 0,

∴||PF 1|﹣|PF 2||=|a+ex 0+a ﹣ex 0|=|2ex 0|=|ex 0| ∵P 点在椭圆上,

∴|x 0|∈(0,a],

又∵当|x 0|=a 时,F 1M ⊥MP 不成立,∴|x 0|∈(0,a ) ∴|OM|∈(0,c ). 故选A .

11.椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经

过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:22

1169

x y +=,

点A 、B 是它的两个焦点,当静止的小球放在点A 处,从点A 沿直线出发,经椭圆壁反弹后,再回到点A 时,小球经过的最短路程是( ). A .20 B .18

C .16

D .以上均有可能

【答案】C 【解析】 【分析】

根据椭圆的光学性质可知,小球从点A 沿直线出发,经椭圆壁反弹到B 点继续前行碰椭圆壁后回到A 点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案. 【详解】

依题意可知小球经两次椭圆壁后反弹后回到A 点,根据椭圆的性质可知所走的路程正好是4a=4×4=16 故选:C . 【点睛】

本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义,是基础题.

12.当点P 在圆221x y +=上变动时,它与定点(3,0)Q 的连结线段PQ 的中点的轨迹方程是( )

A .22(3)4x y ++=

B .22(23)41x y -+=

C .22(3)1x y -+=

D .22(23)41x y ++=

【答案】B 【解析】 【分析】

根据已知条件可设()00,P x y ,线段PQ 的中点为(),M x y ,再利用中点坐标公式可得到

0023,2x x y y =-=,再代入圆的方程221x y +=即可得到线段PQ 的中点的轨迹方程.

【详解】

设()00,P x y ,线段PQ 的中点为(),M x y ,(如图)

则00

322x x y y +?=????=??

即00232x x y y =-??=?,

Q 点()00,P x y 在圆221x y +=上变动,即22001x y +=

()()222321x y ∴-+=即()2

22341x y -+=

故选:B 【点睛】

本题考查了中点坐标公式,动点轨迹方程求法,属于一般题.

13.如图,设椭圆E :22

221(0)x y a b a b

+=>>的右顶点为A ,右焦点为F ,B 为椭圆在

第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC 于M ,则椭圆E 的离心率是( ) A .

1

2

B .

23

C .

13

D .

14

【答案】C 【解析】

如图,设AC 中点为M ,连接OM ,

则OM 为△ABC 的中位线, 于是△OFM ∽△AFB ,且

OF OM 1FA

AB

2

=

=

, 即

c c a -=12可得e=c a =13

. 故答案为

1

3

. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.

14.在圆M :224410x y x y +---=中,过点(0,1)E 的最长弦和最短弦分别为AC 和

BD ,则四边形ABCD 的面积为( )

A .6

B .12

C .24

D .36

【答案】B 【解析】 【分析】

先将圆M 的方程化为标准方程,得到其圆心坐标与半径,再结合直线与圆的位置关系可得

AC ?BD 的值,进而求出答案. 【详解】

圆M 的标准方程为:22

(2)(2)9x y -+-=,

其圆心为(2,2)M ,半径3r =, 过点E 最长的弦长是直径,故6AC =, 最短的弦是与ME 垂直的弦,又415ME =+=

所以

221

9522

BD r ME =-=-=,即4BD =, 所以四边形的面积11

641222

S AC BD =??=??=, 故选:B. 【点睛】

本题考查直线与圆相交的性质,解题关键是明确AC 和BD 的位置关系,难度不大.

15.已知曲线C 的方程为22

121x y m m

+=-,现给出下列两个命题:p :102m <<是曲线

C 为双曲线的充要条件,q :1

2

m >

是曲线C 为椭圆的充要条件,则下列命题中真命题的是( ) A .()()p q ?∧? B .()p q ?∧ C .()p q ∧? D .p q ∧

【答案】C 【解析】 【分析】

根据充分必要条件及双曲线和椭圆定义,分别判定命题p 与命题q 的真假,进而判断出复合命题的真假. 【详解】

若曲线C 为双曲线,则()210m m -< ,可解得102

m << 若1

02

m <<

,则()210m m -<,所以命题p 为真命题 若曲线C 为椭圆,则1

2

m >且m≠1,所以命题q 为假命题 因而()p q ∧?为真命题 所以选C 【点睛】

本题考查了椭圆与双曲线的标准方程,充分必要条件的判定,属于基础题.

16.O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若4PF =,则

POF V 的面积为

A B C .2 D .3

【答案】B 【解析】 【分析】

由抛物线的标准方程2

4y x =可得抛物线的焦点坐标和准线方程,设出(,)P x y ,由PF =4以及抛物线的定义列式可得(1)4x --=,即3x =,再代入抛物线方程可得点P 的纵坐标,再由三角形的面积公式1

||2

S y OF =可得. 【详解】

由2

4y x =可得抛物线的焦点F (1,0),准线方程为1x =-,

如图:过点P 作准线1x =- 的垂线,垂足为M ,根据抛物线的定义可知PM =PF =4,

设(,)P x y ,则(1)4x --=,解得3x =,将3x = 代入2

4y x =可得23y =±,

所以△POF 的面积为1||2y OF ?=1

23132

??=. 故选B .

【点睛】

本题考查了抛物线的几何性质,定义以及三角形的面积公式,关键是①利用抛物线的定义求P 点的坐标;②利用OF 为三角形的底,点P 的纵坐标的绝对值为高计算三角形的面积.属中档题.

17.已知双曲线()22

22100x y C a b a b

-=:>,>的一条渐近线与圆22(23)4x y +-=相交

于A ,B 两点,若|AB |=2,则C 的离心率为( )

A .

23

3

B 3

C .2

D .4

【答案】C 【解析】 【分析】

求出双曲线的渐近线方程,圆的圆心与半径,利用距离公式得到a 、b 关系式,然后求解离心率即可. 【详解】

由题意可知不妨设双曲线的一条渐近线方程为:bx +ay =0,

圆22(4x y +-=的圆心为(0,,半径为2,

由题意及|AB |=2,可得22212+=,

2

22

123

a a

b =+,即b 2=3a 2,可得

c 2﹣a 2=3a 2,即224c a = 所以e c

a

=

=2. 故选:C . 【点睛】

本题主要考查求双曲线离心率的问题,此类问题的解题关键是建立,,a b c 的方程或不等关系,考查学生的运算求解能力,是一道中档题.

18.已知抛物线2:2(0)C x py p =>的焦点为F ,C 的准线与对称轴交于点H ,直线

2p y =-

与C 交于A ,B 两点,若||AH =||AF =( ) A .3 B .8

3

C .2

D .4

【答案】C 【解析】 【分析】

注意到直线2p

y =-

过点H ,利用

||||AM AH =tan AHM ∠=||3

AH =,可得||2AM =,再利用抛物线的定义即可得到答案.

【详解】

连接AF ,如图,过A 作准线的垂线,垂足为M ,易知点0,,0,22p p F H ?

???- ? ??

???

.易知直

线2p y =

-

过点H ,tan 3AHM AHM π∠=∠=,则||||2

AM AH =又

||AH =

所以||2AM =,由抛物线的定义可得||AF =||2AM =.

故选:C. 【点睛】

本题考查直线与抛物线的位置关系,涉及到利用抛物线的定义求焦半径,考查学生转化与化归的思想,是一道中档题.

19.已知双曲线22

221(0,0)x y a b a b

-=>>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的

直线与双曲线在第一象限的交点为A ,若()

21210F F F A F A +?=u u u u v u u u u v u u u v

,则此双曲线的标准方程

可能为( )

A .22

143x y -=

B .22

134x y -=

C .22

1169

x y -=

D .221916

x y -=

【答案】D 【解析】 【分析】

先由()

21210F F F A F A +?=u u u u r u u u u r u u u r 得到122

2F F F A c ==,根据2AF 的斜率为24

7

,求出217cos 25

AF F ∠=-

,结合余弦定理,与双曲线的定义,得到c a ,求出a

b ,进而可得出结

果. 【详解】

由()

21210F F F A F A +?=u u u u r u u u u r u u u r

,可知1222F F F A c ==,

又2AF 的斜率为

24

7,所以易得217cos 25

AF F ∠=-, 在12AF F ?中,由余弦定理得116

5

AF c =, 由双曲线的定义得16

225

c c a -=, 所以5

3

c e a =

=,则:3:4a b =, 所以此双曲线的标准方程可能为22

1916

x y -=.

故选D 【点睛】

本题考查双曲线的标准方程,熟记双曲线的几何性质与标准方程即可,属于常考题型.

20.已知椭圆22

1259

x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个

焦点的距离等于( ) A .1 B .3 C .6 D .10 【答案】C 【解析】

由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C .

高考数学平面向量专题卷(附答案)

高考数学平面向量专题卷(附答案) 一、单选题(共10题;共20分) 1.已知向量,则=() A. B. C. 4 D. 5 2.若向量,,若,则 A. B. 12 C. D. 3 3.已知平面向量,,且,则=() A. B. C. D. 4.已知平面向量、,满足,若,则向量、的夹角为() A. B. C. D. 5.在中,的中点为,的中点为,则() A. B. C. D. 6.已知平面向量不共线,且,,记与的夹角是,则最大时, () A. B. C. D. 7.在中,,AD是BC边上的高,则等于() A. 0 B. C. 2 D. 1 8.已知,则的取值范围是() A. [0,1] B. C. [1,2] D. [0,2] 9.已知向量,的夹角为,且,则的最小值为() A. B. C. 5 D. 10.已知椭圆:上的三点,,,斜率为负数的直线与轴交于,若原点是的重心,且与的面积之比为,则直线的斜率为()

A. B. C. D. 二、填空题(共8题;共8分) 11.在平面直角坐标系xOy中,已知A(0,﹣1),B(﹣3,﹣4)两点,若点C在∠AOB的平分线上,且 ,则点C的坐标是________. 12.已知单位圆上两点满足,点是单位圆上的动点,且,则 的取值范围为________. 13.已知正方形的边长为1,,,,则________. 14.在平面直角坐标系中,设是函数()的图象上任意一点,过点向直线 和轴作垂线,垂足分别是,,则________. 15.已知为锐角三角形,满足,外接圆的圆心为,半径为1,则的取值范围是________. 16.设是边长为的正六边形的边上的任意一点,长度为的线段是该正六边形外接圆的一条动弦,则的取值范围为________. 17.设的外接圆的圆心为,半径为2,且满足,则 的最小值为________. 18.如图,在中,,点,分别为的中点,若,,则 ________. 三、解答题(共6题;共60分) 19.的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求; (Ⅱ)若,求的面积. 20.在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

2019高考数学真题汇编平面向量

考点1 平面向量的概念及其线性运算 1.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹 角,则m =( ) A .-2 B .-1 C . 1 D .2 2. 在下列向量组中,能够把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 考点2 平面向量基本定理及向量坐标运算 3.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 考点3 平面向量的数量积及应用 5.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=___. 6.设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=___. 7.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的 夹角为β,则cos β=________. 8.若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=______. 9.设向量a ,b 满足|a +b |=10,|a -b |=6,则=______. 10.在△ABC 中,已知AB →·AC →=tan A ,当A =π6 时,△ABC 的面积为______. 考点4 单元综合 11.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足 |CD →|=1,则|OA →+OB →+OD →|的最大值是________. 练习: 1.已知A ,B ,C 是圆O 上的三点,若1()2 AO AB AC =+,则AB 与AC 的夹角为 .

天一高考数学原创试题(理科)

天一原创试题(理科) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.集合{}2log 2A x x =≤,{}1B x x =>-则A B =( ) A .{14}x x -<≤ B .{14}x x -<< C .{04}x x <≤ D .{4}x x ≤ 【答案】D 【解析】根据题意可得{}{}2log 204x A x x x ≤<=≤=,因为A B ={04}x x <≤,故选 C . 2.以下四个命题中,真命题的个数是 ① 存在正实数,M N ,使得log log log M N MN a a a +=; ② 若函数满足(2018)(2019)0f f ?<,则()f x 在(2018,2019)上有零点的逆命题; ③ 函数(21)()log x a f x -=(0a >≠且a 1)的图像过定点(1,0) ④ “x =-1”是“x 2-5x -6=0”的必要不充分条件. A.1 B.2 C.3 D.4 【答案】B 【解析】根据对数运算法则知①正确;函数()f x 在(2018,2019)上有零点时,函数()f x 在x =2018和x =2019处的函数值不一定异号,故逆命题错误,故②错误;因为无论a 取何值(1)0f =,所以函数()f x 的图像过定点(1,0),故③正确;当x =-1时,x 2-5x -6=0;x 2-5x -6=0时,x =-1或x =6,所以是充分不必要条件,故④错误;故选B 3.若,,,a b c R a b ∈>,则下列不等式成立的是 A .22ac bc > B .a c b c > C.1 1()()22a b > D.2211 a b c c >++ 【答案】D 【解析】对于A ,当c=0,显然不成立;对于B ,令a =1,b =-2,c =0,错误;对于C ,根据指数函数的单调性应为11()()22a b <;对于D ,∵a>b ,c 2+1>0,∴2211 a b c c >++,故选D. 4.已知函数,0()(),0 x e x f x g x x ?≥=???

高一数学单元测试题附答案

高一数学单元测试题 一、选择题 1.已知{}2),(=+=y x y x M ,{} 4),(=-=y x y x N ,则N M ?=( ) A .1,3-==y x B .)1,3(- C .{}1,3- D .{})1,3(- 2.已知全集U =N ,集合P ={ },6,4,3,2,1Q={}1,2,3,5,9则() P C Q =U I ( ) A .{ }3,2,1 B .{}9,5 C .{}6,4 D {}6,4,3,2,1 3.若集合{} 21|21|3,0,3x A x x B x x ?+? =-<=

高三数学精准培优专题练习8:平面向量

培优点八 平面向量 1.代数法 例1:已知向量a ,b 满足=3a ,b 且()⊥+a a b ,则b 在a 方向上的投影为( ) A .3 B .3- C . D 【答案】C 【解析】考虑b 在a 上的投影为 ?a b b ,所以只需求出a ,b 即可. 由()⊥+a a b 可得:()2 0?+=+?=a a b a a b , 所以9?=-a b .进而?==a b b .故选C . 2.几何法 例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 【答案】【解析】可知a ,b ,+a b 为平行四边形的一组邻边和一条对角线, 由2==+=a b a b 可知满足条件的只能是底角为60o ,边长2a =的菱形, =. 3.建立直角坐标系 例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ?=u u u v u u u v __________. 【答案】14 AD BE ?=-uuu v uu u v 【解析】上周是用合适的基底表示所求向量,从而解决问题,本周仍以此题为例,从另一个角度解题,

观察到本题图形为等边三角形,所以考虑利用建系解决数量积问题, 如图建系: 3 0, A ?? ? ? ?? , 1 ,0 2 B ?? - ? ?? , 1 ,0 2 C ?? ? ?? , 下面求E坐标:令() , E x y,∴ 1 , 2 CE x y ?? =- ? ?? uu u v , 13 2 CA ? =- ?? uu v , 由3 CA CE = uu v uu u v 可得: 111 3 223 3 3 3 x x y y ???? -=-= ? ?? ?? ?? ? ?? ??= = ??? ? 13 3 E ? ?? , ∴ 3 0, AD ? = ?? uuu v , 53 6 BE ? = ?? uu u v ,∴ 1 4 AD BE ?=- uuu v uu u v . 一、单选题 1.已知向量a,b满足1 = a,2 = b,且向量a,b的夹角为 4 π ,若λ - a b与b垂直,则实数λ的值为() A. 1 2 -B. 1 2 C. 2 D 2 【答案】D 【解析】因为12cos2 4 π ?? ?= a b()2 240 λλλ -?=?=?= a b b,故选D.2.已知向量a,b满足1 = a,2 = b,7 += a b?= a b() A.1 B2C3D.2 【答案】A 对点增分集训

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高考数学平面向量试题汇编

高考数学平面向量试题汇编 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r ,那么 ( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B . π6 C . π3 D . π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量13 22 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4) 对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若2 2 =a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2)

将π2cos 36x y ??=+ ???的图象按向量π24?? =-- ??? ,a 平移,则平移后所得图象的解析式为 ( A ) A.π2cos 234x y ?? =+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a , a 在 b 上的投影为2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227? ?- ???, C .227??- ??? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r C .EF OF OE =-+u u u r u u u r u u u r D .EF OF O E =--u u u r u u u r u u u r (四川7) 设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向 在与→ →→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a (天津10) 设两个向量22 (2cos )λλα=+-,a 和sin 2 m m α? ?=+ ?? ? ,b ,其中m λα,,为实数.若2=a b ,则 m λ 的取值范围是( A ) A.[-6,1] B.[48], C.(-6,1] D.[-1,6] (浙江7)

最新浙江高考模拟考试题数学卷

2018年浙江省高考模拟试卷 数学卷 本试题卷分选择题和非选择题两部分.满分150分,考试时间120分钟。 请考生按规定用笔将所有试题的答案涂、写在答题纸上。 选择题部分(共40分) 注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色的字迹的签字笔或钢笔填写在答题纸上。 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。答在试题卷上无效。 参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式 ()()()P A B P A P B +=+ V Sh = 如果事件A ,B 相互独立,那么 其中S 表示棱柱的底面积,h 表示棱柱的高 ()()()P A B P A P B ?=? 棱锥的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 1 3 V Sh = n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高 ()() ()1,0,1,2,,n k k k n n P k C p k k n -=-=L 棱台的体积公式 球的表面积公式 24S R π= () 11221 3 V h S S S S =++ 球的体积公式 34 3 V R π= 其中12,S S 分别表示棱台的上底、下底面积, 其中R 表示球的半径 h 表示棱台的高 一、选择题:(本大题共10小题,每小题4分,共40分。) 1、(原创)已知集合R U =,集合},2{R x y y M x ∈==,集合)}3lg({x y x N -==,则()=N M C U I ( ) A .{}3≥y y B. {}0≤y y C. {} 30<

高三数学基本初等函数单元测试题

高三数学基本初等函数 单元测试题 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

时杨中学2009届高三数学单元检测卷(2) 基本初等函数 时量:60分钟 满分:80分 班级: 姓名: 计分: 个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 二.填空题:本大题共8小题,每小题5分,满分40分. 1. 若{|1}A x y x ==-,2{|1}B y y x ==+,则A B ?=_____________ 2. 已知函数:①2sin y x =;②3y x x =+;③cos y x =-;④5y x =,其中偶函数的个数为_______________ 3. 一次函数()g x 满足[]()98g g x x =+, 则()g x ______________ 4. 函数2 12x x y -+-=的单调递增区间是_________________ 5. 一水池有2个进水口,1个出水口,进出水速度如图甲.乙所示. 某天0点到6点,该水池的蓄水量如图丙所示. (至少打开一个水口) 给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水; ③4点到6点不进水不出水. 则一定能确定正确的论断是____________ 6. 函数12y x =-,[3,4]x ∈的最大值为 . 7. 设函数2 12,1, ()1,1,1x x f x x x ?--≤?=?>?+? 则[](1)f f = . 8. 函数()2 2231m m y m m x --=--是幂函数且在(0,)+∞上单调递减,则实数m 的值为 . 二、解答题:本大题共3小题,满分40分,第9小题12分,第小题各14分. 解答须写出文字说明.证明过程或演算步骤. 9. 已知函数22()log (32)f x x x =+- . (1) 求函数()f x 的定义域;(2) 求证()f x 在(1,3)x ∈上是减函数;(3) 求函数()f x 的值域.

53.高考数学专题26 平面向量(知识梳理)(理)(原卷版)

专题26 平面向量(知识梳理) 一、向量的概念及表示 1、向量的概念:具有大小和方向的量称为向量。 (1)数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 (2)向量的表示方法: ①具有方向的线段,叫做有向线段,以A 为始点,B 为终点的有向线段记作AB ,AB 的长度记作||AB 。用有向线段AB 表示向量,读作向量AB ; ②用小写字母表示:a 、。 (3)向量与有向线段的区别和联系: ①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; ②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段; ③向量可以用有向线段表示,但向量不是有向线段。向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段。 2、向量的模:向量AB 的大小――长度称为向量的模,记作||。 3、零向量:长度等于零、方向是任意的向量,记作。 4、单位向量:长度为一个单位长度的向量。与非零向量共线的单位向量0a =。 5、平行向量:(1)若非零向量a 、的方向相同或相反,则b a //,又叫共线向量; (2)规定与任一向量平行。 6、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)。 7、相等向量:若非零向量a 、方向相同且模相等,则向量a 、是相等向量。 (1)相等向量:=?模相等,方向相同; (2)相反向量:b a -=?模相等,方向相反。 二、向量的加法 1、三角形法则

图示 2、平行四边形法则 原理 已知两个不共线向量a 、b ,作a AB =,b BC =,则A 、B 、D 三点不共线,以AB 、AD 为邻边 作平行四边形,则对角线上的向量b a AC +=,这个法则叫做两个向量求和的平行四边形法则。 图示 3、多边形法则 原理 已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的始点为始点,第n 个向量的终点为终点 的向量叫做这n 个向量的和向量,这个法则叫做向量求和的多边形法则。 图示 运算律 交换律 a b b a +=+ 结合律 )()(c b a c b a ++=++ 1、相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量,记作a -。 (1)规定:零向量的相反向量仍是零向量; (2)a a =--)(; (3)0)()(=+-=-+a a a a ; (4)若a 与b 互为相反向量,则b a -=,a b -=,0=+b a 。 2、向量的减法:已知向量a 与b (如图),作a OA =,b OB =,则a BA b =+,向量BA 叫做向量a 与b 的差,并记作b a -,即OB OA b a BA -=-=,由定义可知: (1)如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量; (2)一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ,或简记为“终点向量减始点向量”;

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

高考数学 极限单元测试卷

极限单元测试卷 (满分:150分 时间:120分钟) 一、选择题(本大题共12小题,每小题5分,共60分) 1.下面四个命题中,不正确... 的是( ) A .若函数f (x )在x =x 0处连续,则lim x →x +0f (x )=lim x →x -0f (x ) B .函数f (x )=x +2 x 2-4 的不连续点是x =2和x =-2 C .若函数f (x )、g (x )满足lim x →∞[f (x )-g (x )]=0,则lim x →∞f (x )=lim x →∞g (x ) D.lim x →1 x -1x -1=1 2 答案:C 解析:A 中由连续的定义知函数f (x )在x =x 0处连续,一定有lim n →x +0 f (x )=lim x →x -0f (x ),且还满足lim x →x +0f (x )=lim x →x -0f (x )=f (x 0),故A 对.B 中函数f (x )=x +2 x 2-4在x =2和x =-2无定义,故不连续,B 对.C 中只有lim x →∞f (x ),lim x →∞g (x )存在时,才有lim x →∞f (x )=lim x →∞ g (x ),否则不成立. D 中lim x →1 x -1x -1=lim x →1 1x +1=1 2 ,故D 对.故选C. 2.下列命题中: ①如果f (x )=1 3x ,那么lim x →∞ f (x )=0 ②如果f (x )=1 x ,那么lim x →∞f (x )=0 ③如果f (x )=x 2+3x x +3 ,那么lim x →-3f (x )不存在 ④如果f (x )=??? x (x ≥0)x +2 (x <0) ,那么lim x →0 f (x )=0 其中错误命题的个数是( ) A .0 B .1 C .2 D .3 答案:D 解析:②中x →-∞时无意义; ③中lim x →-3f (x )=lim x →-3 x =-3; ④中左、右极限不相等.故选D. 3.(2009·阳泉模拟)lim n →∞ 1+2+3+…+n n 2 等于( ) A .2 B .1 C.1 2 D .0 答案:C 解析:lim n →∞ 1+2+3+…+n n 2=lim n →∞ n +12n =lim n →∞ 1+1n 2=1 2 .故选C. 4.已知函数f (x )=????? x 2+2x -3x -1 (x >1)ax +1 (x ≤1) 在点x =1处连续,则a 的值是( )

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

相关主题
文本预览
相关文档 最新文档