当前位置:文档之家› 高考数学压轴专题最新备战高考《平面解析几何》真题汇编及答案解析

高考数学压轴专题最新备战高考《平面解析几何》真题汇编及答案解析

高考数学压轴专题最新备战高考《平面解析几何》真题汇编及答案解析
高考数学压轴专题最新备战高考《平面解析几何》真题汇编及答案解析

数学《平面解析几何》复习知识要点

一、选择题

1.已知,A B 两点均在焦点为F 的抛物线()2

20y px p =>上,若4AF BF +=,线段

AB 的中点到直线2

p

x =

的距离为1,则p 的值为 ( ) A .1 B .1或3

C .2

D .2或6

【答案】B 【解析】

4AF BF +=1212442422

p p

x x x x p x p ?+

++=?+=-?=-中 因为线段AB 的中点到直线2

p

x =

的距离为1,所以121132

p

x p p -

=∴-=?=中或 ,选B. 点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若

00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得02

p

PF x =+

;若过焦点的弦AB AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系

数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.

2.已知双曲线2

2x a

-22y b =1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,

且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )

A .

B .

C .

D .【答案】A 【解析】 【分析】 【详解】

解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1), 即点(-2,-1)在抛物线的准线上,又由抛物线y 2=2px 的准线方程为2

p

x =-,则p=4, 则抛物线的焦点为(2,0);

则双曲线的左顶点为(-2,0),即a=2;

点(-2,-1)在双曲线的渐近线上,则其渐近线方程为1

2

y x =±, 由双曲线的性质,可得b=1;

则c =

故选A .

3.已知直线:2l y x b =+被抛物线2:2(0)C y px p =>截得的弦长为5,直线l 经过

2:2(0)C y px p =>的焦点,M 为C 上的一个动点,若点N 的坐标为()4,0,则MN 的

最小值为( )

A .B

C .2

D .【答案】A 【解析】 【分析】

联立直线与抛物线方程利用弦长公式列方程,结合直线过抛物线的焦点,解方程可得

2p =,再利用两点的距离公式,结合二次函数配方法即可得结果.

【详解】

由222

24(42)02y x b

x b p x b y px

=+??+-+=?=?, 12122

2,24

b p b x x x x +=-=-,

因为直线:2l y x b =+被抛物线2

:2(0)C y px p =>截得的弦长为5,

125x =-,

所以()222

2

2512424b p b ??

-??=+-??? ??????

? (1) 又直线l 经过C 的焦点,

则,22

b p

b p -=∴=- (2)

由(1)(2)解得2p =,故抛物线方程为2

4y x =.

设()2

0000,,4M x y y x ∴=.

则()()()222

22

00000||444212MN x y x x x =-+=-+=-+,

故当02x =时,min ||MN = 故选:A. 【点睛】

本题主要考查直线与抛物线的位置关系,考查了弦长公式以及配方法的应用,意在考查综合应用所学知识解答问题的能力,属于中档题.

4.已知抛物线x 2

=16y 的焦点为F ,双曲线22

145

x y -=的左、右焦点分别为F 1、F 2,点P

是双曲线右支上一点,则|PF|+|PF 1|的最小值为( ) A .5 B .7 C .9 D .11 【答案】C 【解析】 【分析】

由题意并结合双曲线的定义可得

1222(4)44PF PF PF PF PF PF FF +=++=++≥+,然后根据两点间的距离公

式可得所求最小值. 【详解】

由题意得抛物线2

16x y =的焦点为()0,4F ,双曲线22

145

x y -=的左、右焦点分别为

()()123,0,3,0F F -.

∵点P 是双曲线右支上一点, ∴124PF PF =+.

∴1222(4)44549PF PF PF PF PF PF FF +=++=++≥+=+=,当且仅当

2,,F P F 三点共线时等号成立,

∴1PF PF +的最小值为9. 故选C . 【点睛】

解答本题的关键是认真分析题意,然后结合图形借助数形结合的方法求解.另外在解题中注意利用双曲线的定义将所求问题进行转化,考查分析理解能力和解决问题的能力,属于基础题.

5.设D 为椭圆2

2

15

y x +=上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使

得|PD|=|BD|,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20 D .x 2+(y +2)2=5 【答案】C 【解析】 【分析】

由题意得PA PD DA DB DA =+=+=,从而得到点P 的轨迹是以点A 为圆

心,半径为 【详解】

由题意得PA PD DA DB DA =+=+,

又点D 为椭圆2

2

15

y x +=上任意一点,且()()0,2,0,2A B -为椭圆的两个焦点,

∴DB DA +=,

∴PA =

∴点P 的轨迹是以点A 为圆心,半径为 ∴点P 的轨迹方程为()2

2220x y ++=. 故选C . 【点睛】

本题考查圆的方程的求法和椭圆的定义,解题的关键是根据椭圆的定义得到PA =然后再根据圆的定义得到所求轨迹,进而求出其方程.考查对基础知识的理解和运用,属于基础题.

6.已知抛物线C :212y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,

FA 为半径的圆交C 的准线于B ,D 两点,且A ,F ,B 三点共线,则AF =( )

A .16

B .10

C .12

D .8

【答案】C 【解析】 【分析】

根据题意可知AD BD ⊥,利用抛物线的定义,可得30ABD ∠=?,所以

||||2612AF BF ==?=.

【详解】

解:因为A ,F ,B 三点共线,所以AB 为圆F 的直径,AD BD ⊥. 由抛物线定义知1

||||||2

AD AF AB ==

,所以30ABD ∠=?.因为F 到准线的距离为6, 所以||||2612AF BF ==?=. 故选:C .

【点睛】

本题考查抛物线的性质,抛物线的定义,考查转化思想,属于中档题.

7.已知P 是双曲线C 上一点,12,F F 分别是C 的左、右焦点,若12PF F ?是一个三边长成等差数列的直角三角形,则双曲线C 的离心率的最小值为( ) A .2 B .3 C .4 D .5

【答案】A 【解析】 【分析】

设直角三角形三边分别为3,4,5x x x ,分23c x =,24c x =和25c x =三种情况考虑,即可算得双曲线离心率的最小值. 【详解】

如图,易知该直角三角形三边可设为3,4,5x x x .

①若23c x =,则254a x x x =-=,得232c

e a =

=; ②若24c x =,则2532a x x x =-=,得222c

e a

==; ③若25c x =,则243a x x x =-=,得252c

e a

==. 故选:A 【点睛】

本题主要考查双曲线的离心率的求法,体现了分类讨论的数学思想.

8.已知直线()0y kx k =≠与双曲线()22

2210,0x y a b a b

-=>>交于,A B 两点,以AB 为

直径的圆恰好经过双曲线的右焦点F ,若ABF ?的面积为24a ,则双曲线的离心率为 A .2 B .3

C .2

D .5

【答案】D 【解析】 【分析】

通过双曲线和圆的对称性,将ABF ?的面积转化为FBF ?'的面积;利用焦点三角形面积公式可以建立a 与b 的关系,从而推导出离心率. 【详解】

由题意可得图像如下图所示:F '为双曲线的左焦点

AB Q 为圆的直径 90AFB ∴∠=o

根据双曲线、圆的对称性可知:四边形AFBF '为矩形

1

2

ABF AFBF FBF S S S ''??∴=

= 又2

224tan 45

FBF b S b a ?'

===o

,可得:225c a = 25e ∴= 5e ?=

本题正确选项:D 【点睛】

本题考查双曲线的离心率求解,离心率问题的求解关键在于构造出关于,a c 的齐次方程,从而配凑出离心率的形式.

9.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .(1,14

) B .1(,1)4

-

C .(1,2)

D .(1,2)-

【答案】A 【解析】 【分析】 【详解】

试题分析:抛物线2

4y x =焦点为F (1,0),准线为1x =-,作PQ 垂直于准线,垂足为

M 根据抛物线定义: ,PQ PF PQ PM +=+,根据三角形两边距离之和大于第三边,

直角三角形斜边大于直角边知:PQ PM +的最小值是点Q 到抛物线准线1x =-的距离;

所以点P 纵坐标为1,则横坐标为

14,即(1

,14

),故选A 考点:抛物线的定义及几何性质的运用.

10.已知椭圆22

1259

x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个

焦点的距离等于( ) A .1 B .3 C .6 D .10 【答案】C 【解析】

由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C .

11.已知椭圆22

198x y +=的一个焦点为F ,直线220,220x y x y -+=--=与椭圆分别

相交于点A 、B 、C 、D 四点,则AF BF CF DF +++=( ) A .12 B .642+

C .8

D .6

【答案】A 【解析】 【分析】

画出图像,根据对称性得到()()224AF BF CF DF AF AF DF DF a +++=+++=,得到答案. 【详解】

画出图像,如图所示:直线220,220x y x y -+=--=平行,

根据对称性知:()()22412AF BF CF DF AF AF DF DF a +++=+++==. 故选:A .

【点睛】

本题考查了椭圆的性质,意在考查学生对于椭圆知识的灵活运用.

12.已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :

22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( )

A .3

B .4

C .5

D .6

【答案】B 【解析】 【分析】

根据抛物线定义和三角形三边关系可知当,,M A P 三点共线时,MA MF +的值最小,根据圆的性质可知最小值为CP r -;根据抛物线方程和圆的方程可求得CP ,从而得到所求的最值. 【详解】

如图所示,利用抛物线的定义知:MP MF =

当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=-

Q 抛物线的准线方程:1y =-,()1,4C

415CP ∴=+= ()min 514MA MF ∴+=-=

本题正确选项:B 【点睛】

本题考查线段距离之和的最值的求解,涉及到抛物线定义、圆的性质的应用,关键是能够找到取得最值时的点的位置,从而利用抛物线和圆的性质来进行求解.

13.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :

()()

22

112x y +++=的周长,则

12

m n

+的最小值为( ) A .

92

B .9

C .6

D .3

【答案】D 【解析】 【分析】

把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线

l 上,可得()1

23,213

m n m n +=∴

+=,再利用基本不等式可求最小值. 【详解】

把圆2C :()()2

2

112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2

2

24100x y mx ny +---=(m ,0n >),

两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.

Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,

()()12150m n ∴-+-++=,即()1

23,213

m n m n +=∴

+=. ()1

122253

31212121n m m n m n m n m n m n ????∴

+=+?=+? ? ?????+=++ ?????

()115522333?≥+=+?= ?. 当且仅当23

22m n n m m

n +=??

?=??即1m n ==时,等号成立.

12

m n ∴

+的最小值为3. 故选:D . 【点睛】

本题考查两圆的位置关系,考查基本不等式,属于中档题.

14.已知双曲线22

19x y m

-=的一个焦点在直线x +y =5上,则双曲线的渐近线方程为

( )

A .34

y x =? B .4

3y x =±

C

.3

y x =±

D

.4

y x =±

【答案】B 【解析】

根据题意,双曲线的方程为22

19x y m

-=,则其焦点在x 轴上,

直线5x y +=与x 轴交点的坐标为()5,0, 则双曲线的焦点坐标为()5,0,

则有925m +=, 解可得,16m =,

则双曲线的方程为:22

1916

x y -=,

其渐近线方程为:4

3

y x =±, 故选B.

15.过双曲线22

134x y -=的左焦点1F 引圆223x y +=的切线,切点为T ,延长1F T 交双曲

线右支于P 点,M 为线段1F P 的中点,O 为坐标原点,则MO MT -=( ) A .1 B .23-

C .13+

D .2

【答案】B 【解析】 【分析】

根据三角形的中位线性质,双曲线的定义,及圆的切线性质,即可得到结论. 【详解】

由图象可得

()1111||MO MT MO MF TF MO MF TF -=--=-+=

()(2221111

2322322PF PF OF OT -+-=?-+= 故选:B. 【点睛】

本题考查圆与双曲线的综合,解题的关键是正确运用双曲线的定义,三角形的中位线性质.

16.双曲线定位法是通过测定待定点到至少三个已知点的两个距离差所进行的一种无线电定位.通过船(待定点)接收到三个发射台的电磁波的时间差计算出距离差,两个距离差即可形成两条位置双曲线,两者相交便可确定船位.我们来看一种简单的“特殊”状况;如图所示,已知三个发射台分别为A ,B ,C 且刚好三点共线,已知34AB =海里,20AC =海里,现以AB 的中点为原点,AB 所在直线为x 轴建系.现根据船P 接收到C 点与A 点发

出的电磁波的时间差计算出距离差,得知船P 在双曲线

()2

2

27136

64

x y --=的左支上,若船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs (已知电磁波在空气中的传播速度约为0.3km/μs ,1海里 1.852km =),则点P 的坐标(单位:海里)为( )

A .9011,7

7??

±

?

???

B .135322,7

7??

±

?

???

C .3217,3?

?± ??

?

D .(45,162±

【答案】B 【解析】 【分析】

根据双曲线的定义求出点P 所在的双曲线的标准方程()22

11522564

x y x -=>,将方程与

()

2

227136

64

x y --=联立,求解即可. 【详解】

设由船P 到B 台和到A 台的距离差确定的双曲线方程为()22

221x y x a a b

-=≥,

因为船P 上接到A 台发射的电磁波比B 台电磁波早185.2μs ,

则船P 到B 台和到A 台的距离差为185.20.3

2301.852

a PB PA ?===-海里,

故15a =,又=17c ,故8b =,

故由船P 到B 台和到A 台的距离差所确定的双曲线为()22

11522564

x y x -=>,

联立()()()22

22

27121366411522564x y x x y x ?--=

???-=>??, 解得135322,77P ??± ? ???

, 故选:B .

【点睛】

本题考查了双曲线的定义、圆锥曲线在生活中的应用,考查了理解转化能力,属于中档题.

17.已知双曲线22

221(0,0)x y a b a b

-=>>的左、右焦点分别为1F ,2F ,过2F 且斜率为247的

直线与双曲线在第一象限的交点为A ,若()

21210F F F A F A +?=u u u u v u u u u v u u u v

,则此双曲线的标准方程

可能为( )

A .22

143x y -=

B .22

134x y -=

C .22

1169

x y -=

D .221916

x y -=

【答案】D 【解析】 【分析】

先由()

21210F F F A F A +?=u u u u r u u u u r u u u r 得到122

2F F F A c ==,根据2AF 的斜率为24

7

,求出217cos 25

AF F ∠=-

,结合余弦定理,与双曲线的定义,得到c a ,求出a

b ,进而可得出结

果. 【详解】

由()

21210F F F A F A +?=u u u u r u u u u r u u u r

,可知1222F F F A c ==,

又2AF 的斜率为

24

7,所以易得217cos 25

AF F ∠=-, 在12AF F ?中,由余弦定理得116

5

AF c =, 由双曲线的定义得16

225

c c a -=, 所以5

3

c e a =

=,则:3:4a b =, 所以此双曲线的标准方程可能为22

1916

x y -=.

故选D 【点睛】

本题考查双曲线的标准方程,熟记双曲线的几何性质与标准方程即可,属于常考题型.

18.设椭圆22

221(0)x y a b a b

+=>>的右焦点为F ,过点F 作与x 轴垂直的直线l 交椭圆于

P ,B 两点(点P 在第一象限),过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点,

且满足AP BP

9

λμ=,则该

椭圆的离心率为( ) A .

35

B .

1213

C .

35或1213

D .

45

【答案】A 【解析】

分析:根据向量共线定理及29

λμ=,AP BP

标,然后求出过椭圆的左顶点和上顶点的直线1l 的方程,即可求得A 点的坐标,从而可得

a ,

b ,

c 三者关系,进而可得椭圆的离心率.

详解:∵A 、P 、B 三点共线,(),OP OA OB R λμλμ=+∈u u u v u u u v u u u v

∴1λμ+= 又∵29

λμ=

∴1323λμ?=????=??或2313λμ?=????=??

∵AP BP

∵过点F 作与x 轴垂直的直线l 交椭圆于P ,B 两点(点P 在第一象限)

∴2(,)b P c a

,2(,)b B c a -

∵过椭圆的左顶点和上顶点的直线1l 与直线l 交于A 点 ∴直线1l 的方程为为1x y a b

+=- ∴()(,

)a c b

A c a

+ ∵2133

OP OA OB =+u u u r u u u r u u u r

∴22

2()1()33b a c b b a a a

+=?+?-,即2b a c =+. ∴2

2

2

2

4()2a c a ac c -=++,即223520a c ac --=. ∴25230e e +-=

∵(0,1)e ∈

∴35e =

故选A.

点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式c

e a

=

;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).

19.过双曲线()22

2210,0x y a b a b

-=>>的右焦点F ,作渐近线b y x a =的垂线与双曲线左

右两支都相交,则双曲线离心率e 的取值范围为( ) A .()1,2 B .()

1,2

C .

(

)

2,+∞

D .()2,+∞

【答案】C 【解析】 【分析】

设过双曲线的右焦点F 与渐近线b

y x a

=

垂直的直线为AF ,根据垂线与双曲线左右两支都相交,得AF 的斜率要小于双曲线另一条渐近线的斜率 ,由此建立关于,a b 的不等式,解之

可得22b a >,从而可得双曲线的离心率e 的取值范围 . 【详解】

过双曲线的右焦点F 作渐近线b

y x a

=

垂线,设垂足为A , Q 直线为AF 与双曲线左右两支都相交,

∴直线AF 与渐近线b

y x a

=-

必定有交点B , 因此,直线b

y x a

=-

的斜率要小于直线AF 的斜率, Q 渐近线b y x a =

的斜率为b a

∴直线AF 的斜率a k b =-

,可得b a a b

-<-, 即

2

2,b a b a a b

>>,可得222c a >, 两边都除以2a ,得22e >,解得2e >,

双曲线离心率e 的取值范围为(

)

2,+∞,故选C.

【点睛】

本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率范围问题应先将 e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的不等式,从而求出e 的范围.

20.在平面直角坐标系中,已知双曲线的中心在原点,焦点在轴上,实轴长为8,离心率为,则它的渐近线的方程为( ) A . B .

C .

D .

【答案】D 【解析】

试题分析:渐近线的方程为

,而

,因此渐近线的方程为

,选D.

考点:双曲线渐近线

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高考数学中的放缩技巧

高考数学中的放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

挑战高考数学压轴题库之圆锥曲线与方程

一、圆锥曲线中的定值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率 为m,证明2m-k为定值. y2 b2= 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由. y2 b2= 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证 y2=1(a>0)的右焦点为F,点A,B分别在 C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (Ⅰ)求双曲线C的方程;

|NF| 定值,并求此定值. 二、圆锥曲线中的最值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标; (ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. y2 b2=1(a>b>0)的左、右焦 y2 b2=1的左、右焦点分 (Ⅰ)求C1、C2的方程; (Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为A B的中点,当直线OM与C2交于P,Q两点时,求四边形AP B Q面积的最小值.

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高考数学压轴题秒杀

秒杀压轴题第五章关于秒杀法的最难掌握的一层,便是对于高考数很多朋友留言说想掌握秒杀的最后一层。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多学压轴题的把握。很多很多人。出题人很怕很怕全省没多少做出来的,相反,压轴题并不是那般神秘难解,不过,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。想领悟、把握压轴题的思路,给大家推荐几道题目。08的除的外我都没做过,所以不在推荐围)。09全是数学压轴题,且是理科(全国一07,08,07全国二,08全国一,可脉络依然清晰。虽然一年过去了,做过之后,但这几道题,很多题目都忘了,一年过去了,都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。记住,压轴题是出题人在微笑着和你对话。会在以后的视频里面讲以及怎么发挥和压榨一道经典题目的最大价值,,”精“具体的题目的解的很清楚。 \ 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)尤其推荐通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。:1 )我押题的第一道数列解答题。裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简:2. 单的数列考察方式,一般会在第二问考)数学归纳法、不等式缩放:3 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。开始

解答题了哦,先来一道最简单的。貌似的大多挺简单的。意义在只能说不大。这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!!年高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目07下面年高考题中见了很多。10、09、08在) 分14本小题满分(22)(2≠0.b其中+1),x ln(b+x)=x(f设函数在定义域上的单调性;)x(f时,判断函数> b当)Ⅰ( 的极值点;)x(f(Ⅱ)求函数n(Ⅲ)证明对任意的正整数. 都成立ln( )不等式, ~ 有点鸡肋了..这道题我觉得重点在于前两问,最后一问这道题,太明显了对吧? 1 第三问其实就是直接看出来么?想想我之前关于压轴题思路的讲解,,看压轴问的形式这道题就出来了。x 为1/n 很明显的令利用第一问和第二问的结论,绝大多数压轴题都是这样的。当然这只是例子之一了,这也证明了我之前对压轴题的评述吧。重点来了。下面,下面,下面,你可以利用导数去证明这个不等式的正确性, ln X<= X--1 大家是否眼熟这个不等式呢?但我想说的是,这个小小的不等式,太有用了。多么漂亮的一这样简单的线性函数,X--1 将一个对数形式的函数转化为一个什么用?个式子!可以说,导数不等式证明中,见到自然对数,我第一个想的就会是这个不等式,看能否利用这个不等式将题目转化为特别容易做的一道

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

从高考数学试题看高考备考复习

从高考数学试题看高考备考复习 一、试题整体分析 考试中心明确要求:数学要考查关健能力,强调数学应用,助推素质教育。 1聚集主干内容,突出关键能力; 2理论联系实际,强调数学应用; 3.考查数学思维,关注创新意识; 4.增强文化浸润,体现育人导向; 5.探索内容改革,助推素质教育。 2019年全国Ⅱ卷高考数学试题,很好的印证和释了上述主旨。全国卷以教育部发的“2019年高考考试大纲”为依据。试卷在结构、试题难度方面和往年相比有一定的调整,有利于不同水平的学生发挥,有较好的信度和区分度,有利于高校选拔人才。试卷重视对考生数学素养和探究意识的考查,注意体现新课改之后新增知识的考査要求,注重学科间的内在联系和知识的综合运用,对能力的考査强调探究性,应用性,多视点、多角度、多层次地考査了考生学习数学所具备的素养和潜力。这种命题的思路既有利于正确引导高中数学教学的方向,揭示数学概念的本质,注重通性通法,倡导用数学的思维进行教学,引导学生掌握用数学的思维解决数学问题,感受数学的思维过程,又有利于破解僵化的应试教育和题海战术。 二、试题特点

1.立足基础知识,考查主干知识。今年试题仍然延续了全国高考数学卷立足基础知识,考查主干知识的风格,理科在大題部分题目顺序上有较大改变,但是概率、立体几何和数列的难度和考察方向与往年区別不大。 数学文科试题在立足稳定的基础上进行创新,稳定是指内容上的稳定、难度上的稳定,比如第1,2,5,6,10,13,18,21题渉及代数知识,具体内容包含集合与逻辑、函数的概念与性质、指数函数、对数函数、导数的几何意义及其应用、数列、不等式与线性规划等;第7,16,17是立体几何方面的题目,具体包含空间线面关系、空间几何体,空间几何体的体积等;第4,14,19考概率统计;第3,9,12是涉及解析几何的试题,具体内容包括双曲线、圆、椭圆、抛物线、平面向量等,第22,23分别是坐标系与参数方程,以及不等式选讲的选做题。 数学理科试卷立足基础知识,考查主干内容,突出通性通法,坚持多角度、多层次的考查数学能力,推理论证能力、空间想象能力、探索能力、分析和解决间题的能力。如理科卷的第1,2,3,4,6,12,14,19,20题涉及代数知识,具体包含集合与逻辑,函数概念与性质、幂函数、指数与对数函数、导数及其应用、数列、复数、不等式等;第9,10,15题是关于三角函数知识的题目,具体包括三角函数的图象与性质、三角求值,解三角形等;第8,16,17题是关于立体几何的题目,具体包括空间线面关系,空几何体的关系、空间角;第4,5,13,18题涉及统计概率;第3,8,11,

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

文本预览
相关文档 最新文档