当前位置:文档之家› 电解质对St无皂乳液聚合体系的影响

电解质对St无皂乳液聚合体系的影响

电解质对St无皂乳液聚合体系的影响
电解质对St无皂乳液聚合体系的影响

电解质对St无皂乳液聚合体系的影响

李榕龙,李泽平,杜奕,阚成友,刘德山

清华大学化学工程系高分子研究所,北京,100084

关键词:苯乙烯,无皂乳液聚合,电解质,乳胶粒形态

功能性高分子微球是指表面带有功能性基团或具有特殊结构的高分子微球,

合成特定粒径并且具有特殊结构形态或特殊功能基团的聚合物颗粒一直是材料

和乳液聚合研究领域的热点问题。

前人的研究表明,电解质可以改变乳液聚合体系的离子环境,从而对聚合反

应过程产生影响,包括促使乳胶粒发生聚并[1,2]。利用无皂乳液聚合制备表面洁

净功能高分子微球时粒径的调控比较困难,尽管人们曾研究通过调节介质的离子

强度来调节胶乳的粒径,但对电解质对无皂乳液聚合的影响规律缺乏系统的认

识。本文系统研究了电介质的种类和用量对苯乙烯(St),甲基丙烯酸甲酯(MMA)

和丙烯酸(AA)无皂乳液聚合体系的影响,获得一系列亚微米和微米级粒径窄

分布的聚合物乳胶粒。

1.实验部分

将St、MMA、AA、NH4HCO3和100ml去离子水加入到四口瓶中(Table 1),

开动搅拌,将反应瓶置于70℃水浴中,通入氮气约15min。将25ml APS 溶液按

10:6:5:4的比例每隔2h添加一次,反应7h后升温至80℃再反应1h。

利用激光光散射粒度仪(ZetaSizer 3000HSA, Marlven, UK)透射电子显微镜(JEM-1200EX,Jeol, JP)分别测定了聚合物乳胶粒的水合粒径和干态粒径; 采

用电导滴定法测定了不同体系中乳胶粒表面的羧基含量。

Table 1. Typical recipe of soap-free emulsion polymerization (unit :g) St MMA AA APS

NH4HCO3electrolyte H2O

variable

125

0.878

19 1 1 0.312

2.结果与讨论

实验结果显示,随着电解质用量的增大,乳胶粒粒径均逐渐增大,转化率较

高且变化不大,凝胶率稍有升高。

对于同一种电解质,随着电解质添加量的增大,除加入NaF的体系其粒径没

有明显变化外,其他体系的乳胶粒粒径均逐渐增大。对于不同电解质,在相同的

摩尔浓度下。阳离子的影响呈现以下顺序:Ca2+ > K+ > Li+,而且Ca2+ 的影响远

远大于碱金属离子的影响;对于碱金属离子,乳胶粒粒径随金属离子半径的增大而增大。同样阴离子的影响顺序为Br- > Cl-。在考察卤素阴离子的影响时没有使用I-是因为它在聚合反应初期就被具有强氧化性的过硫酸铵引发剂还原成了单质碘。对于F-,由于原料单体中的AA具有较强的酸性,这样聚合体系中实际存在两对的缓冲对:HF/NaF缓冲对和NH4HCO3形成的缓冲对, 其结果是在一定范围内增加NaF的用量并不能对体系水相实际离子强度产生明显的影响,从而导致了乳胶粒粒径对NaF用量不敏感的现象。

Table 2. Influences of electrolytes on polymerization and latex properties

Electrolyte(mmol) Dh.v (a)

(nm)

Dp(b)

(nm)

Sd(c)

(%)

Conv.

(%)

Gel(d)

(%)

None 0 592.7 468 84.8 96.7 6.31

LiCl 2.8

7.5

15.0

17.5

579.3

745.4

1052

1071

524

505

909

1075

81.1

83.9

100

79.9

90.9

95.6

90.5

100

8.64

7.95

16.4

KCl 2.5

7.5

12.5

13.5

773.2

899.7

1199.7

1096.5

618

773

1008

1156

81.7

85.8

80.2

86.1

99.8

95.3

99.4

97.7

7.18

8.50

10.5

11.8

CaCl20.25

0.5

0.75

1.0

1.25

581.2

836.7

915.2

1090.2

1635.2

434

698

700

852

921

80.1

90.8

95.7

100

90.2

94.8

95.7

96.4

95.4

97.2

4.90

3.70

4.30

4.75

5.94

NaF 2.5

7.5

17.5

24.5

577.9

595.3

686.1

657.3

498

667

557

490

93.0

86.3

94.0

100

93.5

98.4

95.9

93.6

2.97

4.92

5.85

7.19

NaBr 0.5

2.0

2.5

3.0

703.4

894.0

974.7

1013

659

703

825

828

84.1

100

89.6

93.7

90.9

89.5

97.6

93.4

2.35

8.19

8.67

7.64

(a) 水合粒径; (b) 干态粒径; (c) 表面羧基比例; (d) 聚合过程中的凝胶率

Jill E.Seebergh等人的“Hairy Layer”模型[3]认为, 在低离子浓度下,乳胶粒表面具有表面活性的链(hair)是伸展的,当离子浓度增大时,由于受到静电排斥作用,表面的“hair”向乳胶粒内部塌陷,使乳胶粒表面电荷密度增大,ζ电位值升高,乳液稳定性上升;当离子浓度增大到一定程度时,“hair”将完全塌陷于乳胶粒表面;离子浓度继续增大,由于反电荷作用,反而使ζ电位值降低, 最终

使体系去稳定性。本体系中,各系列的ζ电位值基本是无规的,没有明显的先升高后降低现象。这可能是由于pH缓冲剂以及AA的存在,使得体系在不添加电解质时已经具有较大的离子浓度,即此时乳胶粒表面的带羧基的链段基本塌陷在乳胶粒表面所致。

电导滴定[4]测试结果表明,所有乳液体系中表面羧基占总羧基的比例均高于80%,可见大部分的羧基都分布于乳胶粒的表面。

由于St和的Q值很接近,分别为1.00 和0.83,而它们的e值确差别很大,分别为-0.80和0.88,相差较大,所以二者倾向于交替共聚。由于原料中St的用量远大于AA,故大部分AA最先消耗掉[5]。在聚合反应初期,所形成的乳胶粒粒径较小而且含有较多的羧基,所以聚合过程很稳定。随着反应的进行,乳胶粒逐渐变大,但是单个乳胶粒上表面羧基的总量却变化不大,所以整个乳胶粒上的电荷密度将降低,乳胶粒稳定性下降。当乳胶粒粒径增大到一定程度时,乳胶粒上的表面电荷不足以维持乳胶粒的稳定,导致乳胶粒在碰撞中发生聚并。从表面羧基的测定结果可以推测,聚合后期乳胶粒实际上是被单体溶胀的高粘度的溶液,乳胶粒聚并以后,羧基会重新逐渐迁移到乳胶粒的表面,否则,表面羧基的量将会由于聚并后的包埋而大幅度降低,这与测得的高表面羧基含量不符。根据体积和表面积的关系,由于聚并后体系中乳胶粒的总表面积下降,但总表面羧基的含量并未因聚并而降低,因此聚并后的表面羧基密度必然比聚并前要高,从而导致ζ电位值升高,只要乳胶粒不至于因为过大而发生重力沉降,乳液的稳定性增加。

TEM照片上发现,有的体系乳胶粒表面光滑平整,有的体系乳胶粒边缘粗糙,这可能是由于不同聚并时期乳胶粒的粘度不同,在较高单体转化率时发生聚并后的新胶粒内部分子链段的运动受阻而出现边缘粗糙的现象。

参考文献

[1] 耿耀宗,曹同玉。合成聚合物乳液制造与应用技术。北京:中国轻工业出版社,1999。

[2] P. W. Zhu, D. H. Napper, Colloids and surfaces, 1998(195): 93~106

[3] J. E. Seebergh, J. C. Berg, Colloid and Surfaces, 1995: 139~153

[4] J. Hen, Journal of Colloid and Interface Science, 1974, 49(3):425~432

[5]J. Brandup, E. H. Immergut, E. A. Grulke, Polymer handbook,c1999

[6]Q. Xiong, C. Y. Kan, K. Kang, Y. Du, D. S. Liu.; China synthetic rubber

industry;2003.11.15;26(6):372

Influences of Electrolytes on the Soap-free Emulsion

Copolymerization of St-MMA and AA

R. L. Li, Z. P. Li, Y. Du, C. Y. Kan and D. S. Liu

Department of Chemical Engineering, Tsinghua University, Beijing 100084 China

email: kancy@https://www.doczj.com/doc/eb8288049.html,

Key word: electrolyte, soap-free emulsion polymerization, polystyrene, latex particle morphology

Monodispersed latex particles with carboxyl groups have been widely used in many fields such as colloid research, analytical chemistry, biochemical and biomedical studies. Many researches have been focused on the synthesis of polymer latex particles with fixed particle size and special structure since 1980s.

In this study, a soap-free emulsion polymerization was used to prepare the large-sized monodispersed poly(St-MMA-AA) latex particles with surface carboxyl groups, and latex particles with different size were synthesized in the presence of electrolytes, and the particle size,ζ potential and the content of surface carboxyl groups were investigated. Results showed that the polymerization can be carried out when adding electrolytes such as NaCl, KCl, NaF, Ca2Cl, but the excessive amount of electrolyte could make the polymerization and the latex unstable. And the higher the electrolyte concentration was, the larger the particle size would be.

乳液聚合技术

乳液聚合新技术的研究进展 摘要:乳液聚合方法具有广泛的应用范围,近期几年备受关注。本文首先介绍了乳液聚合的基本情况,并着重介绍了一些新的乳液聚合方法和研究成果。 关键词:乳液聚合;进展 前言: 乳液聚合技术的开发始于本世纪20年代末期,当时就已有和目前生产配方类似的乳液聚合的专利出现。30年代初,乳液聚合已见于工业生产。随着时问的推移,乳液聚合过程对商品聚合物的生产具有越来越大的重要性,在许多聚合物如合成橡胶、合成树脂涂料、粘合剂、絮凝剂、抗冲击共聚物等的生产中,乳液聚合已经成为主要的生产方法之一,每年通过该方法制作的聚合物数以千万吨计。【1】1.乳液聚合基本情况 乳液聚合定义 生产聚合物的方法有四种:本体聚合、溶液聚合、悬浮聚合及乳液聚合。乳液聚合是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要由单体、介质(水)、乳化剂及溶于介质(水)的引发剂四种基本组分组成。目前的工业生产中,乳液聚合几乎都是自由基加成聚合,所用的单体几乎都是烯烃及其衍生物,所用的介质大多是水,故有人认为乳液聚合是指在水乳液中按照胶柬机理形成比较独立的乳胶粒中,进行烯烃单体自由基加成聚合来生产高聚物的一种技术。但随着聚合理论的逐步完善,对乳液聚合比较完整的定义应该为:乳液聚合是在水或其他液体作介质的乳液中,按照胶束理论或低聚合物机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合或离子加成聚合来生产高聚物的一种聚合方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的%~%,引发剂为单体的%~%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的特点 聚合反应发生在分散在水相内的乳胶粒中,尽管在乳胶粒内部粘度很高,但由于连续相是水,使得整个体系粘度并不高,并且在反应

乳液聚合的影响因素讲课讲稿

乳液聚合的影响因素

乳液聚合的影响因素 (2007-03-09 15:48:57) 转载 分类:现代水性涂料 一、乳化剂影响 (1)乳化剂浓度[s]的影响 [s]越大,胶束数目越多,按胶束机理成核的乳胶粒数Np也就越多,乳胶粒的直径Dp也就越小 对于水中溶解度不大的单体的乳液聚合,Np∝[s]0.6 [s]越大,分子量Mn越高,聚合反应速率Rp越大。 (2)乳化剂种类的影响 特性临界参数CMC,聚集数及单体的增溶度各不相同 CMC越小和聚集数越大的乳化剂成核几率大,所生成的乳胶粒数Np就越大,乳胶粒直径Dp越小,且聚合反应速率Rp大及聚合物分子量高;增溶度大的乳化剂所生成的增溶胶束多,成核几率高,故可生成更多的乳胶粒。 二、引发剂的影响 引发剂浓度[I]增大,Mn降低 Rp提高 三、搅拌速度的影响 搅拌的一个重要作用就是把单体分散成单体珠滴,并有利于传热和传质。(1)搅拌速度对乳胶粒直径的影响

在乳液聚合中的分散阶段,搅拌强度不宜太高,否则会使单体分散成更小的单体珠滴,每立方厘米水中单体珠滴的表面积更大,在单体珠滴表面所吸附的乳化剂量增多,致使每立方厘米水中胶束数目减少,胶束成核几率下降,故生成的乳胶粒数目减少、乳胶粒直径增大。 所以搅拌强度增大时,乳胶粒的直径不但不减小,反而增大。 (2)搅拌速度对聚合反应速率的影响 一方面,每立方厘米中乳胶粒数目减少,反应中心减少,聚合反应速率降低;另一方面,会使混入乳液聚合体系中的空气增多,而空气中的氧是自由基反应的阻聚剂,会使聚合反应速率降低。 (3)搅拌对乳液稳定性的影响 过于激烈的搅拌同时会使乳液产生凝胶,甚至破乳。 四、反应温度的影响 温度高,Mn降低,Rp增大 温度高,乳胶粒数目Np增大,粒径Dp减小。 温度高,乳液稳定性降低。 五、单体相比的影响 相比M0为乳液聚合中初始加入的单体和水的质量比 乳胶粒的平均直径随相比的增大而增大 单体转化率随相比的增大而降低 六、电解质的影响 电解质的用量盐析降低CMC 提高乳化剂有效比率

PMMA_BA无皂乳液聚合(1)

?新产品新技术? PMMA /BA 无皂乳液聚合 徐继红,陶 俊,陆娅君 (安徽理工大学化学工程系,安徽淮南232001) 摘要:以过硫酸铵为引发剂,用超声波引发P MMA /BA 无皂乳液聚合;探讨了单体和引发剂的质量分数对单体转化率的影响,并对聚合物进行了FT 2I R 和TE M 的表征。结果表明:P MMA /BA 乳胶粒直径大约在100nm 左右。关键词:超声辐射;无皂乳液聚合;丙烯酸丁酯;甲基丙烯酸甲酯 中图分类号:T Q 320.61 文献标识码:A 文章编号:1009-5993(2008)01-0016-03 基金项目:安徽省教育厅高校省级自然科学研究项目 (KJ2007B096),校人才引进基金项目。 收稿日期:2007-10-07 作者简介:徐继红(1968—),女,副教授,主要从事纳米复合材料 的研究。 0 引言 常规乳液聚合由于使用大量的乳化剂而造成 乳液纯度不高以及后处理工序复杂,而且乳化剂的使用也导致严重的环境污染,因而无皂乳液聚合技 术得到了很大的发展[1-3] 。无皂乳液聚合体系中不含乳化剂或含乳化剂,但其浓度小于其临界胶束 浓度(C MC )[4] 。无皂乳液聚合可以得到表面洁净、单一分散的乳胶粒,同时消除了乳化剂对环境的污染,因而越来越受到人们的关注。无皂乳液聚合技术广泛用于生物、医学、化工等领域。 本文以过硫酸铵为引发剂,利用超声波直接合成以水为分散介质的P MMA /BA 无皂乳液的聚合。探讨单体和引发剂的质量分数对单体转化率的影响。通过FTI R 、TE M 等表征了共聚物的结构及乳胶粒形貌。 1 试验 1.1 主要原料与仪器 甲基丙烯酸甲酯(MMA ),分析纯,天津市大茂 化学试剂厂;用10%Na OH 溶液洗3次,再用蒸馏水洗数次至中性。 丙烯酸丁酯(BA ),化学纯,天津市博迪化工有限公司;使用前用10%Na OH 溶液洗3次,再用蒸馏水洗数次至中性。 过硫酸铵(APS ),分析纯,宜兴市第二化学试剂厂。 丙酮,分析纯,淮南市化学试剂厂。 K Q -200DB 型高功率数控超声波清洗器,昆山市超声仪器有限公司。1.2 试样制备 按一定的比例将单体(MMA 、BA )、水溶液加入到带有温度计和滴液漏斗的三口烧瓶中。在三口烧瓶中,通入高纯N 2,10m in,除去体系中的氧气,然后开启超声波清洗器。引发剂(APS )以溶液形式加入,采用滴加方式,滴加时间控制在120~150m in 。在聚合过程中,保持体系温度(50±2)℃。超声辐照一定时间后,停止超声即可。将制备的乳液放入冰箱中冷冻24h,使其破乳,经过滤、洗涤、真空干燥后称重,计算转化率。1.3 表征及性能测试 采用JE M -2010型高分辨透射电子显微镜观察P MMA /BA 乳胶粒子的形态、粒径和分散情况;采用Vect or 33傅立叶变换红外光谱仪测定P MMA /BA 乳胶粒子的分子结构;依据重量法,计 算单体转化率[5] 。 转化率/(%)=(W p /W m )×100% 其中W p 是烘干的乳胶的质量,W m 是加入的单体质量。 — 61—

影响乳液聚合的因素

影响聚醋酸乙烯乳液质量的因素 单体质量的影响 醋酸乙烯单体应该用新精馏的,并控制一定的质量指标。 外观——无色透明液体 活化度(10ml单体加过氧化苯甲醚——<30min 沸点——72-73℃——20ml在70℃时测定) 含醛(以乙醛计)——<0.02% 含酸(以乙酸计)——<0.01% 醋类是醋酸乙烯单体中的主要杂质,能起到明显的阻聚作用,阻聚作用使得聚合物的分子量不易长大,并且使聚合过程变复杂。在本体聚合和悬浮聚合时经常使用乙醛调节分子量大小。酸对乳液聚合也有影响,活化度实际上是醛、酸和其他杂质在单体中的综合影响,杂质多聚合诱导期变长。杂质少,诱导期短,活化时间也短。活化度太差的单体在乳液聚合反应进行时会出现聚合反应时行缓慢,回流一直很大,使连续加入单体有困难。加单体太慢或中途停止加单体则反应放热少而回流带出的热量多,反应温度就会下降,反应难于控制,无法平稳进行。 引发剂的影响 在乳液聚合中都用水溶性的引发剂,如过硫酸盐和过氧化氢,而不能用溶解于单体中的过氧化苯甲酰和偶氮二异丁腈,引发剂溶解在单体中不好。过氧化氢在存放中易变化,而硫酸盐比过氧化氢易控制,在操作时加水溶解后即加入反应釜内,因此比较稳定,所以一般多采用过硫酸钾、过硫酸铵等。 一般情况下过硫酸钾的用量为单体量的0.2%,实际上在反应中只加入2/3,其余1/3是在反应最后阶段加入的,目的是为了减少乳液中的游离单体。引发剂用量根据设备情况、投料量确定,反应设备越大,投料量越大,引发剂的用量就相应减少些。做小试验的时候,引发剂使用的比例比中试、实际生产的比例要大一点。而在每次反应时间中初加的部分也需视反应情况而稍有不同。 用过硫酸盐为引发剂时,乳液的pH值需加以控制,因为在反应中加入过硫酸盐会使反应液的酸性不断增加,而pH值太低(如小于2时),则反应速度很慢,有时会破坏了乳液聚合反应的正常进行,使乳液粒子变粗,甚至会使反应时间过长或使反应无法进行。若所用聚乙烯醇是碱醇解的产品,水溶液呈弱碱性,则在反应前可不调整pH值,而在反应结束后加入部分碳酸氢钠中和至pH值4-6间。 乳化剂的影响 乳化剂是一种表面活性剂,在乳液聚合过程中能降低单体和水的表面张力,并增加单体在水中的溶解度,形成胶束和乳化的单体液滴。乳化剂的选择对乳液的稳定性和质量有很大影响,乳化剂的用量多少也对乳液的稳定性有影响,乳化剂用量太少乳液的稳定性差,而用量太大耐水性则差。 聚乙烯醇是聚醋酸乙烯乳液聚合中最常用的乳化剂,由于对乳液的质量要求不同,聚乙烯醇的规格和用量也有所不同。聚乙烯醇在乳液中起乳化作用,也起保护胶体的的作用,但也有使胶体增稠的作用,所以其用量不仅以乳化的角度也从增稠的角度,聚乙烯醇地一般用量是为单体的5%左右。

无皂乳液聚合

无皂乳液聚合的几种制备方法比较及应用 摘要:无皂乳液聚合又称无乳化剂乳液聚合,是一种环保清洁的制备高聚物的 聚合方法。与常规乳液聚合相比,具有许多优点,因此受到越来越多的关注,应用空间和发展前景十分广阔。详细地讨论了几种无皂乳液聚合的制备方法,对其优缺点进行了比较,并根据不同的方法举出一些应用的例子。 关键词:无皂乳液聚合;制备方法;应用 前言 无皂乳液聚合是指在反应过程中完全不加入乳化剂或仅加入微量乳化剂(小于临界胶束浓度CMC)的乳液聚合过程。与常规乳液聚合相比,无皂乳液聚合具有如下特点:(1)避免了由于乳化剂的加入,而带来的对聚合产物电性能、光学性能、表面性能、耐水性及成膜性等的不良影响;(2)不使用乳化剂,降低了产品成本,缩减了乳化剂的后处理工艺;(3)制备出来的乳胶粒具有单分散性,表面“洁净”,粒径比常规乳液聚合的大,可以被制成具有表面化学能的功能颗粒; (4)无皂聚合乳液的稳定性通过离子型引发剂残基、亲水性或离子型共聚单体等在乳胶粒表面形成带电层来实现。 无皂乳液聚合由于体系中不含乳化剂,所以具有许多优异的性能。但是也正是由于缺少乳化剂的保护作用,而使得乳液的稳定性下降,固含量相对较低。因此,开发新型的反应性乳化剂和优化无皂乳液聚合工艺,是无皂乳液聚合面临的首要问题。 1.制备方法 1.1制备方法的选择原因 无皂乳液聚合的制备方法可根据其单体种类与性质以及反应体系来选择,并可以根据其机理,反应动力学、热力学以及影响无皂乳液聚合稳定性的因素来判断制备方法的优缺点。 其中无皂乳液的稳定性是在选择制备方法时的必要考虑因素。在无皂乳液聚合过程中,生成的表面活性物质、聚合物的结构因素以及静电因素都可以不同程度的影响无皂乳液的稳定性。根据影响稳定性的不同因素可知,要增强粒子稳定性。原则上应增强粒子表面的电荷和亲水性,使Gibbs自由能充分降低。可以得出增强稳定性的方法如下: (1)以聚(醋酸乙烯酯/丙烯酸钠)两亲聚台物为乳化剂。制备了(质量分数)为50%~55%的高固含量无皂乳液。该乳化剂由亲水基和亲油基共同组成,大大提高了乳化效果。两亲聚合物形成的胶束和乳胶粒之间由于静电斥力作用的加强,两者不互相粘结,提高了乳液的稳定性。 (2)丙烯酸丁酯(BA)之类的极性单体,随着含量的增加,乳胶聚合物的极性增大,微球表面与水相间的相互作用增强,表面能降低。乳胶的稳定性增强。

阳离子乳液聚合及其应用研究进展

阳离子乳液聚合及其应用研究进展 化工与材料学院 材化081—18 程如清

阳离子乳液聚合及其应用研究进展 程如清 (大连工业大学化工与材料学院,辽宁大连 116034) 摘要:本文简单的介绍几种比较主流的阳离子乳液的聚合方法,并且介绍了阳离子聚合物乳液在 造纸工业和纺织工业以及在建筑业的应用,并对阳离子聚合物乳液在生活生产中应用和发展作了 展望。 关键词:阳离子乳液聚合阳离子聚合物乳液应用研究进展 1. 引言 阳离子聚合物乳液对正负电荷具有良好的平衡性能, 用于纸张上浆剂[1, 2]、粘合剂[3,4]以及染印、钻井、化妆品、生物医学等领域[5- 7]。阳离子聚合物乳液的基本特征是乳胶粒表面或聚合物本身带正电荷,早在60 年代阳离子乳液就引起人们的关注, 目前已有很多人从事这方面的研究, 在理论和应用方面取得了显著的成果。要赋予乳胶粒或聚合物正电荷, 可以根据需要采用不同的聚合方法。 2. 阳离子聚合物乳液的制备方法 2.1 常规乳液聚合法 用乙烯基单体、阳离子型乳化剂或高分子乳化剂, 在自由基引发剂或阳离子型引发剂作用下, 按常规乳液聚合法可以合成阳离子乳液。如sheetz[8]用十二烷基氯化铵作乳化剂, 在H2O 2- F3+e , pH= 2 中制得了稳定的阳离子聚合物乳液; Sarota 等[9]用十二烷基吡啶氯化铵作乳化剂, 加入少量的甲基丙烯酸二甲胺基乙酯, 合成了稳定性良好的PSt 阳离子胶乳; 李效玉等[10]研究了利用不同的表面活性剂如聚乙烯醇,N ,N - 二甲基,N - 十二烷基,N - 苄基氯化铵,N - 甲基,N - 十六烷基吗啉硫酸甲酯季铵盐(CMM ) 等对合成的阳离子乳液的稳定性、聚合转化率的影响, 结果发现: CMM 作乳化剂, 聚合转化率最高, 乳液的稳定性最好。 2.2 转换法 转换法是用阳离子型表面活性剂或两性、非离子型表面活性剂对某些阴离子胶乳进行转换而制备阳离子胶乳。如Heinz 等[11]采用两性表面活性剂和阳离子表面活性剂对阴离子聚苯乙烯、丁二烯胶乳进行转换, 得到了阳离子胶乳;B low [12,13]在研究天然胶乳与阴离子合成胶乳时, 考察了阳离子表面活性剂对胶乳稳定性和胶粒表面电荷的影响, 发现加入阳离子乳化剂使胶乳的稳定性降低, 但是在搅拌下把稀胶乳加到过量的阳离子表面活化剂中, 非常成功地转换成阳离子胶乳; 恩知钢太郎[14]采用烷基取代胺与环氧乙烷的加成物为阳离子乳化剂, 对用转换法生产阳离子丁苯胶乳进行系统研究, 所用的乳化剂除具有同阴离子乳化剂混溶性好的特点外, 还可与胶乳微粒进行交联, 在该转换中, 乳化剂用量占胶乳中聚合物的3- 5% (重量) , 并且边搅拌边向阴离子胶乳(pH 为9- 12) 中定量加入浓度为30% 的阳离子表面活性剂, 然后将pH 值调到8 以下, 从而完成转换过程。 2.3 微乳液聚合法 微乳液聚合法是一种特殊的乳液聚合法, 合成的聚合物具有分子量分布窄、胶乳粒径小等特点, 通常利用可交联的功能单体作共聚单体, 以防止粘度增加

无皂乳液聚合

乳液聚合 乳液聚合(emulsion polymerization)是高分子合成过程中常用的一种合成方法,因为它以水作溶剂,对环境十分有利。在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。 乳液聚合又可细分为无皂乳液聚合、核壳乳液聚合、微乳液聚合、原位乳液聚合、反相乳液聚合、反相微乳液聚合、基团转移聚合等等。在这里主要介绍无皂乳液聚合。传统的乳液聚合中的乳化剂会被带入到最终产品中去,其纯化工艺非常复杂。乳化剂一般价格昂贵。加入乳化剂会增加成本而且乳化剂会造成环境污染,乳化剂的存在还会影响乳液聚合物的电性能、光学性质、表面性质及耐水性等,使其应用受到限制。另外,生产确定粒径的乳液产品需要制定特别的反应条件且可重复性差[1]。随着人们对环境问题的日益重视以及为克服由于加入乳化剂而带来的聚合物产品的弊端,人们开始致力于无皂乳液聚合技术(soap-free)。 无皂乳液聚合(soap-free emulsion polymerization)是指不含乳化剂或仅含少 量乳化剂其浓度小于临界胶束浓度CMC 的乳液聚合。但少量乳化剂所起的作用与传统的乳液聚合完全不同[2] 。与传统乳液聚合方法相比无皂乳液聚合具有以下几个突出优点:无皂乳液聚合所制备的乳胶粒子具有粒子表面比较洁净的特点,乳液稳定通过电解质如NaCl 离子型引发剂残基亲水型,或离子型共聚单体极性单团在微球表面形成带电层而获得。无乳化剂乳液聚合所制备的聚合物微球具有单分散性,微球尺寸较常规乳液聚合的大,还可得到具有一定表面化学性质的功能性颗粒。 成核机理 无皂乳液聚合体系的粒子密度Np 粒径的大小Dp 直接与成核机理密切相关,因此受到特别的重视。人们提出了多种无皂乳液聚合成核机理[4]。普遍为人们所接受的为均相成核机理和齐聚物胶束成核机理。但是无皂乳液聚合现有的任何一种成核机理均难以描述所有单体的粒子成核的机理。 齐聚物胶束成核机理 Goodall 等人研究了苯乙烯/过硫酸钾/水体系的无皂乳液聚合的成核机理提出了一种齐聚物胶束成核机理:带有离子链端的齐聚物先在水相形成胶束而引发聚合,然后随着聚合的进行可以观察到由于胶粒表面积增大而导致的表面电荷密度下降,此时早期产生的初级胶粒通过凝聚重新获得胶态稳定性,一旦稳定的胶

乳液聚合中乳胶粒粒径大小的影响因素

乳液聚合中乳胶粒粒径大小的影响因素 概述 乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上。粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在 10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质,在食品、医药、透明材料的填料等领域都有广泛的应用;大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质。 影响乳胶粒粒径大小有以下各种因素。 1乳化剂的影响 在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂。乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布。乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小。 在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。非离子型乳化剂不怕硬水,化学稳定性好。一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差。与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。因此在有离子型和非离子型乳化剂可供选择时,优先选择离子型乳化剂。两性乳化剂由于价格昂贵,尚未能在乳液聚合工业上体现其独特的性

无皂乳液聚合实验

附二实验: 无皂乳液聚合法合成单分散高分子胶体微球 一.目的和要求 1. 了解高分子和高分子聚合反应基本知识。 2. 掌握无皂乳液聚合反应机理以及单分散高分子微球合成操作。 3. 了解形成稳定的胶体微球体系的机理和zeta 电势等有关知识。 4. 了解高分子微球的基本表征手段、仪器原理及相关操作。 二.前言 1. 高分子化学的基本概念 20世纪20年代是高分子科学诞生的年代,1920年,高分子科学的始祖H. Staudinger(德国)首次提出以共价键联结为核心的高分子概念,并获得1953年度诺贝尔化学奖。 高分子(macromelecular)是一种由许多原子通过共价键连接而形成的分子量很高(104-107,甚至更高)的化合物。一般把相对分子质量高于10000的分子称为高分子,所以高分子又称大分子。由于高分子多是由小分子通过聚合反应而制得的,因此也常被称为聚合物或高聚物,用于聚合的小分子则被称为“单体”。如果把小分子化合物看作“点”分子,那么高分子就像“一条链”或“一串珠子”,这条贯穿于整个分子的链被称为高分子的主链,高分子主链的长径比可以达到103-105,甚至更大。 由于高分子化合物的相对分子质量很大,所以在物理、化学和力学性能上与小分子化合物有很大差异。如高分子化合物的高强度、高弹性、高粘度、力学状态的多重性以及结构的多样性等特点都是其有别于小分子化合物的特征。每个高分子都是一个长链,与小分子化合物相比,其分子间的作用力要大得多,超过了组成大分子的化学键能,所以它不能像一般小分子化合物那样被气化,用蒸馏法加以纯化,这也正是高分子化合物具有各种力学强度,用作材料的内在因素。除了少数天然高分子如蛋白质、DNA等外,高分子化合物的分子量通常是不均一的,高分子化合物实际上是一系列同系物的混合物,这种性质称为“多分散性”。

细乳液聚合最新研究进展

第49卷第8期2019年8月 涂料工业 PAINT&COATINGS INDUSTRY Vol.49 No.8 Aug.2019细乳液聚合最新研究进展 钟瑞英,付长清%申亮 (1.江西科技师范大学化学化工学院涂料与高分子系,南昌330013; 2.江西省水性涂料工程实验室,南昌330013) 摘要:随着高分子合成技术的迅速发展,乳液聚合法的发展创新趋势较为明显,其聚合过程对 商品聚合物的生产至关重要,所制备出的聚合物乳液可直接用作水性涂料和胶粘剂等。文中具体介 绍了细乳液聚合体系的设计方法、聚合过程及稳定机理,重点综述了近年来细乳液聚合在高固含量 细乳液制备、纳米复合材料制备(荧光聚合物纳米粒子、有机/无机纳米复合材料)及聚合物空心球或 微球制备等方面的研究进展。 关键词:细乳液聚合;应用;制备;进展 中图分类号:TQ630. 6 文献标识码:A文章编号:0253-4312(2019)08-0081-07 doi:10. 12020/j.issn.0253-4312. 2019. 8.81 Recent Progress in Mini-Emulsion Polymerization Zhong Ruiying,Fu Changqing,Shen Liang (1.Department of P olymer and Coating ^Jiangxi Science& Technology Normal University, Nanehang330013, China;2.Jiangxi Waterborne Coatings Engineering Laboratory,Nanchang330013, China) Abstract:With the rapid development of polymer synthesis technology,the development trend of emulsion polymerization is more obvious.Now its polymerization process is more important for the production of commercial available polymers.The emulsion can be directly used for waterborne coatings and adhesives,etc.The preparation technique,polymerization process and stabilization mechanism of mini-emulsion polymerization system were introduced in this paper,focusing on the recent progress of minie—emulsion polymerization in the preparation of high solid content polymer mini-emulsion,nanocomposite(fluorescent polymer nanoparticles,organic/inorganic nanocomposites)and hollow or microspheres polymer was reviewed in this paper. Key words :minie-mulsion polymerization;application;preparation;development 20世纪70年代初,美国Lehigh大学的Ugelstad 等学者发现m,在乳液聚合中乳胶粒生成的主要方式 可以为珠滴成核,但单体珠滴必须分散得足够细。在乳化剂十二烷基硫酸钠(SDS)和助稳定剂十六醇 (CA)/十六烷(HD)的共同作用下,通过强力的均化作 用,可以把单体分散成单体珠滴直径为亚微米(50?*500 nm)级的细乳液,并提出了新的粒子成核机理—在亚微单体液滴中引发成核'开发了细乳液聚 合技术。 与常规乳液聚合相比,细乳液聚合在体系中引 进了助乳化剂,并采用了微乳化工艺(简称MP),这样 使得原本较大的单体液滴(直径1 〇〇〇?5 000 nm)被 [基金项目]江西科技师范大学拔尖人才项目(2016QNBJRC007);国家自然科学基金(51563011) *通信联系人

乳液聚合方法在材料制备上的应用

聚合方法在材料制备上的应用及发展 材料的合成与制备首先是单体通过聚合反应合成聚合物,然后通过相应的加工工艺制备成所需的材料或产品。聚合反应常需要通过一定的聚合方法来实施,根据聚合物的性能指标以及应用环境条件等要求,常用的聚合方法有本体聚合、溶液聚合、悬浮聚合、乳液聚合以及固相聚合、熔融聚合、界面聚合等等,不同的聚合反方法有不同的工艺及设备要求,所得的聚合物产物在纯度、分子量、物态及性能等方面也各有差异。如本体聚合体系中仅有单体和引发剂组成,产物纯净后处理简单,可直接用模板模具成型,如有机玻璃的制备;溶液聚合是将单体和引发剂均溶于适当的溶剂中的聚合方法,体系得粘度较低,具有传热散热快、反应条件容易控制,可避免局部过热,减少凝胶效应等特点适应于聚合物溶液直接使用的场合,如涂料、胶粘剂等;悬浮聚合是单体以小液滴状悬浮在水中进行的聚合方法,,其特点是以水作为反应介质,为了让非水溶性的单体能在水中很好地分散需要使用分散剂,所以悬浮聚合体系一般由单体、油溶性引发剂、分散剂以及水组成,悬浮聚合的产物一般以直径为0.05~2mm的颗粒沉淀出来,后处理简单方便生产成本低,但产物中常带有少量分散剂残留物;乳液聚合是在乳化剂的作用下,单体分散在水中形成乳液状态的聚合方法,体系由单体、水溶性引发剂、乳化剂和水组成,由于是以水为介质,具有环保安全、乳胶粘度低、便于传热、管道输送和连续生产等特点,同时聚合速度快,可在较低的温度下进行聚合,且产物分子量高,所得乳胶可直接用于涂料,粘结剂,以及纸张、织物、皮革的处理剂等众多领域,乳液聚合因其生产过程中安全、环保等特点深受人们的广泛重视,下面主要以乳液聚合为例就聚合方法在材料制备上的应用及进展进行

乳液聚合中乳胶粒粒径大小及分布的影响因素

乳液聚合中乳胶粒粒径大小及分布的影响因素 王竹青葛圣松 (山东科技大学化学与环境工程学院山东青岛 266510) 摘要在乳液聚合中,乳胶粒的大小及分布对乳液的性能及其应用有很大的影响,同时也反映了乳液聚合反应进行的过程。本文综述了影响乳胶粒粒径大小及分布的各种因素,如聚合工艺、乳化剂、单体种类、聚合温度、引发剂等,并介绍了不同粒径乳液的性能及其应用。关键词乳液聚合;乳胶粒粒径;影响因素;应用 引言 乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上[1]。粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在 10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质[2],在食品、医药、透明材料的填料等领域都有广泛的应用[3];大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质[4]。 本文综述了影响乳胶粒粒径大小的各种因素,并介绍了不同粒径乳液的性能及其应用。 1乳化剂的影响 在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种

基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂[5]。乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布[6]。乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。付永祥[7]通过实验总结出随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小的结论。张文兴[8]讨论了高固含量条件下各因素对微胶乳粒径及分布的影响,通过控制乳化剂用量制备了固含量 40%、粒径50nm、分布 0.050 级别的纳米微胶乳。 在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。非离子型乳化剂不怕硬水,化学稳定性好。一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差[9]。与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。因此在有离子型和非离子型乳化剂可供选择时,优先选择离子型乳化剂。两性乳化剂由于价格昂贵,尚未能在乳液聚合工业上体现其独特的性能

无皂乳液聚合反应原理

无皂乳液聚合反应原理 传统的乳液聚合存在成核、增长和终止三个阶段,在无皂乳液聚合中也同样存在,其中成核和增长阶段的反应机理与乳液的性能密切相关。 ①成核机理 目前,关于无皂乳液聚合有两种成核机理:均相成核机理和齐聚物胶束成核机理。 对水溶性较大的极性单体而言,以均相成核机理为主,即引发剂在水溶液中分解生成自由基,并与溶于水中的单体分子进行链增长反应,反应遵循均相动力学。随着链增长反应的进行,自由基活性链的聚合度逐渐增大,在水中的溶解性逐渐变差。当活性链增长至临界链长时,便自身缠结,从水相中析出,形成基本初始粒子,初级粒子继续吸收齐聚物自由基和单体,形成乳胶粒,聚合就在乳胶粒中进行。如图1.1所示。Goodwall等人通过对以过硫酸钾(KPS)为引发剂的苯乙烯(St)无皂乳液聚合反应的研究,提出了齐聚物胶束成核机理。该理论的主要内容为:在反应初期,水相中生成大量具有一定长度疏水链段的齐聚物,链的一端带有亲水性的引发剂碎片基团,使齐聚物本身具有表面活性剂的性质,当齐聚物浓度达到相应的CMC值时,便自身胶束化,形成增溶齐聚物胶束,在该胶束内引发聚合反应形成乳胶粒。如图1.2所示。 图1.1均相成核机理示意图图1.2齐聚物胶束成核机理示意图Song等人在齐聚物胶束成核理论的基础上提出了两阶段模型。在KPS/St体

系中,无皂乳液聚合的成核期包括齐聚物胶束形成和粒子增长、聚并两个阶段。反应初期,临界链长较长,随着齐聚物浓度不断增加,临界链长不断下降,齐聚物胶束形成的速率增加。这一阶段定义为第一成核期,该阶段的特征是临界链长为变数。在第二成核期,临界链长保持为一个恒定值。在此阶段,生成高相对分子质量聚合物,导致乳胶粒表面的电荷密度大大降低,稳定性降低,发生粒子间的聚并,聚并到一定程度的乳胶粒体积增大,稳定性提高,使粒子间的聚并速率下降,最终乳胶粒数目达到一个恒定值,至此成核结束。 近年张茂根等人对无皂乳液聚合的成核、成粒机理的研究做了许多工作,提出了三阶段成粒机理。第一阶段称为成核-凝聚阶段;第二阶段为成核-凝聚、增长-聚并共存阶段;第三阶段为增长-聚并阶段。他们认为在MMA/BA体系中无皂乳液聚合是聚合过程中成核-凝聚-增长共同作用和相互竞争的结果。该理论较好解释了无皂乳液聚合体系中单分散粒子的形成过程。 ②增长机理 增长机理主要影响体系最终粒子的形态、粒子的表面特性和乳液的应用。有两类机理,一类是均相增长,另一类是非均相增长,后者又可分为核-壳模式和连续凝聚增长模式。 无皂乳液聚合技术 在传统的乳液聚合中都要加入乳化剂,以使体系稳定和成核。由于无皂乳液聚合在反应过程中完全不含或仅含微量(其浓度小于临界胶束浓度)乳化剂,稳定性差,合成固含量高的无皂乳液十分困难。所以目前无皂乳液聚合技术的关键是提高乳液的稳定性和固含量。针对此问题,国内外进行了大量的研究,提出了许多方法,如采用水溶性单体共聚、采用反应性表面活性剂或大分子乳化剂、加入难溶无机固体粉末或有机溶剂等。

聚合物研究进展

驱油用耐温抗盐聚合物进展 随着高分子化学的发展,最近开发了许多新的聚合物,尤其是出现了不少新的合成水溶性聚合物。水溶性高分子化合物所具有的亲水性和其它许多宝贵的性能如粘合性、成膜性、润滑性、成胶性、鳌合性、分散性、絮凝性、减磨性、增稠性、流变性、加溶、增泡稳泡、浊点升高、保湿、营养等,正得到愈来愈广泛的应用。同时它的应用范围不断地扩大,已从原用于食品、粘接剂、涂料、凝聚剂、胶片、土木建筑、造纸、染色、词料等方面,向化妆品、药品、油墨、颜料、电子等高附加价值的精细聚合物领域扩展。 水溶性聚合物研究进展 水溶性聚合物又称水溶性树脂或水溶性高分子,是一种亲水性的高分子材料,在水中能溶解或溶胀而形成溶液和分散液。水溶性聚合物被作为一类物质研究至今仅30多年历史,它具有特殊的亲水性能。这是因为其分子中含有亲水基团,最常见的亲水基团是羧基、羟基、酰胺基、胺基、醚基等。由于它的分子量可以控制,高到数千万,低到几百,其亲水基团的强弱和数量可以按要求加以调节。而其亲水基团等活性官能团还可以进行再反应,生成具有新官能团的化合物,这类聚合物均含有亲水基与疏水基组份,所以具有两性性质。可用作增稠剂、胶凝剂、稳定剂、絮凝剂、涂料、粘合剂、乳化剂等。广泛应用于造纸、水净化、国防、石油、采矿、冶金、化纤、纺织、印染、食品、化工、农业、医药等行业及部门。水溶性聚合物研究进展 水溶性聚合物研究进展 这类聚合物总体上又可细分为水溶性聚合物、水溶性功能聚合物、水溶性聚合物树脂和高聚物水凝胶、智能性高聚物水凝胶。按照目前世界两类聚合物的技术开发以及消费状况看,仍以丙烯酰胺及其衍生物的均聚物和共聚物,丙烯酸及其衍生物的均聚物和共聚物以及磺化苯乙烯类为主的多元共聚物为主导市场。 水溶性聚合物研究进展 水溶性聚合物的分类 水溶性高分子化合物可以分为四大类:有机天然水溶性高分子化合物,有机半合成水溶性高分子化合物、有机合成水溶性高分子化合物和无机水溶性高分子化合物。 通常说来,一般聚合物的制备方法也适用于水溶性聚合物的制备,但水溶性聚合物的制备也有其特殊性,水溶性聚合物制备主要以自由基方式进行均聚、共聚或接枝等获得。聚合方法按介质分类主要有水溶液聚合,有机溶剂聚合,常规乳液聚合,悬浮聚合以及80年代以来研究尤其活跃的反相微乳液聚合、反相悬浮聚合、接枝共聚、互穿/半互穿聚合物网络技术,大分子组合化学。引发方式主要有化学引发中的氧化-还原引发和非氧化-还原引发、辐射引发、光化学引发等单元型或多元复合型引发方式. 操作条件 1、苛刻条件--高温、高浓度氧化剂 (wet air oxidation简称WAO) 2、温和条件--常温、低浓度氧化剂

种子乳液聚合的研究进展

种子乳液聚合的研究进展 邵谦1,2*,王成国1,郑衡2,王建明2 (11山东大学材料液态结构及其遗传性教育部重点实验室,济南250061; 21山东科技大学化学与环境工程学院,青岛266510) 摘要:种子乳液聚合法因具有乳液稳定性更好、粒径分布窄、易控制等优点,在乳胶粒子设计及制备各种功能性胶乳方面具有重要作用,是制备高固含量乳液及具有核壳结构乳液的最常见最简便的方法。本文综述了 近年来种子乳液的聚合工艺、聚合机理,包括接枝机理、互穿聚合物网络机理、聚合物沉积机理、种子表面聚合 机理和离子键合机理等,以及种子乳液聚合在乳胶粒子设计方面的应用研究进展,并讨论了影响种子乳液聚合 的各种因素。 关键词:种子乳液;乳液聚合;粒子设计 传统的乳液聚合制得的聚合物乳胶粒粒径一般较小,且粒径分布较宽,不能满足特殊需要。20世纪70年代,Williams[1]根据苯乙烯种子乳液聚合动力学和溶胀等数据首先提出了核壳理论。80年代日本神户大学的Okubo[2]教授提出了/粒子设计0的新概念,在不改变乳液单体组成的前提下改变了乳胶粒子的结构。 与其它方法制备的乳液相比,种子乳液聚合法制备的乳液具有稳定性更好、粒径分布窄、易控制等优点。利用种子乳液聚合技术可以容易地制得不同结构的胶乳,是制备高固含量乳液最常见最简便的方法,也是实用化的制备各种功能性胶乳的重要方法之一[3,4]。本文就近年来种子乳液聚合的工艺、机理研究及在乳胶粒子设计方面的应用进行了综述,并讨论了影响种子乳液聚合的各种因素。 1种子乳液聚合工艺 种子乳液聚合法是核壳型乳液的典型制备方法,形成的高聚物一般是均聚物或共聚物,所以制备方法和通常的乳液聚合工艺基本相同[5]。根据壳层单体的加入方式,可以分为间歇法、溶胀法、半连续法、连续法。间歇法是按配方一次性将种子乳液、水、引发剂、乳化剂、壳层单体加入到反应器中,升温至反应温度进行聚合。溶胀法是将壳层单体加入到种子乳液中,在一定温度下溶胀一段时间,然后再升温至反应温度后加入引发剂进行聚合。Ugelstad[6]介绍了一种制备单分散性胶乳的两步溶胀法,制备出新型的核壳粒子。半连续法是将水、乳化剂和种子乳液加入到反应器中,升温至反应温度后加入引发剂,然后再将壳层单体以一定速度滴加进行聚合。连续法是在搅拌下将单体、引发剂加入到种子乳液中,然后将所得的混合液连续地滴加到溶有乳化剂的水中进行聚合。工业上普遍采用半连续种子乳液聚合法。 种子乳液聚合过程中易产生新胶粒,不利于乳液的稳定及最后的性能。为了避免新胶粒的产生,可以采用如下三种方法: (1)进行胶粒增长反应实验,严格控制反应体系的加料速度,维持聚合体系的单体转化率始终处于较高水平,使聚合体系处于/饥饿0状态; (2)在合成时尽量少用乳化剂,第一步的胶粒增长反应过程中可采用无皂乳液聚合; (3)采用加入油溶性引发剂的方法予以避免。 作者简介:邵谦(1964-),女,博士研究生,主要从事高分子材料合成方面的研究; *通讯联系人,Email:gss620818@1631com.

乳液聚合发展概况

乳液聚合发展概况 摘要:乳液聚合(emulsion polymerization)是高分子合成过程中常用的一种合成方法,因为它以水作溶剂,对环境十分有利。它是一种在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。由于乳液聚合最近发展迅猛,相关研究进行的如火如荼,因此,本文将简要介绍乳液聚合的聚合机理,并着重介绍它的技术进展。 关键词:乳液聚合聚合机理技术进展 1 乳液聚合的定义 生产聚合物的方法主要有四种,即本体聚合、溶液聚合、悬浮聚合及乳液聚合。本体聚合是单体本身或单体再加入少量引发剂(或催化剂)的聚合过程;溶液聚合是在单体和引发剂溶于某种溶剂,在溶液中所进行的聚合过程;悬浮聚合是发生在悬浮于水中的单体液滴中的聚合过程,体系主要组成是单体、水、溶于单体的引发剂及分散介质;乳液聚合则是由单体和水在乳化剂作用下配制成乳状液,在乳液中进行的聚合过程,体系主要由单体、水、乳化剂及溶于水的引发剂四种基本组分组成1。 乳液聚合具有许多优点:体系粘度低、易散热;具有高的反应速率,能得到较高分子量的聚合物;以水作分散介质成本低、环境污染小;所用设备工艺简单、操作方便灵活;所制备的聚合物乳液可直接用作水性涂料、粘合剂、皮革、纸张、织物的处理剂和涂饰剂、水泥添加剂等。但同时,它也存在诸如后处理复杂,乳化剂难以除尽,成本较高等缺点。因此,当今的乳液聚合技术仍旧在不断发展中。 2 乳液聚合机理 2.1聚合前乳液聚合体系中的三相 聚合前体系中存在三相:水相、胶束和油相。 2.1.1 水相 引发剂分子溶于水中,少量的乳化剂溶于水中,极少量的单体(溶解度约为0.02%)溶于水中,构成水相。 2.1.2 胶束 大部分的乳化剂分子形成胶束,

乳液聚合中乳胶粒粒径大小的影响因素

乳液聚合中乳胶粒粒径大小的影响因素概述 乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上。粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质,在食品、医药、透明材料的填料等领域都有广泛的应用;大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质。 影响乳胶粒粒径大小有以下各种因素。 1乳化剂的影响 在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂。乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布。乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小。 在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。非离子型乳化剂不怕硬水,化学稳定性好。一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差。与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。因此在有离子型和非离子型乳化剂可供选择时,优先选择离子型乳化剂。两性乳化剂由于价格昂贵,尚未能在乳液聚合工业上体现其独特的性

相关主题
文本预览
相关文档 最新文档