当前位置:文档之家› 汽轮机设计.

汽轮机设计.

汽轮机设计.
汽轮机设计.

《汽轮机原理》课程设计

学号

姓名

指导教师

设计时间

一、课程设计目的

(1)通过课程设计,系统地总结、巩固、加深在《汽轮机原理》课程中已学知识,进一步了解汽轮机的工作原理。

(2)在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。

(3)通过课程设计对电站汽轮机建立整体的、量化的概念,掌握查阅和使用各种设计资料、标准、手册等参考文献的技巧。

(4)培养综合应用书本知识、自主学习、独立工作的能力,培养与其他人相互协作的工作作风。

二、课程设计内容

以N300型号的汽轮机为对象,在已知结构参数和非设计工况新蒸汽参数和流量的条件下,进行通流部分热力校核计算,求出该工况下级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。主要工作如下:

(1)设计工况及非设计工况下通流部分各级热力过程参数计算。

(2)轴端汽封漏汽量校核计算。

(3)与设计工况的性能和特征参数作比较分析。

三、整机计算步骤

本次课程设计计算方法是将该型汽轮机的通流部分划分为高、中压缸和低压缸2个计算模块,由2个学生组成一个计算小组,一人采用顺算法计算高、中压缸,另一人采用逆算法计算低压缸。2人协同工作,共同商定计算方案和迭代策略。

本人进行的是低压缸部分计算,计算工况为103%。为便于计算,作出如下约定:

(1)各级回热抽汽量正比例于主汽流量;

(2)门杆漏汽和调门开启重叠度不计;

(3)余速利用系数的参考值为:调节级后的第一压力级、前面有抽汽口的压力级利用上一级余速的系数为0.4,其它压力级为0.8;

(4)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度;

(5)第一次计算,用弗留格尔公式确定调节级后压力;

(6)假定汽机排汽压力为设计工况下的值,用平移设计工况热力过程线方法初步确定排汽点。

四、汽轮机简介

本机组是按照美国西屋公司的技术制造的300MW亚临界、中间再热式、高中压合缸、

双缸双排汽、单轴凝汽式汽轮机,如图4-2所示。它由高中压积木块BB0243与低压缸积木块BB074组合而成。为了进一步提高机组的经济性,对原引进技术作了改进设计,而且低压缸末级叶片采用905mm的长叶片。机组型号为N300-16.7/537/537,工厂产品号为D156。主要技术参数:额定功率300MW;主汽门前额定参数16.7MPa、537℃,再热汽门前温度537℃;工作转速3000rpm;额定背压5.39kPa;回热级数3高、4低、1除氧;额定工况蒸汽流量910.2t/h、热耗7937kJ/(kWh)。

本机组通流部分共35级叶片,其中高压缸1+11级,中压缸9级,低压缸2×7级。动叶片除低压缸末三级为扭转叶片外,其余均为等截面叶片。高、中、低压缸隔板静叶均为扭叶片。有6个高压调节阀,每阀控制21个喷嘴,调节阀全开时部分进汽度为0.9545。汽轮机在额定参数下5阀全开时可以带额定负荷。汽轮机在6个调节阀全开、新汽参数16.7MPa、537℃(超压5%)时运行,这一工况定义为最大负荷工况。

主汽门、调节阀、进汽管的压损为4%,再热器及管道为10%,中联门及管道为2.5%,中低压连通管为2%。2号高加抽汽来自高压缸排汽,除氧器抽汽来自中压缸排汽,第5、6级抽汽分别来自左、右侧低压缸的第3、5级前,因此低压缸为不对称抽汽。但为了计算方便,在本计算中近似为对称。通流部分结构参数如表1所示。最大工况和额定工况下的热力参数如表2所示。

静叶与动叶汽封:高压静叶3齿,1高2低,动叶3齿,平齿,中压静叶5齿,2高3低,动叶5齿,平齿,间隙都是0.75mm;低压静叶3齿,1高2低,动叶1齿,平齿,间隙都是1.1mm。

图1 N300-16.7/537/537汽轮机结构

表1:N300-16.7/537/537汽轮机通流部分的结构参数

表2:N300-16.7/537/537汽轮机最大工况和设计工况下的热力参数

注:额定工况排汽比焓:2346kJ/kg;最大工况排汽比焓:2338.8kJ/kg;低压缸抽汽实际为不对称的,计算中可当作是对称的。

五、低压缸逆算法计算步骤

以变工况下第七级的计算为例:

已知条件:变工况:流量为额定流量的103%,即第七级流量为78.2514kg/s ;排汽压力5.39kPa ;额定排汽焓2341kJ/kg 。

图2 逆算法用图

计算步骤:

1、估计变工况的排汽焓和各项损失

变工况后排汽压力为5.39kPa ,排汽焓估为2341kJ/kg 。根据公式估计级后各项损失如下所示。

叶轮摩擦损失:因为反动式故为0; 叶高损失:按公式1

1t l l

t

h h h h ??=??估计为0.206;

湿气损失:121

12

11t x x

t h x h h h x ?-?=??-估计为12;

余速损失:2

2212121c c c c G v h h G v ??

?=? ???

估计为28.5;

漏气损失:1

1t t

h h h h δδ

??=??由于低压缸漏气损失相对很小,这里估为0; 扇型损失:由于低压缸最后三级为扭叶片,它的扇型损失很小,如果按公式

2

*0.7b t b l h d ??

? ???

计算的话,扇型损失较大,与实际情况不符合。所以后三级的计算中估为0。

2、根据估算的各项级后损失,确定动叶后的实际状态点

(1) 动叶出口处的实际焓:

21112111s p l f x c h h h h h h h h θδ=-?-?-?-?-?-? =2341-0-0.206-12-28.5-0-0 =2300.294kJ/kg 。

(2)根据动叶出口实际焓和排汽压力2(,)s h p 查得动叶出口处的各项热力参数: 熵2s s =7.5119 kJ/(kg ·K),比容2s v =23.4061 m 3/kg ,干度x =0.8914。 (3)动叶出口处的实际速度:

222/s s w Gv A ==78.2514×23.4061/3.638=503.4532 m/s 。

3.确定动叶出口的理想状态点

(1)取动叶速度系数ψ=0.95,动叶出口理想相对速度 22/t s w w ψ==529.9508m/s 。 (2)计算动叶损失:(

)2

2

221/2000b t h w εψ

?=-=13.6913kJ/kg 。

(3)动叶出口的理想焓:222t s b h h h ε=-?=2300.294-13.6913=2286.6027 kJ/kg 。

(4)根据动叶出口的理想焓和排汽压力22(,)t h p 查得动叶出口处的理想热力参数:

熵2t s =7.4674 kJ/(kg ·K),比容2t v =23.2576m 3/kg 。

(5)动叶出口绝热系数:湿蒸汽 1.0350.1x κ=+?=1.1241。

(6

)动叶出口理想状态点的音速s w =。

4、判断动叶是否超临界

因为2t s w w >,所以是超临界。重新假设动叶损失2b h ε?=11.1 kJ/kg ,按假定值重新计

算。 (1)动叶出口处的理想焓:222t s b h h h ε=-?=2289.1940kJ/kg 。

(2)根据动叶出口的理想焓和排汽压力22(,)t h p 查得动叶出口处的理想热力参数:

熵2t s =7.4758 kJ/(kg ·K),比容2t v =23.2857m 3/kg 。

5、确定动叶临界点

(1)确定临界压力:

2(1)

2k k cr p p +?? ?

==0.0075MPa 。

(2)据临界压力和动叶出口的理想熵2(,)cr t p s 查得临界点的热力参数:

比容cr v =20.838m 3/kg ,焓值cr h =2343.19 kJ/kg 。 (3

)临界速度:cr c ==381.9568m/s 。

6、校核动叶损失 (1)滞止点到临界点焓降:*2

/2000cr cr h c ?==72.9455kJ/kg 。

(2)动叶的滞止理想比焓降:**

2()b cr cr t h h h h ?=?+-=115.9308kJ/kg 。

(3)动叶出口速度1/2

2(21000)t b w h =??=481.5201m/s ;22s t w w ψ==457.4441m/s 。

(4)动叶损失:(

)2

2

221/2000b t h w εψ

?=-=11.3033m/s 。

(5)汽流在动叶出口产生的偏转,偏转后的出口汽角为:

1

22222sin (sin )cr t

t cr

c v w v βδβ-+==0.5467 ra

d 。 (6)校核动叶损失:|11.1-11.3033|/11.1=1.8311%;校核通过。

7、校核余速损失 (1)确定轮周速度:23.14153000/60u d =??=415.1458 m/s 。 (2)根据余弦定理可以得到动叶排汽速度:2c =239.0596 m/s 。

(3)确定余速损失:2

22/2000c h c ?==28.5748 kJ/kg 。

(4)校核余速损失:|28.5-28.5748|/28.5=0.2623%;校核通过。

8、确定动叶前的状态点 (1)假定动叶的进口相对速度:11w =132 m/s 。

(2)根据假定值确定动叶内的理想比焓降:

*222

111122=-/2000(1-(/))/2000b b t t h h w w w w ??=?=107.2188 kJ/kg 。

(3)确定动叶前的焓值:112t b h h h =+?=2396.4128 kJ/kg 。

(4)根据动叶入口处的焓和熵112(,)t h s 查得动叶入口处的热力参数:

11p =0.0122MPa ;干度x =0.9183。

9、确定喷嘴后的状态点

(1)因为碰撞损失很小,而又是103%的变流量工况,所以碰撞损失取为0。即喷嘴后的状态点即为动叶入口处的状态点。 (2)根据喷嘴后焓和压力111(,)h p 查得喷嘴出口点的比容11v =11.1450m 3/kg 。 (3)喷嘴出口实际汽流速度11111/c G v A =?=412.7744m/s 。

(4)选取喷嘴速度系数φ=0.97;

求得喷嘴出口理想汽流速度 1111/t c c ?==425.5406 m/s 。

10、确定喷嘴出口的理想状态点 (1)确定喷嘴损失:2211t1(1-)c /2000n h ξ??==5.3511 kJ/kg 。 (2)喷嘴出口理想焓111-t n h h h ξ=?=2391.0617 kJ/kg 。

(3)根据喷嘴出口理想焓和出口压力111(,)t h p 查得理想比容11t v =11.1177 m 3/kg 。 (4

)确定该点的音速:s c =

11、判断喷嘴是否超临界 (1)因为11t s c c >,所以喷嘴超临界,重新假设喷嘴损失1n h ξ?=5kJ/kg 。 (2)按假定值重新确定动叶出口处的理想焓111-t n h h h ξ=?=2391.4128kJ/kg 。

(3)重新确定喷嘴出口的理想状态点,根据喷嘴出口的理想焓和压力111(,)t h p ,查得喷嘴出口处的理想熵1t s =7.4603kJ/(kg ·℃)。

12、确定喷嘴临界点

(1)确定临界压力:

2(1)

11k k cr p p +?? ?

==0.0129MPa ;

(2)根据临界压力和动叶出口的理想熵1(,)cr t p s 查得临界点的热力参数:

比容cr v =10.5870 m 3/kg ;焓值cr h =2398.8870 kJ/kg 。 (3

)从而可求得临界速度cr c ==392.6461 m/s 。

13、校核喷嘴损失

(1)确定滞止点到临界点焓降:*2

/2000cr cr h c ?== 77.0855 kJ/kg 。

(2)从而可确定喷嘴的滞止理想比焓降**

1()n cr cr t h h h h ?=?+-= 84.5597 kJ/kg 。

(3)重新计算喷嘴出口速度1/2

11(21000)t n c h =??=411.2413 m/s ;

1111t c c ?==398.9041 m/s 。 (4)从而确定喷嘴损失:()

221111/2000n t h c ξ??=-= 4.9975 kJ/kg ;

(5)汽流在喷嘴出口产生的偏转,偏转后的出口汽角为:

1

11

11111sin (sin )cr t t cr

c v c v αδα-+==0.3270。 (6)校核喷嘴损失:|5-4.9975|/5=0.0504;校核通过。

14、校核动叶进口相对速度 (1)根据余弦定理可计算动叶进口相对速度:11w =131.8884m/s ; (2)校核 :|132-131.8884|/132=0.0846%,校核通过。

15、确定喷嘴滞止点 (1)确定喷嘴滞止点焓**

01t n +h h h =?= 2475.9725 kJ/kg ;

(2)根据滞止点焓和熵*

01(,)t h s 查得滞止热力参数:

压力*

0p =0.0223MPa ;干度x =0.9417。

16、校核其余各项级后损失

(1)确定叶高损失 1.2/L u n h h l ?=??= 0.2085 kJ/kg ;

校核叶高损失:|0.206-0.2085|/0.206=1.2274%。

(2)确定湿气损失(1-)x i h x h ?=??=12.1639kJ/kg ;

校核湿气损失|12-12.1639|/12=1.3658%。

17、计算级效率、内功率、反动度

(1)计算反动度*

b1b1n =/(+)h h h Ω???=0.5591。 (2)计算内效率*

i1t c2/(-)h h h ηα=???=0.7019。

(3)计算内功率i1P h G =?=10533.25 kW 。

18、确定级前参数 (1)假定上级余速损失'

2c h ?=14.0000 kJ/kg 。

(2)根据本级利用上级余速的系数确定本级级前的焓值:

*'

002c h h h α=-?=2470.3725 kJ/kg 。

(3)根据级前状态点的焓和熵01(,)t h s 查得级前的热力参数:

压力0p =0.0215MPa ;温度0t =61.6204℃。

19、利用本级级前状态点的有关参数进行上一级的校核计算

注意校核本级中假设的上级余速损失。等到七级全部校核计算完毕,如果出现较大误差,则需调整第七级所假设的排汽焓,再进行迭代计算。

六、分析

1、额定工况与变流量工况的比较分析 理论上:对喷嘴配汽的机组来说,可以把整个凝汽式汽轮机分为三个级组:调节级、中间级和最末级。

(1)工况变化前后级组均为临界工况,为中间级

在负荷变化时,在各级通流面积不变的条件下,若变工况前后,末级的喷嘴或动叶均为临界状态时,可由下式确定末级前的压力:

1G G = (1) 上式中,若忽略级前的温度变化,并近似认为排汽压力不变,则式(1)中级前压力与流量简化成正比关系,即:

01

1n P G G p

ε== 所以级的压力比不变,级的理想焓降亦近似不变:

1

20011

k k t P k

h RT k P -???????=- ???-??????

相应地,级的速度比、反动度也近似不变:

a a u x c =

=

1x =

与速度比有关的叶高损失、叶轮摩擦损失、鼓风损失以及漏汽损失的相对值也几乎不变,因此,级的内效率也基本不变。 (2)工况变化前后级组均为亚临界工况,为最末级

若变工况前后,末级均为亚临界状态,则按下式确定末级前的压力:

1G

G

=

(2)

而式(2)中级前压力与流量则成双曲线关系。 本次计算中各项数据的比较如下:

1级焓降的比较:

从上图可以看出:低压缸的第1级到第6级为临界工况,他们的级焓降几乎不变,而第7级为最末级,它的级焓降有较大的变化。

○2反动度的比较分析

由上图可以看到:低压缸中,第1级到第6级为中间级,反动度的变化相对较小,而最末级第7级的变化相对较大,计算结果与理论分析一致。

(3)内效率的比较分析:

在内效率的数据的整理中,我发现我的计算结果和理论分析结果有较大的误差。理论上由于级中的摩擦,鼓风损失及漏气损失的相对值也几乎不变,所以中间级的及内效率也基本不变。这在图上也可反映:第1级到第6级的内效率几乎不变。

我们知道:在最末一级中,不论是否达到临界,在不同的蒸汽流量下,级前后压比并不为常数,而是随流量变化而改变的,当流量增大时,压力比减小,级的比焓降增大;当流量减小时,压力比增大,级的比焓降就减小,因此级的最末级的反动度,级效率就不再保持常数。

但从上图中,最末级的内效率却较为接近,还有一些上升的趋势,这是与理论不相符的。我认为可能在计算的时候我忽略了一些损失的计算:如碰撞损失,漏气损失,扭叶片的扇型损失所致。理论上:采用喷嘴调节的凝汽式汽轮机,当流量改变时,比焓降的变化主要发生在调节级和最末级,所有中间级在流量变化时,比焓降几乎不变,但在低负荷时,中间级的比焓降也会变小。

2、变流量工况中低压缸各级各项损失的变化:

表3 各项损失统计

○1叶高损失

叶高损失是叶片的端部损失,本质上是喷嘴和动叶的流动损失。从下图中可以看出,叶高损失随着叶片高度的增加而减小。

○2扇型损失:

扇型损失是由于实际汽轮机的叶栅为环形叶栅所引起的损失,它随着径高比的增大而减小,从下图中可以看出,第1到4级的扇型损失逐渐增大。但在扭叶片中,叶型沿叶高是变化的,虽然此时叶栅的节距也在变化,扇型损失仍然存在,但已经很小了,可以忽略不计。这里取为0。(因此如果按书上的公式计算,就与实际情况不符合)

○3湿气损失:

汽轮机的最末几级通常处于湿蒸汽区,湿气损失较大,而在其他级,工作在过热区,没有湿气损失。

○4叶轮摩擦损失:

由于为反动式汽机无叶轮,故为0。

○5各种损失所占比重比较

如下图所示:

3、能量平衡图

4、低压缸103%工况热力过程线

如下图所示:

抽汽

G=5.0069kg/s

抽汽G=2.83kg/s

抽汽G=4.7kg/s

抽汽G=3.4kg/s

七、小结

距离大三学完汽轮机原理已经过去一段时间了,对于汽轮机里面的一些概念、名词已经记不太清了,但是这次的课程设计给了我再一次熟悉的的机会,再加上整整半个月对于实例的计算,我对它的理解也更为深刻了。通过这次课程设计,我系统的总结、巩固和加深了在《汽轮机原理》课程中已学知识,进一步了解汽轮机的工作原理,可以说很有收获。在本次计算中,我对于逆算法有了一个完整的认识,也学会了其应用方法。

在一开始的时候,最先遇到的问题就是该如何进行计算,由于以前没有系统的进行过逆算法,对于这种方法感到有些陌生。其次,开始计算之后我又开始纠结应该把主要目标放在校核什么参数上面,如何通过观察各个参数来确定自己算的过程是不是有问题,又是以何种标准来判断自己的计算结果是不是有问题。

在计算低压缸后两级时,由于汽流超音速,计算相对较为复杂,在计算时一开始由于各种假定值误差较大,在调节过程中花了较多的时间。另外对于每一级中相对较大的功率误差我还是一直没有找到较为合适的方法去调节,可能是由于温度压力等参数校核还不够准确,或者是一些系数的选择上出了问题,这导致了额定工况下所计算得到的功率跟指导书中所给出的标准功率仍存在较大的偏差。

总结整个设计过程以及对各种误差的分析,我认为计算误差主要是因为如下原因:

(1)蒸汽性质参数查询误差

(2)在计算中,对于一些损失的简化处理

(3)计算公式本身的误差

(4)基本系数选取的误差

(5)参数校核不够准确

虽然说计算的过程中可能还是存在一些问题或者说不足,但是还算可以的是我的最终结果与另外同组同学所算得的汽轮机中压缸出口参数间的偏差不是很大,也就是可以粗略的说这次汽轮机设计是比较成功的了。当然,如果可以把额定工况下的功率误差调的比较小的话,那就更加好了,由此也可以看出尽管这次的课程设计让我重新理解了汽轮机的各项原理,但是要真正的对其每一处结构、参数有更深的体会还是需要继续探究的,而我也会以此为目标进一步努力的!

八、附件

汽轮机毕业设计

汽轮机毕业设计 篇一:汽轮机毕业设计(论文) 摘要 汽轮机是发电厂三大主要设备,汽轮机的启动是指汽轮机转 子从静止状态升速至额定转速,并将负荷加到额定负荷的过程。在启动过程中,汽轮机各部件的金属温度将发生十分剧烈的变化,从冷态或温度较低的状态加热到对应负荷下运行的高温工作状态。因而汽轮机启动中零部件的热应力和热疲劳、转子和汽缸的胀差、机组振动都变化很大,将严重威胁汽轮机的安全,并使整个电厂发电负荷降低,经济损失严重。分析汽轮机启动中的特点,并及时采取相应对策和正确的运行方式对保证设备健康水平和安全、经济运行有深刻的意义。 本文以哈汽600MW汽轮机的启动过程为研究对象,分析与探 讨了启动过程中蒸汽温升率的计算方法,并在此基础上研究了蒸汽初温与转子金属温度的匹配问题,使得汽轮机启动过程优化。同时对启动过程中的换热系数进行了计算与比较。 关键词:启动;寿命分配;安全性; 目录

摘要 ................................................ ................................................... ........ I 1绪论 ................................................ ................................................... . (1) 1.1 课题背景和意义 ................................................ (1) 1.2 高压加热器的作用介绍及分类 ...................... 错误!未定义书签。 1.3本课程研究的主要内容和任务 ....................... 错误!未定义书签。 2 高压加热器停运的热经济性分析 ................................................ .. (3) 2.1概述 ................................................ ................................................... . (3)

汽轮机课程设计说明书

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

汽轮机设计

《汽轮机原理》 课程设计 学号 姓名 指导教师 设计时间 一、课程设计目的 (1)通过课程设计,系统地总结、巩固、加深在《汽轮机原理》课程中已学知识,进

一步了解汽轮机的工作原理。 (2)在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。 (3)通过课程设计对电站汽轮机建立整体的、量化的概念,掌握查阅和使用各种设计资料、标准、手册等参考文献的技巧。 (4)培养综合应用书本知识、自主学习、独立工作的能力,培养与其他人相互协作的工作作风。 二、课程设计内容 以N300型号的汽轮机为对象,在已知结构参数和非设计工况新蒸汽参数和流量的条件下,进行通流部分热力校核计算,求出该工况下级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。主要工作如下: (1)设计工况及非设计工况下通流部分各级热力过程参数计算。 (2)轴端汽封漏汽量校核计算。 (3)与设计工况的性能和特征参数作比较分析。 三、整机计算步骤 本次课程设计计算方法是将该型汽轮机的通流部分划分为高、中压缸和低压缸2个计算模块,由2个学生组成一个计算小组,一人采用顺算法计算高、中压缸,另一人采用逆算法计算低压缸。2人协同工作,共同商定计算方案和迭代策略。 本人进行的是低压缸部分计算,计算工况为103%。为便于计算,作出如下约定: (1)各级回热抽汽量正比例于主汽流量; (2)门杆漏汽和调门开启重叠度不计; (3)余速利用系数的参考值为:调节级后的第一压力级、前面有抽汽口的压力级利用上一级余速的系数为0.4,其它压力级为0.8; (4)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度; (5)第一次计算,用弗留格尔公式确定调节级后压力; (6)假定汽机排汽压力为设计工况下的值,用平移设计工况热力过程线方法初步确定排汽点。 四、汽轮机简介 本机组是按照美国西屋公司的技术制造的300MW亚临界、中间再热式、高中压合缸、双缸双排汽、单轴凝汽式汽轮机,如图4-2所示。它由高中压积木块BB0243与低压缸积木块BB074组合而成。为了进一步提高机组的经济性,对原引进技术作了改进设计,而且低压缸末级叶片采用905mm的长叶片。机组型号为N300-16.7/537/537,工厂产品号为D156。

毕业设计--某电厂660MW机组的初步设计-精品

毕业设计说明书(论文) 系部:能源与动力工程学院 专业:热能与动力工程 题目:芜湖某电厂660MW机组的初步设计 (神华烟煤) 2011年05月南京

目 录 前 言 ........................................................... 1 第一章 绪 论 . (2) 1.1中国电力工业的背景 ............................................ 2 1.2中国电力行业的现状 ............................................ 2 1.3中国电力行业的发展趋势 ........................................ 2 1.4研究内容 ...................................................... 3 第二章 汽轮机原则性热力系统计算 (4) 2.1汽轮机类型和参数 .............................................. 4 2.2原则性热力系统计算 .. (6) 2.2.1全厂物质平衡 ........................................... 6 2.3计算汽轮机各段抽汽量D J 和凝汽流量D C ............................ 6 2.3.1由高压加热器H1热平衡计算D 1 ........................... 6 2.3.2由高压加热器H2热平衡计算D 2 ........................... 7 2.3.3由高压加热器H3热平衡计算D 3 ........................... 7 2.3.4由除氧器H4热平衡计算D4 .............................. 8 2.3.由低压加热器H5热平衡计算D 5 ............................ 8 2.3.6由低压加热器H6热平衡计算D 6 ........................... 9 2.3.7由低压加热器H7热平衡计算D 7 ........................... 9 2.3.8由低压加热器H8热平衡计算D 8等 ....................... 10 2.3.9凝汽器热井 ............................................ 10 2.4汽轮机汽耗及功率计算 ......................................... 11 2.4.1计算汽轮机内功率 .. (11) 2.4.2由功率方程式求0D ..................................... 11 2.4.3各级抽汽量及功率校核 ................................. 11 2.5热经济指标计算 .. (13) 2.5.1机组热耗0Q 、热耗率q 、绝对电效率e (13) 第三 章锅炉初步设计 (14) 3.1锅炉介绍 ..................................................... 14 3.1.1锅炉主要设计参数 ...................................... 14 3.1.2设计煤种 ............................................... 14 3.2锅炉整体介绍 ................................................. 15 3.3锅炉制粉系统设计及相关计算 .. (16)

汽轮机课设心得总结

汽轮机课设心得总结 经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其

后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了接近一周的时间,最后完成时大家觉得很有成就感。接下来我们看汽

汽轮机课设心得总结

汽轮机课设心得总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

汽轮机课设心得总结经过两个星期的汽轮机课设,对我们而言收获颇丰。整个过程我们都认真完成,其中不免遇到很多问题,经过大家的齐心协力共同克服了它们,不仅从中熟悉了汽轮机的工作原理及流程,而且还获得了许多心得体会。 汽轮机是将蒸汽的热能转换为机械能的回转式原动机,是火电和核电的主要设备之一,用于拖动发电机发电。在大型火电机组中还用于拖动锅炉给水泵。 就凝汽式汽轮机而言,从锅炉产生的新蒸汽经由主阀门进入高压缸,再进入中压缸,再进入低压缸,最终进入凝汽器。蒸汽的热能在汽轮机内消耗,变为蒸汽的动能,然后推动装有叶片的汽轮机转子,最终转化为机械能。 除了凝汽式汽轮机,还有背压式汽轮机和抽汽式汽轮机,背压式汽轮机可以理解为没有低压缸和凝汽器的凝汽式汽轮机,它的出口压力较大,可以提供给供热系统或其它热交换系统。抽汽式汽轮机则是指在蒸汽流通过程中抽取一部分用于供热和或再热的汽轮机。 在设计刚进行时,我们也参考了从研究生那里借来的《设计宝典Xp》,但在使用过程中发现此软件只适用于单列级的计算而不适用于双列级,虽然如此,但我们在计算时也参考了其中的部分步骤。我们这次在设计之前又重新温习了《汽轮机原理》中所学的知识,因为汽轮机的热工转换是在各个级内进行的,所以研究级的工作原理是掌握整个汽轮

机工作原理的基础,而级的定义是有一列喷嘴叶栅和紧邻其后的一列动叶栅构成的工作单元。在第一章第七节介绍了级的热力计算示例,书上是以国产N200-12.75/535/535型汽轮机某高压级为例,说明等截面直叶片级的热力计算程序,主要参考了喷嘴部分计算、动叶部分计算、级内损失计算和级效率与内功率的计算。为了保证汽轮机的高效率和增大汽轮机的单机功率就必须把汽轮机设计成多级汽轮机,使很大的蒸汽比焓降由多级汽轮机的各级分别利用,即逐级有效利用,驶各级均可在最加速比附近工作。这一章也讲解了进气阻力损失和排气阻力损失、轴封及其系统,我们也参考了其中的内容。 通过本课程设计,加深、巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握每级焓降以及有关参数的选取,熟练各项损失和速度三角形的计算,通过课程设计以期达到对汽轮机的结构进一步了解,明确主要零部件的作用与位置。具体要求就是按照某机组存在的问题,根据实际情况,制定改造方案,通过理论与设计计算,解决该汽轮机本体存在的问题,达到汽轮机安全、经济运行的目的。 数据的处理 这次汽轮机课设我们负责的是数据的处理,这是一个非常庞大而繁重的工作。接下来就着重说说我们在处理数据时候遇到的一些问题。 刚开始的时候,我们和其他组一起根据课本上的计算公式和焓熵表等编了我们汽轮机课设计算所需要的excel表格,这其中将近耗了接近一周的时间,最后完成时大家觉得很有成就感。接下来我们看汽轮机课

汽轮机设计系统

汽轮机设计系统是利用Pro/E二次开发工具Pro/Toolkit,在VC++.net2003开发平台上开发的。该系统实现了与Pro/E软件的无缝集成,用户可以利用该系统完成汽轮机产品的结构设计、通流设计、参数化变型设计、装配公差分析等工作。汽轮机设计系统菜单如图1所示。 图1 汽轮机设计菜单 参数化设计子菜单模块包括“结构参数化设计”、 “组件参数化设计”、 “尺寸参数化设计”、 “关系式操作”和“属性操作”。 “结构参数化设计”可以实现气封、转子等零部件的结构变型设计。“气封结构设计”人机交互界面如图2所示。“气封结构设计”可以实现气封齿形结构参数化和关键尺寸的参数化设计。 图2 气封结构设计对话框 “气封结构设计”实现气封结构变型设计的步骤如下: 1)调入气封源模型。源模型中定义了气封变型特征的拓扑结构和驱动参数,系统根 据这些特征和参数才能找到用户输入信息在模型中的对应信息。 2)选择齿形。在“选择齿形”和“选择末端齿形”组合框内点击相应单项按钮,定 制气封齿形。 3)选择备选特征。在“选择特征”组合框内,根据变型需求,点击复选按钮,选择 相应特征。 4)输入齿形基本参数。齿形结构确定之后,在“齿形基本参数”组合框内输入齿形

的驱动参数。值得注意的是,当在步骤2)中选择“一长一短分布”的齿形时,“齿 距W1”输入组合框为灰色不可用状态。 5)输入外形基本参数。在“外形基本参数”组合框内输入定义气封外形的参数,这 些参数驱动外围直径的大小。 6)生成模型。单击“生成模型”命令按钮,系统根据输入信息,重生源模型,从而 生成符合用户要求的新模型。 “转子结构设计”人机交互界面如图3所示。“转子结构设计”可以实现转子结构参数化和关键尺寸的参数化设计。 图3 转子结构参数化设计对话框 “转子结构设计”实现转子结构变型设计的步骤如下: 1)调入转子源模型。源模型中定义了转子变型特征的拓扑结构和驱动参数,系统根 据用户输入信息,在源模型的基础上重新生成新模型。 2)输入第一部分基本参数。在“第一部分”组合框内输入各参数值。第一部分包括 包括转子调节级和转子前端部分。 3)输入第二部分基本参数。在“第二部分”组合框内输入各参数值。第二部分为转 子低速级组,其中参数J1为低速级的级数。 4)输入第三部分基本参数。在“第三部分”组合框内输入各参数值。第三部分为转 子全航速级组,其中参数J2为全航速级的级数。 5)输入第四部分基本参数。在“第四部分”组合框内输入各参数值。第四部分为转 子后端部分。 6)输入放大部分基本参数。在“放大部分”组合框内输入各参数值。放大部分为转 子与气封的配合部分,其中参数J3与配合气封的齿组数相等。 7)生成模型。单击“生成模型”命令按钮,系统根据输入信息,重生源模型,从而 生成符合用户要求的新模型。 “尺寸参数化设计”模块采用基于特征的方法,通过定义零件各特征内的驱动尺寸的值来实现对零件的参数化设计。同时,该模块也可以实现对驱动尺寸公差值的定义。“尺寸参数化设计”人机交互界面如图4所示。

汽轮机课程设计

15 第二部分 使用说明书 一、软件简介 汽轮机课程设计教学软件《设计宝典Xp 》是由蚂蚁虫工作室马唯唯开发的。适合热动及相关专业汽轮机课程设计使用。设计汽轮机级数不超过12级。 软件特点: 1.查焓熵图由计算机查取,快速,准确。输入输出采用了OLE 高级拖放技术,自动截取数据,无需手动输入。(参见《焓熵查表通》介绍) 2.《新视图1.0》包含了设计中的所有视图,可以直接打印,可以查取各个系数。 3.可以自动生成设计报告。 4.可以随时查看每一步或者每一级的详细计算过程。 5.可以模拟组装汽轮机通流部分。 6.支持dbf 到 xls 文件格式转换。 7.强大的数据逻辑性检测将大大减少人为的错误。 8.可以设计个性化界面。 9.可以播放背景音乐。 软件安装最低要求: 1.中央处理器为80486或更高。 2.已设虚拟内存的计算机要求内存在4MB 以上, 未设虚拟内存的计算机内存

至少要16MB内存,安装后不少于15MB的自由空间。 3.与windows配套的鼠标。 《新视图1.0》介绍 (1)《新视图1.0》中包含了课程设中使用的各幅图,每一幅图中的符号都有解释,只需鼠标移到符号上即可。 (2)系数采用鼠标移动查取。当鼠标移动时,横纵坐标值会变化。 (3)压力级平均直径确定采用作图法,Array采用计算机作图,快速准确。点击详细过程 可以看到每一段的长度,改变比例尺寸后会 从新量取。 《焓熵查表通》介绍 理论来源: 焓熵查表采用国际公式化委员会(IFC) 提供的标准计算公式。 软件特点; (1)计算和输出可采用国际单位和工程 单位。系统默认已知参数为国际单位。 (2)查出来参数与水/水蒸气性质表上 的数据有所误差。误差均小于1/100。 (3)采用了自动对位数字输入,系统会 自动切换成英文状态输入小数。 (4)可以判断在计算机范围内的两个性 质参数对应的状态。 (5)可以根据焓值来判断熵值的大小范 围。 (6)数据可以手动输入也可以使用拖放 技术。 操作说明: (1)焓、熵、压力、比容、一般取4位小数,温度和干度一般取2位小数进行计算。 (2)如果想计算另一种单位制下的结果,选择单位制后一定要点确定才能生效。 (3)建议查焓熵图时采用拖放技术,它可以自动截取有效数据,减少人为判断。设计经常要使用焓熵查表通,你可以点击就可以缩小为一个标题栏大小,它悬浮在主界面上,要展开只需点一下“焓熵查表通”这几个字。在数据上点击并按住鼠标左 键,数据上显示一只表示系统已抓取该数据,按住鼠标左键实现拖动。 16

动力机器基础设计规范 GB 50040-96

动力机器基础设计规范 GB50040-96 主编部门:中华人民共和国机械工业部 批准部门:中华人民共和国建设部 施行日期:1997年1月1日 关于发布国家标准《动力机器基础设计规范》的通知 建标[1996]428号 根据国家计委计综(1987)2390号文的要求,由机械工业部会同有关部门共同修订的《动力机器基础设计规范》已经有关部门会审,现批准《动力机器基础设计规范》GB50040-96为强制性国家标准,自一九九七年一月一日起施行。原国家标准《动力机器基础设计规范》GBJ40-79同时废止。 本标准由机械工业部负责管理,具体解释等工作由机械工业部设计研究院负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九六年七月二十二日 1 总则 1.0.1 为了在动力机器基础设计中贯彻执行国家的技术经济政策,确保工程质量,合理地选择有关动力参数和基础形式,做到技术先进、经济合理、安全适用,制订本规范。 1.0.2 本规范适用于下列各种动力机器的基础设计: (1)活塞式压缩机; (2)汽轮机组和电机; (3)透平压缩机; (4)破碎机和磨机; (5)冲击机器(锻锤、落锤); (6)热模锻压力机; (7)金属切削机床。

1.0.3 动力机器基础设计时,除采用本规范外,尚应符合国家现行有关标准、规范的规定。 2 术语、符号 2.1 术语 2.1.1 基组foundation set 动力机器基础和基础上的机器、附属设备、填土的总称。 2.1.2 当量荷载equivalent load 为便于分析而采用的与作用于原振动系统的动荷载相当的静荷载。 2.1.3 框架式基础frame type foundation 由顶层梁板、柱和底板连接而构成的基础。 2.1.4 墙式基础wall type foundation 由顶板、纵横墙和底板连接而构成的基础。 2.1.5 地基刚度stiffness of subsoil 地基抵抗变形的能力,其值为施加于地基上的力(力矩)与它引起的线变位(角变位)之比。 2.2 符号 2.2.1 作用和作用响应 Pz——机器的竖向扰力; Px——机器的水平扰力; p——基础底面平均静压力设计值; Mφ——机器的回转扰力矩; Mψ——机器的扭转扰力矩; Az——基组(包括基础和基础上的机器附属设备和土等)重心处的竖向振动线位移;Ax——基组重心处或基础构件的水平向振动线位移;

汽轮机设计

《汽轮机原理》课程设计 学号 姓名 指导教师 设计时间

一、课程设计目的 (1)通过课程设计,系统地总结、巩固、加深在《汽轮机原理》课程中已学知识,进一步了解汽轮机的工作原理。 (2)在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。 (3)通过课程设计对电站汽轮机建立整体的、量化的概念,掌握查阅和使用各种设计资料、标准、手册等参考文献的技巧。 (4)培养综合应用书本知识、自主学习、独立工作的能力,培养与其他人相互协作的工作作风。 二、课程设计内容 以N300型号的汽轮机为对象,在已知结构参数和非设计工况新蒸汽参数和流量的条件下,进行通流部分热力校核计算,求出该工况下级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。主要工作如下: (1)设计工况及非设计工况下通流部分各级热力过程参数计算。 (2)轴端汽封漏汽量校核计算。 (3)与设计工况的性能和特征参数作比较分析。 三、整机计算步骤 本次课程设计计算方法是将该型汽轮机的通流部分划分为高、中压缸和低压缸2个计算模块,由2个学生组成一个计算小组,一人采用顺算法计算高、中压缸,另一人采用逆算法计算低压缸。2人协同工作,共同商定计算方案和迭代策略。 本人进行的是低压缸部分计算,计算工况为103%。为便于计算,作出如下约定: (1)各级回热抽汽量正比例于主汽流量; (2)门杆漏汽和调门开启重叠度不计; (3)余速利用系数的参考值为:调节级后的第一压力级、前面有抽汽口的压力级利用上一级余速的系数为0.4,其它压力级为0.8; (4)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度; (5)第一次计算,用弗留格尔公式确定调节级后压力; (6)假定汽机排汽压力为设计工况下的值,用平移设计工况热力过程线方法初步确定排汽点。 四、汽轮机简介 本机组是按照美国西屋公司的技术制造的300MW亚临界、中间再热式、高中压合缸、

汽轮机课件设计

15 ..第二部分 使用说明书 一、软件简介 汽轮机课程设计教学软件《设计宝典Xp 》是由蚂蚁虫工作室马唯唯开发的。适合热动及相关专业汽轮机课程设计使用。设计汽轮机级数不超过12级。 软件特点: 1.查焓熵图由计算机查取,快速,准确。输入输出采用了OLE 高级拖放技术,自动截取数据,无需手动输入。(参见《焓熵查表通》介绍) 2.《新视图1.0》包含了设计中的所有视图,可以直接打印,可以查取各个系数。 3.可以自动生成设计报告。 4.可以随时查看每一步或者每一级的详细计算过程。 5.可以模拟组装汽轮机通流部分。 6.支持dbf 到 xls 文件格式转换。 7.强大的数据逻辑性检测将大大减少人为的错误。 8.可以设计个性化界面。 9.可以播放背景音乐。 软件安装最低要求: 1.中央处理器为80486或更高。 2.已设虚拟内存的计算机要求内存在4MB 以上, 未设虚拟内存的计算机内存

至少要16MB内存,安装后不少于15MB的自由空间。 3.与windows配套的鼠标。 《新视图1.0》介绍 (1)《新视图1.0》中包含了课程设中使用的各幅图,每一幅图中的符号都有解释,只需鼠标移到符号上即可。 (2)系数采用鼠标移动查取。当鼠标移动时,横纵坐标值会变化。 (3)压力级平均直径确定采用作图法,Array采用计算机作图,快速准确。点击详细过程 可以看到每一段的长度,改变比例尺寸后会 从新量取。 《焓熵查表通》介绍 理论来源: 焓熵查表采用国际公式化委员会(IFC) 提供的标准计算公式。 软件特点; (1)计算和输出可采用国际单位和工程 单位。系统默认已知参数为国际单位。 (2)查出来参数与水/水蒸气性质表上 的数据有所误差。误差均小于1/100。 (3)采用了自动对位数字输入,系统会 自动切换成英文状态输入小数。 (4)可以判断在计算机范围内的两个性 质参数对应的状态。 (5)可以根据焓值来判断熵值的大小范 围。 (6)数据可以手动输入也可以使用拖放 技术。 操作说明: (1)焓、熵、压力、比容、一般取4位小数,温度和干度一般取2位小数进行计算。 (2)如果想计算另一种单位制下的结果,选择单位制后一定要点确定才能生效。 (3)建议查焓熵图时采用拖放技术,它可以自动截取有效数据,减少人为判断。设计经常要使用焓熵查表通,你可以点击就可以缩小为一个标题栏大小,它悬浮在主界面上,要展开只需点一下“焓熵查表通”这几个字。在数据上点击并按住鼠标左 键,数据上显示一只表示系统已抓取该数据,按住鼠标左键实现拖动。 16

汽轮机开题报告

南华大学本科生毕业设计(论文)开题报告 设计(论文)题目 12MW机组抽汽汽轮机总体设计 设计(论文)题目来源 自选课题 设计(论文)题目类型 工程设计类 起止时间 20150112~20150530 设计(论文)依据及研究意义: 本设计研究的依据: 1883年瑞典工程师拉法尔创造出第一台轴流式汽轮机,它是一台3.7kw的单级冲动式汽轮机,转速高达26000r/min,相应的轮轴速度为475m/s。1884到1894年,英国工程师巴森斯相机创造出了现在复速级单级汽轮机。为了满足其他工业部门对蒸汽的需要,在1903到1907年间,出现了热能、电能联合生产的汽轮机,即背压式及调节抽汽式汽轮机。1920年左右,出现了给水回热式汽轮机。到1925年,出现了第一台中间再热式汽轮机。上个世纪40年代以后,汽轮机发展特别迅速。自70年代以来,工业发达国家汽轮机的制造水平普遍进入百万级。最大单机功率达到1300MW。1980年苏联制造的1200WM单轴汽轮机投入运行。 我国自1955年制造第一台中压6MW汽轮机以来,在之后的30几年时间里,已经走完了从中压机组到亚临界600WM机组的全部过程。目前我国超高压、亚临界参数125MW以上到60MW功率等级范围内汽轮机产品的制造质量、运行性能、可靠信等综合指标已达到国际同类机组的水平。我国已具有了与国际跨国公司相当的亚临界、常规超临界参数大功率汽轮机的设计制造能力。 对于小功率汽轮机具有如下特点: 1)初参数低。小功率汽轮机一般为中低压机组,初参数在3.4MPa/435℃以下。但是也有个别次高压(4.9~5.9MPa/435~450℃)或高压(8.9MPa/500℃)机组。 2)热力系统简单。小功率汽轮机一般为1~3级回热系统,无中间过热循环,热力系统简单。 3)结构简单。小功率汽轮机通常是单缸、单轴、定转速(3000rpm或1500rpm)汽轮机,个别机组为双缸及高转速(附加变速装置)。 现在火电厂基本都是高参数大容量机组,抽汽汽轮机主要是用于发电和供暖,能源利用率高,与普通凝汽式汽轮机相比也更为节能。因此设计12MW机组抽汽汽轮机有一定研究意义。

300MW汽轮机课程设计

300MW汽轮机课程设计 (报告书) 学院: 班级: 姓名: 学号: 二O一六年一月十五日

300MW汽轮机热力计算 一、热力参数选择 1.类型: N300-16.67/537/537机组形式为亚临界、一次中间再热、两缸两排气。 额定功率:Pel=300MW; 高压缸排气压力prh=p2=3.8896MPa; 中压缸排汽压力p3=p4=0.7979Mpa; 凝汽器压力Pc=0.004698Mpa; 汽轮机转速n=3000r/min; 2.其他参数: 给水泵出口压力Pfp=19.82MPa; 凝结水泵出口压力Pcp=5.39MPa; 机械效率?ni=0.99; 发电机效率?g=0.99; 加热器效率?h=0.98; 3.相对内效率的估计 根据已有同类机组相关运行数据选择汽轮机的相对内效率: 高压缸,?riH=0.875 ; 中压缸,?riM=0.93; 低压缸?riL=0.86; 4.损失的估算 主汽阀和调节汽阀节流压力损失:Δp0=0.8335MPa; 再热器压损ΔPrh=0.1Prh=0.3622MPa; 中压缸联合气阀节流压力损失ΔP‘rh=0.02 Prh=0.07244MPa; 中低压缸连通管压力损失Δps=0.02ps=0.0162MPa; 低压缸排气阻力损失Δpc=0.04pc=0.1879KPa;

二、热力过程线的拟定 1. 在焓熵图,根据新蒸汽压力p 0=16.67 和新蒸汽温度t = 537,可确定汽轮机进气状态点 0(主汽阀前),并查的该点的比焓值h 0=3396.13,比熵s =6.4128,比体积v =0.019896。 2. 在焓熵图上,根据初压p 0= 16.67和主汽阀和调节气阀节533.62流压力损失Δp = 0.8335 以确定调节级级前压力p‘ 0= p -Δp =15.8365,然后根据p‘ 和h 的交点可以确 定调节级级前状态点1,并查的该点的温度t‘ 0=533.62,比熵s’ =6.4338,比体积v ‘ =0.0209498。 3. 在焓熵图上,根据高压缸排气压力p rh =3.8896和s =6.546437可以确定高压缸理想出口 状态点为2t,并查的该点比焓值h Ht = 3056.864,温度t Ht = 335.743,比体积v Ht =0.066192, 由此可以得到高压缸理想比焓降ΔHt H=h 0-h Ht =339.266 ,进而可以确定高压缸实际比焓降 ΔH i H=ΔH t H×?riH=296.8578,再根据h’rh、ΔH i M和p s可以确定高压缸实际出口状态2,并查 得该点比焓值h H =3099.2722,温度t H =351.3652,比体积v H = 0.0687,s H =6.6058。 4. 在焓熵图上,根据高压缸排气压力p rh = 3.8896和再热器压损Δp rh = 0.3622可以确定 热再热压力p’ rh =p rh -Δp rh = 3.5274,然后根据p’ rh 和再热蒸汽温度t th =537 确定中压缸进气 状态点为3(中压缸联合气阀前),并查的该点的比焓值h’ rh = 3535.213,比熵s‘ rh = 7.2612, 比体积v’ rh =0.1036。 5. 在焓熵图上,根据热再热压力p’ rh = 3.5274和中压缸联合气阀节流压力损失Δp’ rh = 0.07244 ,可以确定中压缸气阀后压力p’’ rh =p’ rh -Δp’ rh = 3.45496 ,然后根据p’’ rh 与h’ rh 的交点可以确定中压缸气阀状态点4,并查得该点的温度t’’ h = 536.7268,比熵s’’ rh = 7.2707,比体积v’’ rh =0.1058。若将中、低压缸的过程线画为一条圆滑曲线,则在前面⑤步之后进行如下步骤: 在焓熵图上,根据凝汽器压力pc=0.004698 和低压缸排汽阻力损失Δpc= 0.0001879 可以确定低压缸排汽压力pc’=pc+Δpc= 0.004886 在焓熵图上,根据凝汽器压力pc= 0.004698 和srh’= 7.2612 可以确定低压缸理想出口状态为5t,并查得该点比焓值hct=

汽轮机基础结构设计要点

框架式汽轮机基础设计要点 一、顶板设计 (1)顶板应有足够的质量和刚度,应加大扰力作用点下构件的质量,以减小基础的振动。 (2)顶板各横梁的静挠度宜接近,以保持轴系的平直,改善基础的动力性能。 (3)顶板的外形和受力应简单,尽量采用外形规则的矩形或T形截面,并宜避免偏心荷载。 (4)顶板的挑台应做成实腹式,其悬出长度不宜大于 1.5m,悬臂支座处的截面高度,不应小 于悬出长度0.75倍。 (5)励磁机处宜增大顶板构件的断面,以防局部振动过大。 (6)顶板四周应留有变形缝与其他结构隔开。 (7)汽机底座边缘至顶板边缘的距离不宜小于100mm。在汽机底座下应预留二次灌浆层,其厚度不宜小于25mm。二次灌浆层应在设备安装就位并初调后,用微膨胀混凝土填充密实, 且与混凝土基础面结合。 (8)基础顶面的二次灌浆层厚度大于50mm时,可在基础顶面预留直径$ 8~10mm、间距200~300mm的插筋,以保证基础砼与二次灌浆层结合牢固。 (9)基础顶面四周边缘及沟道边,一般可设置50~75mm的角钢保护,以防止边缘损坏。 二、框架柱设计 (1)柱子一般采用矩形截面,在满足强度和稳定性要求的前提下宜适当减小柱的刚度,但其长细比(L o/b)不宜大于14。(柱刚度小可降低基础的基本频率,改善基础的动力特性。) L0――柱计算长度,按《GB 50010 -2010》表6.2.20-2中的现浇楼盖底层柱确定 b――矩形截面的短边尺寸 ⑵柱子截面刚度EA宜与其上荷载成相同比例值。 (3)柱主筋在底板内的锚固:当底板厚度w 1.2m时,柱主筋均应伸至底板底部钢筋网上,;当底板厚度〉1.2m时,柱主筋可只将一半的柱主筋伸至底板底部钢筋网上,另一半在底板内 达到直线锚固长度即可。 (4)柱主筋在顶板内的锚固:直线锚入顶板内,钢筋伸至顶板顶。 (5)可设2~3道施工缝,各设在柱顶、柱脚及零米附近。施工缝处理:预留$ 8@200的钢筋,长600mm,插入300mm;浇灌前应凿毛混凝土表面,湿润清扫干净后,坐一层掺有胶结剂的水泥净浆。 (6)中间柱子与横梁可不在同一平面,适当移动柱子的位置有时可明显改善基础的动力特性。 三、平板式基础底板设计 (1)底板应有一定的刚度,可嵌固柱子,并将荷载均匀传递给地基,底板的刚度对调整不均匀沉降起一定的作用。 (2)底板厚度对其动力特性影响不大,不宜过厚;底板的厚度,对中转速机组( 1000 v n w 3000r/min )可取基础底板长度的1/15~1/20,对高转速机组(3000r/min v n)可取基础底板 长度的1/10~1/15,底板厚度不应小于柱截面的边长,也不应小于800mm。 ⑶当底板厚度hw 1.2m时,底板双层双向配筋;当1.2mv hw 2m时,底板中部设一层构造钢筋网($ 16~20@600~900 );当2m v hw 3m时,设两层;当3mv hw 4m时,设三层。 (4)汽机基础应独立布置,底板四周应留有变形缝与其他结构隔开。中间平台宜与基础主体结构脱开,当不能脱开时,在两者连接处宜采取隔振措施。必要时,汽机底板上允许设置加热器平台和地下室楼板的柱子。

汽轮机课程设计

前言 《汽轮机原理》是一门涉及基础理论面较广,而专业实践性较强的课程。该课程的教学必须有相应的实践教学环节相配合,而课程设计就是让学生全面运用所学的汽轮机原理知识设计一台汽轮机,因此,它是《汽轮机原理》课程理论联系实际的重要教学环节。它对加强学生的能力培养起着重要的作用。 本设计说明书详细地记录了汽轮机通流的结构特征及工作过程。内容包括汽轮机通流部分的机构尺寸、各级的设计与热力计算及校核。 由于知识掌握程度有限以及二周的设计时间对于我们难免有些仓促,此次设计一定存在一些错误和遗漏,希望指导老师给予指正。 编者 2010年9月12日

内蒙古工业大学课程设计任务书 学院(系):能动学院课程名称:汽轮机原理A 指导教师:云峰

第一章 22MW凝汽式汽轮机设计任务书 1.1 设计题目:25 MW凝汽式汽轮机热力设计 1.2 设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3 设计原始资料 额定功率:12MW 设计功率:11.5MW 新汽压力:3.43MP a 新汽温度:435℃ 排汽压力:0.005MP a 冷却水温:15℃ 机组转速:3000r/min 回热抽汽级数:3 给水温度:150℃ 1.4 设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(0号图) 4.计算结果以表格汇总。

汽轮机课程设计报告

一、课题背景: 随着电力需求的迅速增长,电力负荷的多样性及可变性在所难免,而电能的不可储藏性决了发电机组的工况必须随着电力负荷的变化而变化。所以发电机组常常需要偏离设计工况运行。作为发电机组的原动机,汽轮机也必然受到变工况运行的影响。汽轮机在变工况下运行时,通过汽轮机的蒸汽流量或蒸汽参数将发生变化,汽轮机的某些级或全部级的反动度、级效率也随之发生变化。为了估计汽轮机在新工况下的经济性和可靠性,有必要对新工况进行热力核算。汽轮机整机变工况热力核算是建立在单级核算基础上的,因此研究单级热力核算对于顺利完成整机热力核算任务有重要意义。正是基于此,本设计拟题为:某型汽轮机最末级的倒序法变工况热力核算。 二、设计要求: 根据计算准确度的要求不同,热力核算可采用详细的热力核算,也可以采用近似的算法。本次设计要求的是单级的详细热力核算。由给定的不同的原始条件,单级的详细热力核算又分为顺序计算和倒序计算两种基本方法,以及将这两种算法结合起来的混合算法。本设计采用以给定的变工况后的级后状态为起点,由后向前计算的倒序法对某型汽轮机最末级进行详细的变工况热力核算。要求在规定的时间内,按规范完成设计说明书,并通过指导老师组织的小型答辩。 三、原始数据: 流量G=33.6kg/s,喷嘴平均直径=2.004m,动叶平均直径=2.0m,级前压力=0.0134Mpa,级前干度=0.903,喷嘴圆周速度=314.6m/s,动叶圆周速度=314m/s,反动度=0.574,级前余速动能=11.05kJ/kg,喷嘴速 度系数φ =0.97,喷嘴出汽角=18°20’,喷嘴高度=0.665m,喷嘴出口截面积=1.321;级后压力=0.0046Mpa,级后干度=0.866,动叶出口截面 积=2.275 ,动叶出汽角=3254’。

汽轮机基础知识(教材)

汽轮机基本概念、工作原理介绍 一、汽轮机运行基础知识 1、流体力学基础知识 一、流体的物理性质 1、流动性 流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。这也是流体容易通过管道输送的原因 2、可压缩性 流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。 3、膨胀性 流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。 4、粘滞性 粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。粘度越大,阻力越大,流动性越差。 气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。 二、液体静力学知识 1、液体静压力及其基本特性 液体静压力是指作用在液体内部距液面某一深度的点的压力。

液体静压力有两个基本特性: ①液体静压力的方向和其作用面相垂直,并指向作用面。 ②液体内任一点的各个方向的静压力均相等。 2、液体静力学基本方程 P=Pa+ρgh 式中Pa----大气压力ρ-----液体密度 上式说明:液体静压力的大小是随深度按线性变化的。 3、绝对压力、表压力和真空 ①绝对压力:是以绝对真空为零算起的。用Pj表示。 ②表压力(或称相对压力):以大气压力Pa为零算起的。用Pb 表示。 ③真空:绝对压力小于大气压力,即表压Pb为负值。 绝对压力、表压力、真空之间的关系为: Pj=Pa+Pb 三、液体动力学知识 1、基本概念 ①液体的运动要素: 液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。因此,压力和流速是流体运动的基本要素。 ②流量和平均流速: 假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量

相关主题
文本预览
相关文档 最新文档