当前位置:文档之家› 汽轮机设计系统

汽轮机设计系统

汽轮机设计系统
汽轮机设计系统

汽轮机设计系统是利用Pro/E二次开发工具Pro/Toolkit,在VC++.net2003开发平台上开发的。该系统实现了与Pro/E软件的无缝集成,用户可以利用该系统完成汽轮机产品的结构设计、通流设计、参数化变型设计、装配公差分析等工作。汽轮机设计系统菜单如图1所示。

图1 汽轮机设计菜单

参数化设计子菜单模块包括“结构参数化设计”、

“组件参数化设计”、

“尺寸参数化设计”、

“关系式操作”和“属性操作”。

“结构参数化设计”可以实现气封、转子等零部件的结构变型设计。“气封结构设计”人机交互界面如图2所示。“气封结构设计”可以实现气封齿形结构参数化和关键尺寸的参数化设计。

图2 气封结构设计对话框

“气封结构设计”实现气封结构变型设计的步骤如下:

1)调入气封源模型。源模型中定义了气封变型特征的拓扑结构和驱动参数,系统根

据这些特征和参数才能找到用户输入信息在模型中的对应信息。

2)选择齿形。在“选择齿形”和“选择末端齿形”组合框内点击相应单项按钮,定

制气封齿形。

3)选择备选特征。在“选择特征”组合框内,根据变型需求,点击复选按钮,选择

相应特征。

4)输入齿形基本参数。齿形结构确定之后,在“齿形基本参数”组合框内输入齿形

的驱动参数。值得注意的是,当在步骤2)中选择“一长一短分布”的齿形时,“齿

距W1”输入组合框为灰色不可用状态。

5)输入外形基本参数。在“外形基本参数”组合框内输入定义气封外形的参数,这

些参数驱动外围直径的大小。

6)生成模型。单击“生成模型”命令按钮,系统根据输入信息,重生源模型,从而

生成符合用户要求的新模型。

“转子结构设计”人机交互界面如图3所示。“转子结构设计”可以实现转子结构参数化和关键尺寸的参数化设计。

图3 转子结构参数化设计对话框

“转子结构设计”实现转子结构变型设计的步骤如下:

1)调入转子源模型。源模型中定义了转子变型特征的拓扑结构和驱动参数,系统根

据用户输入信息,在源模型的基础上重新生成新模型。

2)输入第一部分基本参数。在“第一部分”组合框内输入各参数值。第一部分包括

包括转子调节级和转子前端部分。

3)输入第二部分基本参数。在“第二部分”组合框内输入各参数值。第二部分为转

子低速级组,其中参数J1为低速级的级数。

4)输入第三部分基本参数。在“第三部分”组合框内输入各参数值。第三部分为转

子全航速级组,其中参数J2为全航速级的级数。

5)输入第四部分基本参数。在“第四部分”组合框内输入各参数值。第四部分为转

子后端部分。

6)输入放大部分基本参数。在“放大部分”组合框内输入各参数值。放大部分为转

子与气封的配合部分,其中参数J3与配合气封的齿组数相等。

7)生成模型。单击“生成模型”命令按钮,系统根据输入信息,重生源模型,从而

生成符合用户要求的新模型。

“尺寸参数化设计”模块采用基于特征的方法,通过定义零件各特征内的驱动尺寸的值来实现对零件的参数化设计。同时,该模块也可以实现对驱动尺寸公差值的定义。“尺寸参数化设计”人机交互界面如图4所示。

图4 尺寸参数化设计对话框

“尺寸参数化设计”提供了两种参数化设计方法,即基于同一特征内的尺寸参数化和跨特征的尺寸参数化。具体操作步骤如下:

1)调入源模型,单击“尺寸参数化设计”,弹出尺寸参数化设计对话框。系统会在对话

框初始化过程中提取当前零件特征结构树,并显示在对话框左侧的树控件内。

2)单击“查找/更新驱动参数”按钮,系统会将源模型中的非驱动尺寸的信息显示在列

表控件内,这种方式获得的尺寸为跨特征的驱动尺寸。同样,单击树控件上的特征

项,在列表控件内将显示特征内的驱动参数,这种方式获得的尺寸为同一特征内的

驱动尺寸。

3)单击列表控件内的某一条尺寸记录,该尺寸的信息会在下面的“尺寸操作”组合框

的对应编辑框内显示,同时,该尺寸也会在模型中高亮显示。

4)在“尺寸操作”组合框内输入新的尺寸信息,单击“修改尺寸”命令按钮,完成对

驱动尺寸的修改。

5)重生模型。当完成对所有驱动尺寸的修改后,单击“再说模型”命令按钮,重新生

成符合用户要求的新模型。

“组件参数化设计”和“尺寸参数化设计”类似,也是采用基于特征的参数化设计。不同的是,“组件参数化设计”可以在装配体模型中完成对零部件的参数化设计。在完成产品装配后,如果发现某个零部件设计尺寸不符合要求,可以使用该模块直接完成模型的修改,而无需回到零部件中重新修改模型。“组件参数化设计”的人机交互界面如图5所示。

图5 组件参数化设计对话框

“组件参数化设计”的操作步骤如下所示:

1)调入源模型,单击“组件参数化设计”,弹出组件参数化设计对话框。系统会在对话

框初始化过程中提取当前装配体特征结构树,并显示在对话框左侧的树控件内。2)单击树控件上的特征项,会在列表控件内将显示特征内的驱动参数。在装配体中,

组件也会被看作是特征,单击组件,会显示该模型内的驱动尺寸,单击组件下的特征,会显示特征内的驱动尺寸。

3)单击列表控件内的某一条尺寸记录,该尺寸会在模型中高亮显示;双击某一条尺寸

记录,调用尺寸编辑对话框,如图6所示。在该对话框内输入尺寸信息,单击“确定”命令按钮,完成尺寸信息的修改,同时系统会重新生成新的模型。

图6 尺寸编辑对话框

“关系式操作”作为参数化设计辅助模块,用于定义、修改和删除模型中驱动参数之间的关系,其人机交互界面如图7所示。

图7 关系式操作对话框

利用“关系式操作”进行尺寸关系编辑的过程如下:

1)调入模型,从菜单调用“关系式操作”对话框。在对话框初始化过程中,系统将

模型中已有关系式显示在列表框中。

2)添加关系式。单击“选择尺寸”按钮,模型中所有驱动尺寸将高亮显示;通过人

机交互的方式,在模型中选择要添加关系式的尺寸,被选中尺寸的符号会显示在

编辑框中;关系式编辑好之后,单击“添加”按钮,则新的关系式创建成功,同

时会刷新列表框。

3)修改关系式。双击列表框中的某一项关系式记录,该关系式会显示在下面的编辑

框中。完成关系式编辑后,单击“修改”按钮,完成关系式的修改,同时会刷新

列表框。

4)删除关系式。单击列表框中的某一项关系式记录,然后单击“删除”按钮,完成

对关系式的删除,同时会刷新列表框。

“属性操作”模块可以完成对模型属性信息,如材料、密度等,以及参数的添加和删除。“属性操作”人机交互界面如图8所示。

图8 属性操作对话框

利用“属性操作”进行属性信息操作的过程如下:

1)调入模型,从菜单调用“属性操作”对话框。在对话框初始化过程中,系统将模

型中已有属性显示在列表框中。

2)添加属性。在“属性设置”组合框内完成属性名称、数值、类型的设置,单击“添

加”按钮,完成属性的添加,同时刷新列表框。

3)修改属性。单击列表框中的某一项属性记录,该属性信息会显示在下面的编辑框

中。完成对属性的编辑后,单击“再生”按钮,完成属性的修改,同时会刷新列

表框。

4)删除属性。单击列表框中的某一项属性记录,然后单击“删除”按钮,完成对属

性的删除,同时会刷新列表框。

“装配公差分析”模块主要功能是计算转子系统各级动静叶片间的间距尺寸和公差,并通过与数据库中的通流设计尺寸进行比较,验证设计尺寸和公差是否满足装配技术要求。“装配公差分析”人机交互界面如图9所示。

图9 装配公差分析对话框

利用“装配公差分析”模块进行转子装配尺寸链分析的过程如下:

1)调入汽轮机装配体模型,从菜单调用“装配公差分析”对话框。对话框初始化过程

中会提取装配体树结构并显示在左侧的树控件中。

2)查找组成环。单击“查找组成环”按钮,系统会根据尺寸标识找到各级组成环,并

将组成环信息显示在上面的组成环列表框中。

3)计算尺寸链。首先在“选择计算方法”组合框内,单击单选按钮,选择相应的计算

方法,然后单击“公差计算”按钮。系统会计算出转子各级动静叶片间距尺寸和公

差,并将计算结果显示在下面的封闭环列表框中。

4)公差分析检验。首先在版本号组合框内选择与当前产品相匹配的版本号,然后单击

“公差检验”按钮。系统会将计算出的各级封闭环尺寸和公差与存储在数据库中的

设计尺寸和公差进行比较,并将比较结果以消息框的形式提供给用户。

5)用户根据公差分析结果,修改组成环尺寸和公差。双击组成环列表框中的某一项记

录,弹出“尺寸编辑”对话框,如图6所示。在尺寸编辑组合框内输入尺寸信息,单击“确定”按钮,完成对组成环的修改。

张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR 专科生毕业设计开题报告 2011 年 09 月 24 日

摘要 节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法—— 常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统 目录 N300MW汽轮机组热力系统分析- TMCR (1) 专科生毕业设计开题报告 (1) 摘要 (4) 关键词 (4) 第一章绪论 (9) 1.1 毕业设计的目的 (9) 1.2国外研究综述 (9) 第二章 300MW汽轮机组的结构与性能 (11) 2.1汽轮机工作的基本原理 (11) 第三章热力系统的设计 (14) 3.1主、再热蒸汽系统 (14) 3.1.1主蒸汽系统 (15) 3.1.2再热蒸汽系统 (15) 3.2主给水系统 (16) 3.2.1除氧器 (16) 3.2.2高压加热器 (16) 3.2.3其他 (17) 3.3凝结水系统 (17) 3.3.1凝结水用户 (17) 3.3.2凝结水泵及轴封加热器 (18) 3.4抽汽及加热器疏水系统 (18) 3.5轴封系统 (19) 3.6高压抗燃油系统 (20) 3.6.1磁性过滤器 (20) 3.6.2自循环滤油系统 (21) 3.7润滑油系统 (21) 3.8本体疏水系统 (21) 3.9发电机水冷系统 (22)

汽轮机设计

《汽轮机原理》 课程设计 学号 姓名 指导教师 设计时间 一、课程设计目的 (1)通过课程设计,系统地总结、巩固、加深在《汽轮机原理》课程中已学知识,进

一步了解汽轮机的工作原理。 (2)在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。 (3)通过课程设计对电站汽轮机建立整体的、量化的概念,掌握查阅和使用各种设计资料、标准、手册等参考文献的技巧。 (4)培养综合应用书本知识、自主学习、独立工作的能力,培养与其他人相互协作的工作作风。 二、课程设计内容 以N300型号的汽轮机为对象,在已知结构参数和非设计工况新蒸汽参数和流量的条件下,进行通流部分热力校核计算,求出该工况下级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。主要工作如下: (1)设计工况及非设计工况下通流部分各级热力过程参数计算。 (2)轴端汽封漏汽量校核计算。 (3)与设计工况的性能和特征参数作比较分析。 三、整机计算步骤 本次课程设计计算方法是将该型汽轮机的通流部分划分为高、中压缸和低压缸2个计算模块,由2个学生组成一个计算小组,一人采用顺算法计算高、中压缸,另一人采用逆算法计算低压缸。2人协同工作,共同商定计算方案和迭代策略。 本人进行的是低压缸部分计算,计算工况为103%。为便于计算,作出如下约定: (1)各级回热抽汽量正比例于主汽流量; (2)门杆漏汽和调门开启重叠度不计; (3)余速利用系数的参考值为:调节级后的第一压力级、前面有抽汽口的压力级利用上一级余速的系数为0.4,其它压力级为0.8; (4)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度; (5)第一次计算,用弗留格尔公式确定调节级后压力; (6)假定汽机排汽压力为设计工况下的值,用平移设计工况热力过程线方法初步确定排汽点。 四、汽轮机简介 本机组是按照美国西屋公司的技术制造的300MW亚临界、中间再热式、高中压合缸、双缸双排汽、单轴凝汽式汽轮机,如图4-2所示。它由高中压积木块BB0243与低压缸积木块BB074组合而成。为了进一步提高机组的经济性,对原引进技术作了改进设计,而且低压缸末级叶片采用905mm的长叶片。机组型号为N300-16.7/537/537,工厂产品号为D156。

汽轮机课程设计(中压缸)

题目:600MW超临界汽轮机通流部分设计 (中压缸) 学生姓名:丁艳平 院(系)名称:能源与动力工程 班级: 热能与动力工程03-03班 指导教师:谭欣星 2006 年11 月

能源与动力工程学院 课程设计任务书 热能动力工程专业036503班 课程名称汽轮机原理 题目600MW超临界汽轮机通流部分设计(中压缸)任务起止日期:2006年11 月13 日~ 2006年12 月4 日 学生姓名丁艳平2006年12月4日指导教师谭欣星2006年11月5日教研室主任年月日院长年月日

能源与动力工程学院 2. 此任务书最迟必须在课程设计开始前三天下达给学生。

600MW超临界汽轮机通流部分设计(中压缸) 摘要 本文根是根据给定的设计条件,确定通流部分的几何尺寸,以求获得较高的相对内效率。 设计原则是保证运行时具有较高的经济性;在不同的工况下工作均有高的可靠性;同时在满足经济性和可靠性要求的同时,考虑了汽轮机的结构紧凑,系统简单,布置合理,成本低廉,安装与维修方便,心以及零件的通用化和系列化等因素。 主要设计过程是:分析与确定汽轮机热力设计的基本参数,选择汽轮机的型式,配汽机构形式,通流部分及有关参数;拟定汽轮机近似热力过程曲线,并进行热经济性的初步计算;根据通流部分形状和回热抽汽点的要求,确定中压级组的级数并进行各级比焓降的分配,对各级进行详细的热力计算,确定汽轮机实际热力过程曲线,根据热力计算结果,修正各回热汽点压力以符合热力过程曲线的要求,并修正回热系统的热平衡计算,汽轮机热力计算结果。

目录 摘要 (1) 第一章:汽轮机热力计算的基本参数 (2) 第二章:汽轮机蒸汽流量的初步计算 (3) 第三章:通流部分选型 (9) 第四章::压力级比焓降分配及级数确定 (10) 第五章:汽轮机级的热力计算 (14) 第六章;高中压缸结构概述 (17) 第七章:600MW汽轮机热力系统 (19) 第八章:总结 (20) 参考文献 (23)

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

汽轮机组热力系统..

第二节汽轮机组热力系统 汽轮机组热力系统主要是由新蒸汽管道及其疏水系统、汽轮机本体疏水系统、汽封系统、主凝结水系统、回热加热系统、真空抽气系统、循环水系统等组成。 一、新蒸汽管道及其疏水系统 由锅炉到汽轮机的全部新蒸汽管道,称为发电厂的新蒸汽管道,其中从隔离汽门到汽轮机的这一段管道成为汽轮机的进汽管道。在汽轮机的进汽管道上通常还连接有供给汽动油泵、抽气器和汽轮机端部轴封等处新蒸汽的管道,汽轮机的进汽管道和这些分支管道以及它们的疏水管构成了汽轮机的新蒸汽管道及其疏水系统。3)在机组启动和低负荷运行时,为了保证除氧器的用汽,必须装设有饱和蒸汽或新蒸汽经减压后供除氧器用的备用汽源。 5)在机组启动、停止和正常运行中,要及时地迅速地把新蒸汽管道及其分支管路中的疏水排走,否则将会引起用汽设备和管道发生故障。这些疏水是: ①隔离汽门前、后的疏水和汽轮机进汽管道疏水。这两处疏水在机组启动暖管和停机时,都是排向地沟的,正常运行中经疏水器可疏至疏水扩容器或疏水箱。 ②汽动油泵用汽排汽管路的凝结水。由于废汽是排入大气的,它的凝结水接触了大气,水质较差,且在机组启、停时才用,运行时间不长,故一般都排入地沟。 ③汽轮机本体疏水。我们通常把汽轮机高压缸疏水、抽汽口疏水、低压缸疏水、抽汽管路上逆止门前后疏水以及轴封管路疏水等,统称为汽轮机本体疏水。这些疏水,由于压力的不同,而引向不同的容器中。高压疏水一般都是汇集在疏水膨胀箱内,在疏水膨胀箱内进行扩容,扩容后的蒸汽由导汽管送至凝汽器的喉部,而凝结水则由注水器(水力喷射器)送入凝汽器的热水井中。低压疏水可直接排入凝汽器。 6)一般中、低压汽轮机的自动主汽门前必须装设汽水分离器。汽水分离器的作用是分离蒸汽中所含的水分,提高进入汽轮机的蒸汽品质。21-1.5型机组的汽水分离器是与隔离汽门装置在一起的,N3-24型机组的汽水分离器是和自动主汽门装置在一起的。 二、凝结水管道系统 蒸汽器热水井中的凝结水,由凝结水泵升压,经过抽气器的冷却器、轴封加热器、低压加热器,然后进入除氧器,其间的所有设备和管道组成了凝结水系统。 凝结水系统的任务是不间断地把凝汽器内的凝结水排出和使主抽气器能够正常地工作,从而保证凝汽器所必须的真空,并尽量收回凝结水,以减少工质损失。 2)汽轮机组在启动和低负荷运行时,为了保证有足够的凝结水量通过抽器冷却器,以保证抽气器的冷却和维持凝汽器热水井水位,在抽气器后的主凝结水管道上装设了一根在循环管,使一部分凝结水可以在凝汽器到抽气器这一段管路内循环。再循环水量的多少,由再循环管上的再循环门来调节。 3)汽轮机在第一次启动及大修后启动时,凝汽器内还无水,这时首先应通过专设的补充水管向凝汽器充水,一般电厂都补充化学软水。机组启动运转正常后,应化验凝结水水质是否合格,若不合格则应通过放水管将凝结水

汽轮机课程设计---23MW凝汽式汽轮机热力设计.

第一章 23MW凝汽式汽轮机设计任务书 1.1 设计题目: 23MW凝汽式汽轮机热力设计 1.2 设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与 整机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3 设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MP a 新汽温度:435℃ 排汽压力:0.005MP a 冷却水温:22℃ 机组转速:3000r/min 回热抽汽级数:5 给水温度:168℃ 1.4 设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1 近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1 汽轮机各阀门及连接管道中节流损失和压力估取范围 图2-1 进排汽机构损失的热力过程曲线

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p 0、t 0,可得汽轮机进汽状态点0,并查得初比焓h 0=3304.2kj/kg 。由前所得,设进汽机构的节流损失ΔP 0=0.04 P 0=0.1372 MPa 得到调节级前压力P 0'= P 0 - ΔP 0=3.2928MPa ,并确定调节级前蒸汽状态点1。过1点作等比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 ()'0 23304.221201184.2mac t t h h h ?=-=-=3304.2-2128=1176 kj/kg 。由上估计进汽量后得到的相对内效率 ηri =83.1%,有效比焓降Δht mac =(Δht mac )' ηri =1176×0.831=977.3kj/kg ,排汽比 焓03304.2986.3282317.872mac z t h h h =-?=-=3304.2-977.3=2326.9 kj/kg ,在h-s 图上得排汽点Z 。用直线连接1、Z 两点,在中间'3点处沿等压线下移21~25 kj/kg 得3点,用光滑连接1、3、Z 点,得该机设计工况下的近似热力过程曲线,如图2-2所示。 图2-2 12MW 凝汽式汽轮机近似热力过程曲线

汽轮机设计系统

汽轮机设计系统是利用Pro/E二次开发工具Pro/Toolkit,在VC++.net2003开发平台上开发的。该系统实现了与Pro/E软件的无缝集成,用户可以利用该系统完成汽轮机产品的结构设计、通流设计、参数化变型设计、装配公差分析等工作。汽轮机设计系统菜单如图1所示。 图1 汽轮机设计菜单 参数化设计子菜单模块包括“结构参数化设计”、 “组件参数化设计”、 “尺寸参数化设计”、 “关系式操作”和“属性操作”。 “结构参数化设计”可以实现气封、转子等零部件的结构变型设计。“气封结构设计”人机交互界面如图2所示。“气封结构设计”可以实现气封齿形结构参数化和关键尺寸的参数化设计。 图2 气封结构设计对话框 “气封结构设计”实现气封结构变型设计的步骤如下: 1)调入气封源模型。源模型中定义了气封变型特征的拓扑结构和驱动参数,系统根 据这些特征和参数才能找到用户输入信息在模型中的对应信息。 2)选择齿形。在“选择齿形”和“选择末端齿形”组合框内点击相应单项按钮,定 制气封齿形。 3)选择备选特征。在“选择特征”组合框内,根据变型需求,点击复选按钮,选择 相应特征。 4)输入齿形基本参数。齿形结构确定之后,在“齿形基本参数”组合框内输入齿形

的驱动参数。值得注意的是,当在步骤2)中选择“一长一短分布”的齿形时,“齿 距W1”输入组合框为灰色不可用状态。 5)输入外形基本参数。在“外形基本参数”组合框内输入定义气封外形的参数,这 些参数驱动外围直径的大小。 6)生成模型。单击“生成模型”命令按钮,系统根据输入信息,重生源模型,从而 生成符合用户要求的新模型。 “转子结构设计”人机交互界面如图3所示。“转子结构设计”可以实现转子结构参数化和关键尺寸的参数化设计。 图3 转子结构参数化设计对话框 “转子结构设计”实现转子结构变型设计的步骤如下: 1)调入转子源模型。源模型中定义了转子变型特征的拓扑结构和驱动参数,系统根 据用户输入信息,在源模型的基础上重新生成新模型。 2)输入第一部分基本参数。在“第一部分”组合框内输入各参数值。第一部分包括 包括转子调节级和转子前端部分。 3)输入第二部分基本参数。在“第二部分”组合框内输入各参数值。第二部分为转 子低速级组,其中参数J1为低速级的级数。 4)输入第三部分基本参数。在“第三部分”组合框内输入各参数值。第三部分为转 子全航速级组,其中参数J2为全航速级的级数。 5)输入第四部分基本参数。在“第四部分”组合框内输入各参数值。第四部分为转 子后端部分。 6)输入放大部分基本参数。在“放大部分”组合框内输入各参数值。放大部分为转 子与气封的配合部分,其中参数J3与配合气封的齿组数相等。 7)生成模型。单击“生成模型”命令按钮,系统根据输入信息,重生源模型,从而 生成符合用户要求的新模型。 “尺寸参数化设计”模块采用基于特征的方法,通过定义零件各特征内的驱动尺寸的值来实现对零件的参数化设计。同时,该模块也可以实现对驱动尺寸公差值的定义。“尺寸参数化设计”人机交互界面如图4所示。

330MW汽轮机主要热力系统

2. 热力系统 2.1 330MW汽轮机本体抽汽及疏水系统 2.1.1 抽汽系统的作用 汽轮机有七级非调节抽汽,一、二、三、四级抽汽分别供四台低压加热器,五级抽汽供汽至除氧器及辅助蒸汽用汽系统,六、七级抽汽供两台高压加热器及一台外置式蒸汽冷却器(六级抽汽经蒸汽冷却器至六号高加)。 抽汽系统具有以下作用: a)加热给水、凝结水以提高循环热效率。 b)提高给水、凝结水温度,降低给水和锅炉管壁之间金属的温度差,减少热冲击。 c)在除氧器内通过加热除氧,除去给水中的氧气和其它不凝结气体。 d)提供辅助蒸汽汽源。 2.1.2 抽汽系统介绍 一段抽汽是从低压缸第4级后引出,穿经凝汽器至#1低压加热器的抽汽管道; 二段抽汽是从低压缸第3级后引出,穿经凝汽器至#2低压加热器的抽汽管道; 三段抽汽是从低压缸第2级后引出,穿经凝汽器至#3低压加热器的抽汽管道; 四段抽汽是从中压缸排汽口引出,至#4低压加热器的抽汽管道; 二、三、四级抽汽管道各装设一个电动隔离阀和一个气动逆止阀。气动逆止阀布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 五段抽汽是从中压缸第9级后引出,至五级抽汽总管,然后再由总管上引出两路,分别接至除氧器和辅助蒸汽系统; 在五段抽汽至除氧器管道上装设一个电动隔离阀和两个串联的气动逆止阀。装设两个逆止阀是因为除氧器还接有其他汽源,在机组启动、低负荷运行、甩负荷或停机时,其它汽源的蒸汽有可能窜入五段抽汽管道,造成汽机超速的危险性较大。串联装设两个气动逆止阀可起到双重保护作用。

五段抽汽至辅助蒸汽联箱管道上装设一个电动隔离阀和一个气动逆止阀,气动逆止阀亦布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 正常运行时,除氧器加热蒸汽来自于五段抽汽。辅助蒸汽系统来汽作为启动和备用加热蒸汽。 六段抽汽是从中压缸第5级后引出,先经#6高加外置式蒸汽冷却器(副#6高加)冷却后再至#6高压加热器;六级抽汽管道上各装设一个电动闸阀和两个气动逆止阀。 七段抽汽是从再热冷段引出一路至#7高压加热器的抽汽管道,装设一个电动闸阀和一个气动逆止阀,电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 电动隔离阀和气动逆止阀的布置位置一般尽量靠近汽机抽汽口,以减少在汽机甩负荷时阀前抽汽管道上贮存的蒸汽能量,有利于防止汽机超速。 本系统四台低加、两台高加及六号高加外置式蒸汽冷却器均为立式加热器。七台立式加热器从扩建端至固定端按编号从1号至7号再至蒸汽冷却器顺列布置。七台加热器均布置在A—B框架内,其水室中心线距B排柱中心线6.9米。 除氧器及给水箱布置在运转层12.00米层。 汽轮机各抽汽管道连接储有大量饱和水的各级加热器和除氧器。汽轮机一旦跳闸,其内部压力将衰减,各加热器和除氧器内饱和水将闪蒸,使蒸汽返回汽轮机;此外,五级抽汽管道支管上还接有备用汽源——辅助蒸汽,遇到工况变化或误操作,外来蒸汽将通过五级抽汽管道进入汽轮机;还有,各抽汽管道内滞留的蒸汽也可能因汽轮机内部压力降低返回汽轮机;各种返回汽轮机的蒸汽有可能造成汽轮机超速。 为防止上述蒸汽的返回,除一级抽汽外,其它各级抽汽管道上均串联安装有电动隔离阀和气动逆止阀。一旦汽机跳闸,气动逆止阀和电动隔离阀都关闭。 由于汽轮机上有许多抽汽口,而有可能有水的地方离各抽汽口又很近,各抽汽管道上还接有储水容器——高、低压加热器和除氧器,汽轮机负荷突然变化、给水或凝结水管束破裂以及其他设备故障,误操作等因素,可组合

汽轮机课程设计说明书

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

动力机器基础设计规范 GB 50040-96

动力机器基础设计规范 GB50040-96 主编部门:中华人民共和国机械工业部 批准部门:中华人民共和国建设部 施行日期:1997年1月1日 关于发布国家标准《动力机器基础设计规范》的通知 建标[1996]428号 根据国家计委计综(1987)2390号文的要求,由机械工业部会同有关部门共同修订的《动力机器基础设计规范》已经有关部门会审,现批准《动力机器基础设计规范》GB50040-96为强制性国家标准,自一九九七年一月一日起施行。原国家标准《动力机器基础设计规范》GBJ40-79同时废止。 本标准由机械工业部负责管理,具体解释等工作由机械工业部设计研究院负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九六年七月二十二日 1 总则 1.0.1 为了在动力机器基础设计中贯彻执行国家的技术经济政策,确保工程质量,合理地选择有关动力参数和基础形式,做到技术先进、经济合理、安全适用,制订本规范。 1.0.2 本规范适用于下列各种动力机器的基础设计: (1)活塞式压缩机; (2)汽轮机组和电机; (3)透平压缩机; (4)破碎机和磨机; (5)冲击机器(锻锤、落锤); (6)热模锻压力机; (7)金属切削机床。

1.0.3 动力机器基础设计时,除采用本规范外,尚应符合国家现行有关标准、规范的规定。 2 术语、符号 2.1 术语 2.1.1 基组foundation set 动力机器基础和基础上的机器、附属设备、填土的总称。 2.1.2 当量荷载equivalent load 为便于分析而采用的与作用于原振动系统的动荷载相当的静荷载。 2.1.3 框架式基础frame type foundation 由顶层梁板、柱和底板连接而构成的基础。 2.1.4 墙式基础wall type foundation 由顶板、纵横墙和底板连接而构成的基础。 2.1.5 地基刚度stiffness of subsoil 地基抵抗变形的能力,其值为施加于地基上的力(力矩)与它引起的线变位(角变位)之比。 2.2 符号 2.2.1 作用和作用响应 Pz——机器的竖向扰力; Px——机器的水平扰力; p——基础底面平均静压力设计值; Mφ——机器的回转扰力矩; Mψ——机器的扭转扰力矩; Az——基组(包括基础和基础上的机器附属设备和土等)重心处的竖向振动线位移;Ax——基组重心处或基础构件的水平向振动线位移;

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

汽轮机原则性热力系统资料

汽轮机原则性热力系统 根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。 第一节主蒸汽及再热蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。 一、主蒸汽系统 主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。 主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。 它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。 带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。 主蒸汽管道上还接出轴封备用及启动供汽管道。 主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。 主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。 冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

25mw凝汽式汽轮机组热力设计.

毕业设计说明书 25MW 凝汽式汽轮机组热力设计 学号: 学 院: 专 业: 指导教师: 2016年6月 1227024207 中北大学(朔州校区) 热能与动力工程 张志香

30MW凝汽式汽轮机组热力设计 摘要 本课题针对30MW凝汽式汽轮机组进行热力设计,在额定功率下确定汽轮机型式及参数,使其运行时具有较高的经济性,并考虑汽轮机的结构、系统、布置等方面的因素,以达到“节能降耗,保护环境”的目的。 本文首先对汽轮机进行了选型,对汽轮机总进汽量进行了计算、通流部分的选型、压力级比焓降分配及级数的确定、汽轮机级的热力计算、漏气量的计算与整机校核等。根据通流部分选型,确定排汽口数与末级叶片、配汽方式和调节级的选型,并进行各级比焓降分配与级数的确定;对各级进行热力计算,求出各级通流部分的几何尺寸,相对内效率,实际热力过程曲线。根据热力计算结果,修正各回热抽汽点压力达到符合实际热力过程曲线的要求,并修正回热系统的热力平衡计算,分析并确定汽轮机热力设计的基本参数。 关键词:汽轮机,凝汽式,热力系统,热力计算

Thermodynamic design of 30MW condensing steam turbine Abstract This topic for 30MW steam turbine unit for thermal design, seek appropriate turbine at rated power, to make it run with higher economic and to considered to steam turbine structure, system and arrangement and parts. So it can achieve "energy saving, environmental protection" purpose. Determination of machine, firstly, the steam turbine for the selection of the turbine total inlet were calculated through flow part of the selection pressure enthalpy drop distribution and series, steam turbine thermodynamic calculation, the leakage amount of calculation and check. According to the through flow part of selection to determine the exhaust port number and the last stage blades of steam distribution mode and regulation level selection, and for different levels of specific enthalpy drop distribution and the series of levels with a thermodynamic calculation for at all levels through flow part of the geometry and relative internal efficiency, the actual thermodynamic process curve. According to the thermodynamic calculation results, correction of regenerative extraction steam pressure to conform to the actual thermodynamic process curve, and repair Thermodynamic equilibrium calculation, analysis and determination of the basic parameters of the thermal design of the turbine. keywords:steam turbine, condensing type, thermodynamic system, thermodynamic calculation

汽轮机设计

《汽轮机原理》课程设计 学号 姓名 指导教师 设计时间

一、课程设计目的 (1)通过课程设计,系统地总结、巩固、加深在《汽轮机原理》课程中已学知识,进一步了解汽轮机的工作原理。 (2)在尽可能考虑制造、安装和运行的要求下,进行某一机组的变工况热力计算,掌握汽轮机热力计算的原理、方法和步骤。 (3)通过课程设计对电站汽轮机建立整体的、量化的概念,掌握查阅和使用各种设计资料、标准、手册等参考文献的技巧。 (4)培养综合应用书本知识、自主学习、独立工作的能力,培养与其他人相互协作的工作作风。 二、课程设计内容 以N300型号的汽轮机为对象,在已知结构参数和非设计工况新蒸汽参数和流量的条件下,进行通流部分热力校核计算,求出该工况下级的内功率、相对内效率等全部特征参数,并与设计工况作对比分析。主要工作如下: (1)设计工况及非设计工况下通流部分各级热力过程参数计算。 (2)轴端汽封漏汽量校核计算。 (3)与设计工况的性能和特征参数作比较分析。 三、整机计算步骤 本次课程设计计算方法是将该型汽轮机的通流部分划分为高、中压缸和低压缸2个计算模块,由2个学生组成一个计算小组,一人采用顺算法计算高、中压缸,另一人采用逆算法计算低压缸。2人协同工作,共同商定计算方案和迭代策略。 本人进行的是低压缸部分计算,计算工况为103%。为便于计算,作出如下约定: (1)各级回热抽汽量正比例于主汽流量; (2)门杆漏汽和调门开启重叠度不计; (3)余速利用系数的参考值为:调节级后的第一压力级、前面有抽汽口的压力级利用上一级余速的系数为0.4,其它压力级为0.8; (4)对径高比小于6的级,在最终计算结果中,用近似公式估算出叶根处的反动度; (5)第一次计算,用弗留格尔公式确定调节级后压力; (6)假定汽机排汽压力为设计工况下的值,用平移设计工况热力过程线方法初步确定排汽点。 四、汽轮机简介 本机组是按照美国西屋公司的技术制造的300MW亚临界、中间再热式、高中压合缸、

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,

N25-3.5435汽轮机通流部分热力设计 汽轮机课程设计说明书 毕业设计

N25-3.5435汽轮机通流部分热力设计汽轮机课程设计说明书毕业设计

汽轮机 课程设计 说明书 设计题目:N25-3.5/435汽轮机通流部分热力设计 学生姓名: 学号: 专业: 热能与动力工程 班级:

完成日期: 2011-11-08 目录 第一部分:课程设计的任务与要求 (1) 第二部分:汽轮机热力计算 (2) 一、汽轮机进汽量D0的初步估算和近似热力过程曲线的 初步计 算 (2) 二、调节级详细计算 (3) 三、回热系统平衡初步估算 (12) 四、压力级焓降分配和级数确定 (16) 五、非调节级详细计算 (19) 六、回热系统校核修正 (24) 七、整机效率、整机功率的核算 (24) 八、结果分析总结 (25) 附表一:压力级详细计算结果列表 (26) 表二:回热系统校核修正后结果列表 (24) 附图一:整机详细热力过程曲线

附图二:调节级详细热力过程曲线 附图三:一般性压力级热力过程曲线 附图四:压力级平均直径变化规律及速度比和比焓降分配示意图附图五:各级速度三角形 附图六:通流部分子午面流道图 附图七:回热系统示意图 汽轮机课程设计说明书 第一部分:课程设计的任务与要求: 一.设计题目:N25-3.5/435汽轮机通流部分热力设计 二.已知参数: 额定功率:p r=25MW,额定转速:n e=3000r/min,设计功率:p e=20MW,新蒸汽压力:p0=3.5MPa,新蒸汽温度:t0=435℃,排汽压力:p c=0.005MPa,给水温度:t fw=160~170℃,冷却水温度:t w1=20℃, 给水泵压头:p fp=6.3MPa,凝结水泵压头:p cp=1.2MPa,射汽抽汽器用汽量:△D ej=500kg/h, 射汽抽汽器中凝结水温升:△t ej=3℃, 轴封漏汽量:△D1=1000kg/h, 第二高压加热器中回收的轴封漏汽量:△D1′=700kg/h。 三.任务与要求

相关主题
文本预览
相关文档 最新文档