当前位置:文档之家› 锂电池正极材料--生产磷酸铁锂的上市公司一览

锂电池正极材料--生产磷酸铁锂的上市公司一览

锂电池正极材料--生产磷酸铁锂的上市公司一览
锂电池正极材料--生产磷酸铁锂的上市公司一览

锂电池正极材料--生产磷酸铁锂的上市公司一览

本文来自:财富赢家作者:冬季风点击1055次

原文:

上市公司, 正极, 锂电池, 磷酸, 生产

磷酸铁锂是一种新型锂离子电池电极材料。目前全球已经有很多厂家开始了工业化生产,国外美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。其特点是放电容量大,价格低廉,无毒性,不造成环境污染。世界各国正竞相实现产业化生产。

锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂离子电池的正极材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。

[1]、杉杉股份

(600884):

湖南杉杉新材料有限公司,控股75%。主要生产锂离子电池正极材料,是中国国内发展最快、规模最大的锂离子电池正极材料制造商。拥有年产5000吨锂电正极材料的生产规模,钴酸锂年生产能力为4000吨,锰酸锂500吨。目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。2007年钴酸锂占国内市场份额的40%以上,稳稳占据全国第一、世界第三的锂离子电池正极材料生产商地位。长沙杉杉动力电池有限公司,控股82%。主要生产锂离子动力电池。目前有钢壳液态锂离子电池、聚合物锂离子电池等几十种动力电池产品。产品材料体系有锰酸锂系列、磷酸亚铁锂系列、三元体系电池。

[2]、中国宝安

(000009):

在锂电池正负极材料上拥有绝对的行业话语权。主要通过2家控股子公司进行。控股55%的贝特瑞公司是国内唯一的锂电池碳负极材料标准制定者;也是国内唯一的锂电池磷酸铁锂正极材料标准制定者,贝特瑞公司,控股55%。是锂电池碳负极材料和磷酸铁锂正极材料的龙头。锂电池碳负极材料国内第一,市占率80%,全球第二;磷酸铁锂正极材料国内第一,目前全球第三。贝特瑞09年碳负极材料产能是6000吨/年,磷酸铁锂正极材料产能是1500吨/年。天骄公司,控股75%。主营的三元正极材料,08年销量居国内第一,市场占有率30-40%。08年三元正极材料产量805吨,销量665吨;09年保守产能是1400吨,负极材料钛酸锂180吨,正极材料磷酸铁锂09年6月达产,年产能是150吨。

[3]、金瑞科技

(600390):

正极材料是锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模产业化并广泛应用于商品锂离子电池的正极材料。公司子公司长远锂科(公司占16%,大股东占84%)是专业生产钴酸锂的高新技术企业。05年钴酸锂年产量达1500吨,其中采用具有自主知识产权的湿法新技术生产的球状钴酸锂为1000吨。08年金瑞科技开展了磷酸亚铁锂制备技术和镍钴锰酸锂三元材料的研究。新型锂离子正极材料镍钴锰酸锂其比容量比钴酸锂高出30%以上。

[4]、上海普天

(600680):

上海普天控股股东中国普天信息产业集团日前与上海市政府签署战略合作框架协议,中国普天将进一步加大对上海的资金和产业投入,从战略角度积极发展新能源产业。而上海普天有望抓住机遇迎来新的大发展。据了解,中国普天将在上海重点建设磷酸铁锂电池正极材料、动力电池管理系统产业化基地。上海市则将向中国普天提供包括动力电池市场、资金、政策在内的发展机会,支持中国普天生产新能源汽车关键零部件产品及新能源动力系统产品。

[5]、咸阳偏转(000697):

公司控股%的子公司“咸阳威力克能源有限公司”,是一家开发、制造与销售锂离子电池为一体的高科技产业公司。年产各类锂离子电池2000万只。产品种类有:小型数码产品的用的系列锂离子电池;锰酸锂系列动力电池;磷酸铁锂(LiFePO4)系列小功率电池;用于电动汽车领域的磷酸铁锂(LiFePO4)系列大功率电池。2007年8月,单体120Ah磷酸铁锂电池开发成功,并成功使用到奥运大巴车。

[6]、横店东磁

(002056):

作为国内磁材料的核心企业,有可能进入混合动力汽车的配套领域。预期随着国内混合动力汽车产业化过进程的推进,公司有可能成为上游主要供应商。为完善公司产业构成,公司于2006开始研发锂电池的正极材料--磷酸铁锂。与其他锂电池材料相比,磷酸铁锂具有超长寿命、使用安全、快速充放电、耐高温、大容量、无记忆效应、体积小、重量轻、绿色环保等特点,是目前车用动力蓄电池最被看好的材料体系之一。

本文来自: 财富赢家论坛中国最好的股票论坛详细文章参考:

锂电池正极材料及其设备制作方法与制作流程

本技术公开了一种锂电池正极材料,它是由下述重量份的原料组成的:氢氧化锂100110、硫酸锰2030、氧化亚钴46、导电粘合液23、氧化锌79、羧甲基纤维素钠0.10.2、硫酸亚锡0.080.1,本技术制备出的正极材料具有颗粒均匀、比容量高、循环性能好、易于工业化生产等优点,采用三乙胺处理石墨粉,然后与松香共混,不仅具有更好的导电性,而且黏度高,可以有效的提高成品电极材料的稳定性。 权利要求书 1.一种锂电池正极材料,其特征在于,它是由下述重量份的原料组成的: 氢氧化锂100-110、硫酸锰20-30、氧化亚钴4-6、导电粘合液2-3、氧化锌7-9、羧甲基纤维素钠0.1-0.2、硫酸亚锡0.08-0.1。 2.根据权利要求1所述的一种锂电池正极材料,其特征在于,所述的导电粘合液的是由下述重量份的原料组成的: 石墨粉20-30、三乙胺1-2、乙炔炭黑6-9、松香1-2、三羟甲基丙烷0.1-0.2; 制备方法包括以下步骤: (1)取石墨粉,加入到其重量10-18倍的96-98%的硫酸溶液中,升高温度为35-40℃,超声10-20分钟,过滤,将沉淀水洗,常温干燥,与三乙胺混合,加入到混合料重量13-15倍的去离子水中,在50-60℃下保温搅拌1-2小时,得胺化石墨粉溶液; (2)取松香,加热软化,加入到其重量3-4倍的无水乙醇中,加入乙炔炭黑,搅拌均匀,与上述胺化石墨粉溶液混合,搅拌均匀,加入三羟甲基丙烷,在70-75℃下保温搅拌2-3小时,即得所述导电粘合液。

3.一种如权利要求1所述的锂电池正极材料的制备方法,其特征在于,包括以下步骤: (1)取氢氧化锂、硫酸锰、氧化亚钴混合,加入到混合料重量30-40倍的去离子水中,搅拌均匀,得前驱体溶液; (2)取氧化锌、羧甲基纤维素钠混合,加入到混合料重量10-14倍的去离子水中,搅拌均匀,得氧化锌分散液; (3)取上述前驱体溶液、氧化锌分散液混合,搅拌均匀,滴加氨水,调节pH为9-10,在50-60℃下保温搅拌30-40分钟,加入上述导电粘合液,升高温度为70-75℃,保温搅拌10-20分钟,得导电溶胶; (4)取硫酸亚锡,加入到上述导电溶胶中,搅拌均匀,蒸馏除去乙醇,刮涂到集流体中,在110-130℃下干燥1-2小时,压制成型,即得所述锂电池正极材料。 技术说明书 一种锂电池正极材料及其制备方法 技术领域 本技术属于电池领域,具体涉及一种锂电池正极材料及其制备方法。 背景技术 锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3:1-4:1),因为正极材料的性能直接影响着锂离子电池的性能,其成本

磷酸铁锂电池加工过程中常见的问题

磷酸铁锂电池加工过程中常见的问题 磷酸铁锂因锂离子的扩散系数低,导电性上较差,所以当下做法是将其颗粒做小,甚至是做成纳米级数,通过缩短LI+和电子的迁移路径,来提升其充放电速度(理论上,迁移时间和迁移路径平方成反比)。但由此给电池加工带来一系列的难题。 首先遇到的是材料分散问题 制浆是电池生产过程中最为关键的工序之一,其核心任务就是把活性物质、导电剂、粘结剂等物料均匀的混合,使得材料性能能够更好的发挥。要混匀,先要能分散。颗粒减小,相应的比表面也就增大,表面能也就增大,颗粒间发生聚合的趋势就增强。克服表面能分散所需要的能量也就越大。现在普遍用的是机械搅拌,机械搅拌能量分布是不均匀的,只有在一定的区域内,剪切强度足够大,能量足够高,才能把聚合的颗粒分开。要提升分散能力,一个是在搅拌设备的结构上优化,不改变最大剪切速度的情况下提高有效分散区域的空间比例;一个是提高搅拌功率(提高搅拌速度),提升剪切速度,相应的有效分散空间也会增大。前者属设备上的问题,提升空间有多大,涂布在线不做评论。后者,提升空间有限,因为剪切速度提到一定限度,就会对材料造成伤害,导致颗粒破损。 较为有效的方法是采用超声波分散技术。只是超声波设备价格较高,前些时候接触的一家,其价格和进口的日本机械搅拌机相当。超声分散工艺时间短,总体能耗降低,浆料分散效果好,材料颗粒的聚合得到有效延缓,稳定性大为提高。 另外,可以通过使用分散剂来改善分散效果。 涂布均一性问题 涂布不均,不仅电池一致性就不好,还关系到设计、使用安全性等问题。所以,电池制作过程中对涂布均一性的控制很严格。做配方、涂布工艺的知道,材料颗粒越小,涂布越难做均匀。就其机理,我尚未看到相关的解释。涂布在线认为是电极浆料的非牛顿流体特性引起的。 电极浆料应属非牛顿流体中的触变流体,该类流体的特点是静止时粘稠,甚至呈固态,但

锂离子电池正极材料磷酸钒锂的研究

锂离子电池正极材料磷酸钒锂的研究 学号:093112158姓名:刘畅 (中南大学,材料科学与工程学院,湖南长沙 410083) 摘要:Li3V2(PO4)3因具有优异的电化学性能,成为目前倍受关注的锂离子电池正极材料。介绍了单斜结构磷酸钒锂[α- Li3V2(PO4)3]的结构及充放电机理,概述了几种主要的制备Li3V2(PO4)3方法,包括了固相法、溶胶-凝胶法、微波法。同时阐述了几种主要方法用来对Li3V2(PO4)3电化学性能进行改性研究,对该材料的发展前景进行了展望。 关键词:正极材料Li3V2(PO4)3锂离子电池 目前, 锂离子电池因其具有灵便、安全性好、循环寿命长、无记忆效应、无污染、高的单电池电压及高能量密度等优良特性,已成为当今便携式电子产品的可再充电式电源的主要选择对象之一。锂离子二次电池的性能和成本在很大程度上取决于正极材料的电化学性能和成本。 研究发现,以磷酸根聚阴离子为基础的正极材料能够产生比较高的氧化还原电位,而且锂离子扩散的通道加大,能够很好地进行嵌脱锂的反应,此外此类型正极材料还具有良好的安全性、热力学稳定性及较高的放电比容量[1-3] 。 在过渡金属元素中,钒的化学性质十分活泼,是典型的多价过渡金属元素,目前研究发现具有储锂性能的含钒磷酸盐体系正极材料主要有LiV2PO4 F,Li3V2 -(PO4)3,LiVP2O7和VOPO4/LiVOPO4等。其中,单斜晶系磷酸钒锂[α-Li3V2(PO4)3]是一种很有前途的锂离子电池正极材料。它具有一般聚阴离子材料高稳定性、高容量及高电位的特点,近年来也备受人们的关注。同时我国有丰富的钒矿资源,尽管资源没有铁丰富,但钢铁冶炼渣中存在含量比较高的钒。因此从经济和环境角度来看,α-Li3V2( PO4 ) 3锂电池正极材料的开发具有非常重大的意义和价值。1α-Li3V2 (PO4)3的结构及充放电机理 1. 1α-Li3V2 (PO4)3的结构 α-Li3V2(PO4)3属于P21 /n空间群,晶胞参数为[4] :a = 86.22 nm, b = 86.24 nm,c = 120.36 nm,β= 90.452°,V = 8.949×105 nm3,其晶胞结构如图1[5]所示。单斜结构[6]由VO6八面体和PO4共用氧原子顶点的三维框架构成。每个VO6八面体通过顶点与6个PO4四面体连接,而每个PO4四面体与4个VO6八面体连接。通过这种连接方式构成了三维网状V2(PO4)3单元结构, Li+位于晶胞中形成12个四面体空

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

磷酸铁锂正极材料项目

磷酸铁锂正极材料项目 简述 磷酸铁锂是近年来发展较快的锂电池正极材料,其分子式LiMPO4,Lithium Iron Phosphate ,简称LFP正极材料,其结构为橄榄石型结构,有高稳定性,和目前锂材料最大的不同是不含钴等贵重元素,没有毒性,原料价格低且磷、锂、铁存在于地球的资源含量丰富,不会有供料问题。其工作电压适中(3.2V)、电容量大(170mAh/g)、高放电功率、可快速充电且循环寿命长,在高温与高热环境下的稳定性高。用作电池的磷酸铁锂材料一般颜色为灰白色,经过包裹碳后成为黑色粉末。 磷酸铁锂具有以下几个重要的优点: (1)高性价比,目前,一般国内磷酸铁锂的价格为每吨25万元,国外产品的价格约在30万元以上。我们产品的性能基本上同国内外的主流产品,材料成本和消耗成本(电源,燃料和人工费用)约在8-10万左右,利润率较好。 (2)磷酸铁锂的单位容量约为钴酸锂的75%,成本只相当于钴酸锂的三分之一左右,而且没有爆炸等危险,无毒性,电池循环寿命约是锂电池的4-5倍,高于锂电池8-10倍高放电功率(可瞬间产生大电流),加上同样能量密度下整体重

量,约较锂电池减少30-50%,其在动力电池市场上有更广阔的前景。 建设主要内容: 计划建设年产6000吨磷酸铁锂材料生产基地,项目占地100亩,总建筑面积9000平方米。建设研发中心、原料库、成品库、加工车间及办公区域。项目分两期建设,其中一期总投资1亿元,形成年产2000吨磷酸铁锂材料产能。二期总投资4亿元,达到年产6000吨产能水平。购置设备有实验合成用气氛反应炉及控制设备台、高温纤维加热炉、高能量密度介质搅拌磨、无污染型介质搅拌磨、真空干燥箱、混合机、X射线沉降粒度仪、电超声法纳米粒度仪、比表面吸附仪等,设备总价2500万元。 总投资 5亿元,其中企业自筹3.5亿元,国内银行贷款1.5亿元 经济效益分析 按年生产6000吨磷酸铁锂材料计算,销售收入6000*25万元,利润总额6亿元,实现利税4亿元。

锂离子电池正极材料磷酸钒锂的研究进展

锂离子电池正极材料磷酸钒锂的研究进展.txt26选择自信,就是选择豁达坦然,就是选择在名利面前岿然不动,就是选择在势力面前昂首挺胸,撑开自信的帆破流向前,展示搏击的风采。本文由hnzzwxf贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 22 ? 7 材料导报 21年5月第2004卷专辑15 锂离子电池正极材料磷酸钒锂的研究进展 刘丽英,海燕陈炼。翟玉春。张,, (广东工业大学材料和能源学院,州580;2迈科科技有限公司,莞530;1广106东2803东北大学材料和冶金学院,阳100)沈104 摘要 磷酸钒锂是一种新型的锂离子电池正极材料,电化学性能受合成方法及工艺条件的影响。介绍其 了。(04。VP)的结构特点及充放电过程的电化学特征。全面综述了采用固相反应法、溶胶一胶法及微波法凝等制备磷酸钒锂的研究现状,比较了各种方法的利弊。并 关键词锂离子电池正极材料磷酸钒锂合成方法 ReerhPrgesitoeMaeiltimnduPhshaesacorsnCahdtrasLihuVaaimopt frLihi-oteyotuinBatrm LILyn,ZANGayn,CHENa。UiigHHiaLin,ZHAIYuhncu。 (FautfMaeilnegGundniestfTehooyGunzo106;2MciTehooy1clyotraadEnry,agogUnvriocnlg,aghu580yNarcnlg C.t,ogun530;Isttotrl8tlryNresenUnesySeyn104oLdDnga2803ntuefiMaeisLaMealg,otatriri,hnag100)uhvt AbtatsrcLtimaaimhshtsanwyeoahdtraoiim-oatr,oeee—ihuvndupopaeietpfctoemaeilfrlhuinbteywhslct tohmiarprisaeafceysnhssmehdnrcsodtn.nrdcinohtutrlnrcecloetrfetdbyteitosadpoescniosAnitoutoftesrcuadpeia eetohmilcaatrtcncag-icagrcsefL.())irvddTheerhporsenlcrcechrceiisihredshrepoesso3asV2P

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一. 高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等) ,磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFeP04分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFeP04粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30 C, 0.1 C 倍率下的初始放电容量达到160 mAh g-1 ;例2 : S.S.Zhang等采用二步加热法,以 FeC:2O4 2H2O和LiH2PO4为原料,在氮气保护下先于350~380 C加热5 h形成前驱体,再在800 C下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放 电容量为159 mAh g-1 ;例3 : A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4 2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300 C下预热分解,再在氮气保护下先于 450 C加热10 h,再于800 C烧结36 h,产物在放电电流密度为2.3 mA g-1时放电,室温初始放电容量在136 mAh g-1 左右;例4: Padhi 等以Li2CO3 , Fe(CH3COO)2 , NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA h /g ; Takahashi 等以LiOH H2O, FeC2O4 2H2O , (NH4)2HPO4 为原料,在675、725、800 C下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以 At+5%H2为保护气氛,在700 C下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 05C首次放电比容量为150mA h/g ;例 6 :高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139 4mA h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 15% ;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500 C下预烧,再在700 C下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3 98F0 02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA h/g。 2?优点:工艺简单、易实现产业化 3?缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次 稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4 粉末导电性能不好,需要添加导电剂增强其导电性能 4?改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能 二. 碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气 保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1:杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具 有优势,10 C时容量保持率为88.1% ;例2 : Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g ; 例3 : PP.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛

锂电池及正极材料生产项目可行性实施报告

锂电池及正极材料生产项目可行性研究报告 目录

一、概述 1.1. 项目名称及建设地点 1.2. 项目概况 1.3. 公司概况 1.4. 经济效益和社会效益分析 1.5. 建设目标 二、技术可行性分析 2.1.项目的技术路线、工艺的合理性和成熟性,关键技术的先 进性和效果 ?1.项目的生产路线 ?2.技术的创造性和先进性 3.技术创新性 4.工艺与原材料的适应性及其经济合理性 5.连续化、自动化及环保情况 6.成果的创造性、先进性 2.2.产品技术性能水平与国外同类产品的比较 2.3.项目承担单位在实施本项目中的优势 ?1.政策优势;2.技术优势;3.市场优势;4.性能优势 三、项目成熟程度 3.1. 产品质量的稳定性,以及在价格、性能情况 ?1.技术质量指标 3.2.核心技术的知识产权情况 四、市场需求情况和风险分析

4.1.国市场需求规模和产品的发展前景、在国市场的竞争优势 和市场占有率 ?1.国市场需求规模 ?2.产品经济周期及目前所处生命期的阶段 ?3.小型锂离子电池市场对锂电池的需求趋势 ?4.车用动力电池市场对锂电池的需求趋势 五、项目建设规划 六、原材料、原材料供应、动力消耗及三废治理 七、项目工艺、设备与经济效益分析 八、节能环保 九、风险分析及对策 ?1.项目风险2.风险对策 十、结论 一、概述 1.1 项目名称及建设地点

(1)项目名称:锂电池及正极材料生产项目 (2)建设地点:某经济开发区 1.2 项目概况 1.2.1项目法人代表: 1.2.2 建设目标: 本项目建设的主要目标是:建成年产1000吨锂电池正极材料及50000组锂电池生产线,通过产学研相结合的方式,形成较强的研发团队,为公司进入锂离子电池市场打下基础。 1.2.3 产品及拟建规模 类型产品名称建设规 模 原料型锂电池正极材料 1000吨功率型高功率电池;新型动力电池 50000组 1.2.4 主要建设容及投资 项目注册资本1500万元,计划总投资2亿元,投资构成如下:(1)土地:100亩*8万/亩=800万; (2)厂房:20000平米*800元/平米=1600万元 办公楼:3000平米*1500/平米=450万元 宿舍楼:2000平米*1300/平米=260万元 配套和完善相应的公用辅助:300万元 (3)设备(正极材料生产线和锂电池生产线)共0.987亿元;

磷酸铁锂电池配方以及制作工艺

磷酸铁锂电池配方以及制作工艺 关于材料应用的一些建议和方法 一、我们推荐的配方: LiFePO4:SP:KS-6:PVDF:NMP=(90-92):(1-2):(2-1):(5-6):(120-140) 二、我们推荐的混合方案: 1.)pvdf母液的配制,5%的pvdf的nmp溶液,搅拌溶解pvdf母液时,一定要充分溶解,最好能高温(50-60度)搅拌一小时,并真空静置2小时,使高分子链充分的伸展,这时的成膜性能最好。 2.)在配置好的母液中添加KS-6,充分润湿并高速搅拌1小时,使其充分分散。利用其片状石墨的润滑作用,为下一步的SP和主材料的分散做准备。 3.)在上述溶液中加入SP,充分湿润,高速搅拌一小时,充分分散后,低速搅拌并抽真空,消除SP的加入引入的气泡。 4.)在上述溶液中加入需要加入量一半的磷酸铁锂,充分湿润,高速(转速3500转以上、线速度350-500之间)搅拌30分钟后,再加入余下材料的一半,高速搅拌60分钟,加入相当于固体材料质量20%-40%的nmp,搅拌30分钟,粘度降低后,加入余下的材料,高速搅拌2-3个小时。加入适量nmp调整浆料粘度,慢速搅拌并抽真空。 三、我们推荐的涂布参数设置、面密度设置、压实密度 涂布参数我们建议烤箱前段温度在90-100度之间,中间温区在110-120度,尾端温区在80-90度,这样极片不易出现开裂和水痕装,粘接效果也较好,关于涂布速度,以充分干燥为标准设置。我们推荐

的面密度pd60在300左右,压实密度2.1-2.4,pt30在260左右,压实密度2.0-2.2。可以保证加工性能,并兼顾到电池容量和功率。对于分切时边缘脱粉的问题,可以考虑调整辊压、分切的顺序,采用先分切,后辊压的方式,这样会降低生产效率,可以弥补粘接性能不好造成整批报废的问题。 四、我们对电池装配的建议 电芯组装是电池生产的关键环节,对电池容量的发挥、电池首次效率、电池的存储性能有较大的影响。因此在这个过程中,一定要对一些关键因素做一些重点控制,如车间粉尘控制、电池装配比控制(电池松紧度)、电池短路测试,隔膜的选择等。我们建议电池的装配比最好不要超过91%、测试电池短路时绝缘测试仪电压应该不低于200v。由于磷酸铁锂超细粉和一次颗粒很小,国产隔膜或者走私过来的次优隔膜可都能对电池的首次效率和荷电存储有较大的影响。 五、我们对电池化成和分容制度的建议 对于磷酸铁锂电池的化成,由于磷酸铁锂本征导电率较低,活化相对困难。因此应该考虑在化成前,电解液充分的浸润电极,常温搁置7个小时以上,高温(50-60)老化2个小时以上。化成时最好考虑小电流高电压化成,我们建议化成制度是: 1)0.1c恒流充电5小时,上线电压4v 2)0.2c恒流恒压充电6小时,上限电压4v 3)搁置30分钟 4)0.2c恒流放电至2.0v。

磷酸铁锂正极材料稳定性探讨

磷酸铁锂正极材料稳定性探讨 张世杰副总工程师 中国电子科技集团公司第十八研究所 目录 引言 磷酸铁锂正极材料产业现状分析 目前磷酸铁锂正极材料批产存在的主要质量问题 产生质量问题的主要原因分析 如何提高磷酸铁锂批次稳定性 讨论 1、引言 采用磷酸铁锂正极材料制备的锂离子电池与其他正极材料制备的锂离子电池比较具有三个突出的特点:一是电池安全性好,电池在过充电、过放电、短路、针刺等试验条件下安全;二是电池充放电循环寿命长且容量保持率高,能够循环2000次且容量仍能保持90%;三是电池倍率放电能力强,可以几十倍率放电。因此,磷酸铁锂正极材料被公认为是动力锂离子电池理想正极材料,也成为世人关注的“热点”。

锂离子电池制造商在使用国产磷酸铁锂正极材料试验和生产电池过程发现:国产磷酸铁锂正极材料与国际先进同类产品相比仍有较大差距、一部分磷酸铁锂供应商提供的材料存在不同程度的质量问题、批次产品之间存在质量不稳定等问题。为此,国产磷酸铁锂正极材料质量一致性又成为人们关注的“焦点”。 如何迅速解决磷酸铁锂正极材料生产中存在的关键技术问题、工艺技术问题和产品质量问题?如何提高磷酸铁锂批生产过程产品批次不稳定问题?更是从事磷酸铁锂正极材料技术研究、产品开发、中试和批生产技术攻关工作者所面临的一大“难点”。 本报告正是针对以上人们关心和关注的问题,结合实际工作中遇到的问题,浅谈一些粗浅的见解。 2、磷酸铁锂正极材料产业现状分析 国内已经形成了一批磷酸铁锂正极材料生产商,产业初具规模,并把产品投向市场,提供给锂离子电池制造商使用。但是,大家普遍感到:目前国内磷酸铁锂正极材料批量生产技术还存在突出的工艺稳定性问题。突出表现在: 一些大的锂离子电池制造商从磷酸铁锂材料平均粒径、电极加工性、电极压实密度、实际比容量、循环寿命、倍率放电、温度特性、安全性等方面对国内几个磷酸铁锂材料供应商和Valence等国外供应商所提供的材料进行了非常系统的试验评价,客观的试验数据表明:国内磷酸铁锂批产产品与Valence等国外供应商产品比较仍有较大差距; 表1: Valence公司产品与国产产品3个主要指标对比

电极正极材料磷酸铁锂初步调研报告(精)

电极正极材料磷酸铁锂初步调研报告一、锂电池正极材料情况简介

目前取代钴酸锂材料有两个方向:

一是在动力电池领域,锰酸锂和磷铁酸锂是最有希望的材料; 二是在通讯电池领域,镍钴酸锂和三元材料是最有希望代替钴酸锂的正极材料。 1.3正极材料的首选:磷酸铁锂 磷酸铁锂电池的出现,让混合动力、纯电动汽车的发展前景更为明朗,因为其动力、充电后续驶时间和成本上有很大改进。同时,磷酸铁锂的成本也要低于锰酸锂。磷酸铁锂是由 资源丰富的元素构成,价格低,而且毒性也低,有利于环境保护。由于磷与氧元素结合力强,即使电池内部发生某种短路也不会释放氧气,造成火灾危险性少。与钴酸锂型蓄电池相比,其安生性显著提高。但其致命弱点则是“导电性”不好,目前解决这一问题的主流技术有用导电碳包覆颗粒、用金属氧化物包覆颗粒、用纳米制程让颗粒微粒化等。若该问题得到有效解决,磷酸铁锂的巨大优势将促其成为车用电池的首选材料。 二、磷酸铁锂合成技术情况 正极材料的工艺极大地影响了电池的性能,因此提高和改良工艺是电池产业化的一个重要的因素。下面我们来了解几种工艺法,比较一下各自的优缺点: 1. 高温固相法 高温固相法是磷酸铁锂生产的主要方法,也是最成熟的方法。通常以铁盐(如草酸亚铁 FeC2O4 · 2H2 O、磷酸盐 (如磷酸氢二铵(NH4 2 HPO4 和锂盐(如碳酸锂Li2CO 3为原料,按化学计量比充分混匀后,在惰性气氛中先经过较低温预分解,再经高温焙烧,研磨粉碎制成。 优点: 高温固相合成法操作及工艺路线设计简单,工艺参数易于控制,制备的材料性能稳定,易于实现工业化大规模生产。 缺点:

磷酸铁锂的生产工艺与技术路线选择

磷酸铁锂的生产工艺与技术路线选择锂离子电池作为一种高性能的二次绿色电池,具有高电压、高能量密度(包括体积能量、质量比能量)、低的自放电率、宽的使用温度范围、长的循环寿命、环保、无记忆效应以及可以大电流充放电等优点。锂离子电池性能的改善,很大程度上决定于电极材料性能的改善,尤其是正极材料。目前研究最广泛的正极材料有LiCoO2、LiNiO2以及LiMn2O4等,但由于钴有毒且资源有限,镍酸锂制备困难,锰酸锂的循环性能和高温性能差等因素,制约了它们的应用和发展。因此,开发新型高能廉价的正极材料对锂离子电池的发展至关重要。 1997年,Padhi等报道了具有橄榄石结构的磷酸铁锂(LiFePO4)能够可逆地嵌脱锂,且具有比容量高、循环性能好、电化学性能稳定、价格低廉等特点,是首选的新一代绿色正极材料,特别是作为动力锂离子电池材料。磷酸铁锂的发现引起了国内外电化学界不少研究人员的关注,近几年,随着锂电池的越来越广的应用,对LiFePO4的研究越来越多。 2.1 磷酸铁锂的结构和性能 磷酸铁锂(LiFePO4)具有橄榄石结构,为稍微扭曲的六方密堆积,其空间群是P mnb型,晶型结构如图2.1所示。 图2.1 磷酸铁锂的空间结构图 LiFePO4由FeO6八面体和PO4四面体构成空间骨架,P占据四面体位置,而Fe和Li则填充在八面体空隙中,其中Fe占据共角的八面体位置,Li则占据共边的八面体位置。晶格一个FeO6八面体与两个FeO6八面体和一个PO4四面

体共边,而PO4四面体则与一个FeO6八面体和两个LiO6八面体共边。由于近乎六方堆积的氧原子的紧密排列,使得锂离子只能在二维平面上进行脱嵌,也因此具有了相对较高的理论密度(3.6g/cm3)。在此结构中,Fe2+/Fe3+相对金属锂的电压为3.4V,材料的理论比容量为170mA·h/g。在材料中形成较强的P-O-M 共价键,极大地稳定了材料的晶体结构,从而导致材料具有很高的热稳定性。 Wang等对LiFePO4的电化学性能做了详细的分析,图2.2是LiFePO4的循环载荷伏安图,在C-V图中形成两个峰,在阳极扫描时Li+从Li x FePO4结构中脱出,在3.52V形成氧化峰;当在4.0~3.0扫描时Li+嵌入到Li x FePO4结构中,相应的在3.32V形成还原峰;C-V曲线中的氧化还原峰表明在L iFePO4电极上发生着可逆的锂离子嵌脱反应。 图2.2 磷酸铁锂的循环载荷伏安图 2.2 磷酸铁锂的制备方法及研究 LiFePO4正极材料的性能在一定程度上取决于材料的形态、颗粒的尺寸以及原子排列,因此制备方法尤为重要。目前主要有固相法和液相法,其中固相法包括高温固相反应法、碳热还原法、微波合成法和脉冲激光沉积法;液相法包括溶胶·凝胶法、水热合成法、沉淀法以及溶剂热合成法等。 2.2.1 固相法 2.2.1.1 高温固相反应法… 2.2.1.2 碳热还原法 碳热还原法也是固相法中的一种,是比较容易工业化的合成方法,以廉价的

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;T akahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500℃下预烧,再在700℃下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3·98F0·02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA·h/g。 2.优点:工艺简单、易实现产业化 3.缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4粉末导电性能不好,需要添加导电剂增强其导电性能 4.改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能二.碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1: 杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具有优势,10 C时容量保持率为88.1%;例2:Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g;例3:P.P.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛下(Ar:H2=95:5)于550℃加热1 h后合成了最终样品,其在0.1C倍率下的室温

锂电池正极材料--生产磷酸铁锂的上市公司一览

锂电池正极材料--生产磷酸铁锂的上市公司一览 本文来自:财富赢家https://www.doczj.com/doc/d46901929.html, 作者:冬季风点击1055次 原文:https://www.doczj.com/doc/d46901929.html,/viewthread.php?tid=145421 上市公司, 正极, 锂电池, 磷酸, 生产 磷酸铁锂是一种新型锂离子电池电极材料。目前全球已经有很多厂家开始了工业化生产,国外美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。其特点是放电容量大,价格低廉,无毒性,不造成环境污染。世界各国正竞相实现产业化生产。 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂离子电池的正极材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。 [1]、杉杉股份 (600884): 湖南杉杉新材料有限公司,控股75%。主要生产锂离子电池正极材料,是中国国内发展最快、规模最大的锂离子电池正极材料制造商。拥有年产5000吨锂电正极材料的生产规模,钴酸锂年生产能力为4000吨,锰酸锂500吨。目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。2007年钴酸锂占国内市场份额的40%以上,稳稳占据全国第一、世界第三的锂离子电池正极材料生产商地位。长沙杉杉动力电池有限公司,控股82%。主要生产锂离子动力电池。目前有钢壳液态锂离子电池、聚合物锂离子电池等几十种动力电池产品。产品材料体系有锰酸锂系列、磷酸亚铁锂系列、三元体系电池。 [2]、中国宝安 (000009): 在锂电池正负极材料上拥有绝对的行业话语权。主要通过2家控股子公司进行。控股55%的贝特瑞公司是国内唯一的锂电池碳负极材料标准制定者;也是国内唯一的锂电池磷酸铁锂正极材料标准制定者,贝特瑞公司,控股55%。是锂电池碳负极材料和磷酸铁锂正极材料的龙头。锂电池碳负极材料国内第一,市占率80%,全球第二;磷酸铁锂正极材料国内第一,目前全球第三。贝特瑞09年碳负极材料产能是6000吨/年,磷酸铁锂正极材料产能是1500吨/年。天骄公司,控股75%。主营的三元正极材料,08年销量居国内第一,市场占有率30-40%。08年三元正极材料产量805吨,销量665吨;09年保守产能是1400吨,负极材料钛酸锂180吨,正极材料磷酸铁锂09年6月达产,年产能是150吨。 [3]、金瑞科技 (600390): 正极材料是锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模产业化并广泛应用于商品锂离子电池的正极材料。公司子公司长远锂科(公司占16%,大股东占84%)是专业生产钴酸锂的高新技术企业。05年钴酸锂年产量达1500吨,其中采用具有自主知识产权的湿法新技术生产的球状钴酸锂为1000吨。08年金瑞科技开展了磷酸亚铁锂制备技术和镍钴锰酸锂三元材料的研究。新型锂离子正极材料镍钴锰酸锂其比容量比钴酸锂高出30%以上。

磷酸铁锂公司企业名录

磷酸铁锂公司企业名录 Document number:PBGCG-0857-BTDO-0089-PTT1998

1、深圳市比克电池有限公司 成立于2001年8月,美国纳斯达克上市公司,注册资本8260万美元,是一家集锂电池研发、生产、销售为一体的国家高新技术企业。比克工业园区坐落于深圳东部大鹏湾占地26万平方米,员工6000余人。 2、湖南杉杉新材料有限公司 是由宁波杉杉股份有限公司(占75%的股份)和中南大学(占25%的股份)联合创办。成立于2003年11月,锂离子电池正极材料制造商,是湖南省高新技术企业,专业致力于生产锂离子电池正极材料,以钴酸锂为主要产品,应用于便携式资讯设备如手机、笔记本电脑、移动DVD、数码相机、电动工具等领域,同时于2004年3月正式推出了锰酸锂,应用于电动交通工具等大型动力电源领域。 目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。 中国锂电池正极材料行业重点企业简介 二、中国宝安集团股份有限公司 三、厦门钨业股份有限公司 四、中信国安盟固利电源技术有限公司 五、石家庄市中洲实业总公司 六、湖南瑞翔新材料有限公司 七、宁波金和新材料有限公司 八、北京当升材料科技有限公司 九、北大先行科技产业有限公司

十、深圳市振华新材料股份有限公司 3、深圳市山木电池科技有限公司 1997年10月在广东省珠海市成立,是中国第一家专业生产可充电锂电池的厂家,2006年初,山木公司将工厂搬迁至深圳市横岗深坑村第三工业区厂B公司现主要有以下 1.圆柱电池事业部. 2.数码电池事业部. 3.动力电池事业部. 异型圆柱电池系列有直径07系,08. 10 .12 铁锂动力电车系列有400mah到10000mah等不同容量近10个规格品牌mottcell型号IFR26650 基本参数 电池类型锂电池电压有效期1年 技术参数 标准容量3000mAh充放电次数2000电池容量3000mah 开路电压快速充电电流3000mA快速充电时间1h 适用范围机车型:电动自行车电动轿车电动工具标准电压 适用温度范围-20;+60 ℃直径26*65mmmm贮存温度20度 最大连续工作电流6000mah标准充电电流1500mA标准充电时间2h 品牌mottcell型号IFR42120 基本参数 使用期5年额定容量10AH 技术参数标准电压直径42 mm充放电次数1500 标准充电时间2h标准充电电流5000mA标准容量10000mAh

磷酸铁锂的生产工艺与技术路线选择

磷酸铁锂的生产工艺与技术路线选择 锂离子电池作为一种高性能的二次绿色电池,具有高电压、高能量密度(包括体积能量、质量比能量)、低的自放电率、宽的使用温度范围、长的循环寿命、环保、无记忆效应以及可以大电流充放电等优点。锂离子电池性能的改善,很大程度上决定于电极材料性能的改善,尤其是正极材料。目前研究最广泛的正极材料有LiCoO2、LiNiO2以及LiMn2O4等,但由于钴有毒且资源有限,镍酸锂制备困难,锰酸锂的循环性能和高温性能差等因素,制约了它们的应用和发展。因此,开发新型高能廉价的正极材料对锂离子电池的发展至关重要。 1997年,Padhi等报道了具有橄榄石结构的磷酸铁锂(LiFePO4)能够可逆地嵌脱锂,且具有比容量高、循环性能好、电化学性能稳定、价格低廉等特点,是首选的新一代绿色正极材料,特别是作为动力锂离子电池材料。磷酸铁锂的发现引起了国内外电化学界不少研究人员的关注,近几年,随着锂电池的越来越广的应用,对LiFePO4的研究越来越多。 2.1 磷酸铁锂的结构和性能 磷酸铁锂(LiFePO4)具有橄榄石结构,为稍微扭曲的六方密堆积,其空间群是P mnb型,晶型结构如图2.1所示。 图2.1 磷酸铁锂的空间结构图 LiFePO4由FeO6八面体和PO4四面体构成空间骨架,P占据四面体位置,而Fe和Li则填充在八面体空隙中,其中Fe占据共角的八面体位置,Li则占据共边的八面体位置。晶格一个FeO6八面体与两个FeO6八面体和一个PO4四面体共边,而PO4四面体则与一个FeO6八面体和两个LiO6八面体共边。由于近乎六方堆积的氧原子的紧密排列,使得锂离子只能在二维平面上进行脱嵌,也因此具有了相对较高的理论密度(3.6g/cm3)。在此结构中,Fe2+/Fe3+相对金属锂的电压为3.4V,材料的理论比容量为170mA·h/g。在材料中形成较强的P-O-M共价键,极大地稳定了材料的晶体结构,从而导致材料具有很高的热稳定性。

硼掺杂磷酸铁锂正极材料提高倍率

Delivered by Publishing Technology to: University of New South Wales IP: 149.171.232.34 On: Wed, 27 Feb 2013 03:01:32 Copyright American Scientific Publishers RESEARCH ARTICLE Copyright?2013American Scienti?c Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology V ol.13,1535–1538,2013 Research on High Rate Capabilities B-Substituted LiFePO4 Fu Wang,Yun Zhang?,and Chao Chen College of Materials Science and Engineering,Sichuan University,Chengdu610064,P.R.China LiFePO4is currently recognized as one of the most promising electrode materials for large-scale application of lithium ion batteries.However,the limitation of rate capability is believed to be intrinsic to this family of compounds due to the existence of larger tetrahedral(PO4 3?unit and quasi-hexagonal close-packed oxygen array.This paper report here a systematic investigation of the enhancement of rate performance by partly substitution of light small triangle oxyanion,(BO3 3?, for the larger tetrahedral(PO4 3?units in LiFePO4.Cathode electrode materials LiFeB X P 1?X O4? , in which X=0 3 6and9,mol%,were synthesized by solid-state method.The as-synthesized products were characterized by X-Ray Diffraction(XRD),Scanning Electron Microscope(SEM)and Electrochemical Measurements.The results showed that6mol%of boron substitution had no effect on the structure of LiFePO4material,but signi?cantly improved its rate performance.The initial discharge capacity of the LiFeB0 06P0 94O4? sample was145.62mAh/g at0.1C,and the capacity retention ratios of81%at2C and76%at5C were obtained,demonstrating that a proper amount of boron substitution(lower than6mol%)could signi?cantly improve the rate performance of LiFePO4 cathode material. Keywords:LiFePO 4 ,High Rate Capability,Li-Ion Battery,Nano-Particles,Boron. 1.INTRODUCTION LiFePO4has recently received a great deal of attention owing to their advantages of competitive high theoreti- cal capacity,good cycle stability,excellent thermal stabil- ity and low toxicity,1–3aimed at utilizing it as a cathode material for large-scale application of lithium ion batter- ies,such as electric vehicle and hybrid electric vehicle. Moreover,its voltage,about3.5V versus lithium,is com- patible with the window of a solid-polymer Li-ion elec- trolyte.However,this kind of compound is a wide-gap semiconductor(3.7eV)and has an inherently extremely low electronic conductivity(~10?9S cm?1 at room tem-perature because of the existence of larger tetrahedral (PO4 3?units and quasi-hexagonal close-packed oxygen array.1Various material processing approaches have been adopted to overcome this drawback,including methods of carbon coating,4reducing particle size to nano level,5 6 and doping with super valence cations.7The aforemen- tioned methods for improving electronic conductivity and rate capability are not the most optimistic choice and have their intrinsic limitations:the shortcomings of carbon coat- ing including the lower content of active materials in the cathode material and no actual improvement in conductiv- ity for the core of LiFePO4particles.The preparation of ?Author to whom correspondence should be addressed.nano-sized particles with a uniform size distribution are extremely dif?cult for industrial scale production.And the quantity of Fe3+/Fe2+redox couples is reduced by super valence cations substitution. LiFeBO3,as a new potential cathode material with a theoretical capacity of220mAh/g which is much larger than that of LiFePO4,has been reported to have the actual speci?c capacity of over190mAh/g at1/20C.8In addi- tion,from the thermodynamic study performed in the case of LiFeBO3,the Fe3+/Fe2+reduction couple lies between 3.1V and2.9V(vs.Li/Li+ ,demonstrating an impor-tant inductive effect of BO3group,and the electrical con- ductivity of LiFeBO3is reported to be1 5×10?4S/cm,9 which is also much higher than that of LiFePO4.10Thus, it is believed that partly replacing the tetrahedral anion units,(PO4 3?,to plane triangle oxyanion,(BO3 3?,could be signi?cantly increasing the electronic conductivity of the LiFePO4particles because of the smaller and lighter (BO3 3?and the controlled off-stoichiometry of oxygen element formed. In this regard,we proposed a new method,partly sub- stitution of boron element for phosphorus element in LiFePO4,for improving the rate capability of the cathode material.We report here a systematic investigation of the enhancement of capacity at high rates of charge and dis- charge by partly substitution of light small plane triangle J.Nanosci.Nanotechnol.2013,Vol.13,No.21533-4880/2013/13/1535/004doi:10.1166/jnn.2013.59811535

相关主题
文本预览
相关文档 最新文档