当前位置:文档之家› 磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较
磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较

A.固相法

一.高温固相法

1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。

例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C

倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;T akahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500℃下预烧,再在700℃下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3·98F0·02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA·h/g。

2.优点:工艺简单、易实现产业化

3.缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4粉末导电性能不好,需要添加导电剂增强其导电性能

4.改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能二.碳热还原法

1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。

例1: 杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具有优势,10 C时容量保持率为88.1%;例2:Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g;例3:P.P.Prosini

等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛下(Ar:H2=95:5)于550℃加热1 h后合成了最终样品,其在0.1C倍率下的室温

初始放电容量为140 mAh·g-1;例4:童汇等[18]采用碳热还原与机械球磨相结合的方法,以LiH2PO4和Fe2O3为原料,在混入一定量的碳后于无水乙醇介质中高速球磨3 h,将干燥后的前驱体在氩气保护下于750℃烧结15 h得到电化学性能良好的LiFePO4/C复合材料,产物以17 mA·g-1的电流密度充放电,初始放电容量为141.8 mAh·g-1,经80次循环后的容量仍可达137.7 mAh·g-1,容量保持率为97.1%;例5:L·Wang, G·C·Liang等以磷酸铁、碳酸锂、葡萄糖为原料,球磨均匀后以氮气为保护气氛,在不同温度下进行煅烧反应合成。经检测分析表明,在650℃下煅烧9h后所合成的目标产物LiFePO4材料,制成电池后在0·2C、1C首次放电比容量分别为151·2mA·h/g、144·1mA·h/g。

2.优点:该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO4走向工业化提供了另一条途径;合成过程中能够产生强烈的还原气氛;可以用三价铁的化合物作为铁源,从而进一步降低了成本;同时改善了材料的导电性;避开了其它合成方法中使用磷酸二氢铵为原料,产生大量氨气污染环境的问题。

3.缺点:该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低;对铁源要求较高;反应时间相对过长,温度难以控制,产物一致性要求的控制条件更为苛刻。

4.改性:

三.机械化学法

1.流程:以各盐为原料,采用高能球磨的方法,通过机械力的作用使粉末颗粒在球磨罐中进行反复的碰撞、分离、再碰撞,获得破碎和紧密的粉末混合体,然后再进行固相反应即可得到所需要的物相。

例1:Sylvain Franger等将Fe3(PO4)2·5H2O、Li3PO4和蔗糖球磨混合24 h后,

在氮气气氛中热处理仅15 min就合成出LiFePO4,产物在0.2 C倍率下的初始放电容量为150 mAh·g-1;例2:Sang Jun Kwon等将原料以15:1的球料比高速球磨混合4 h后在真空管式炉中于600℃烧结10 h,直接得到LiFePO4及其碳复合材料。电化学性能测试表明,在0.05 C倍率下,LiFePO4的放电容量为135

mAh·g-1,而LiFePO4/C复合材料的放电容量则达到156mAh·g-1;例3:FrangerS等将Fe3(PO4)2·5H2O、Li3PO4和蔗糖在行星球磨机中研磨24 h,然后在N2气氛中、500℃下热处理15 min,制备出LiFePO4;例4:彭文杰等以碳酸锂、磷酸二氢铵、草酸锂和纳米级MgO粉末为原料,按不同Mg掺杂量配料并球磨后得到前驱体粉末,然后将前驱体粉末在氩气保护下650℃烧结18h,得到各种掺杂量不同的磷酸铁锂正极材料。经随后的分析检测表明,在LiFe0·99Mg0·01PO4的放电容量最佳,室温0.1C倍率首次放电比容量为150.8mA·h/g;例5:专利介绍将金属铁粉、磷酸铁、磷酸锂、掺杂元素磷酸盐、导电剂或导电剂前驱体按比例混合均匀,置于填充惰性气氛的球磨容器中,球磨18~36h;所得球磨产物放入高温炉,在氮气或氩气等惰性气氛中,以10~30℃/min加热速率升温,于450~750℃恒温培烧10~60 min,然后以10~30℃/min降温速度冷却至室温,制得磷酸铁锂粉末或掺杂磷酸铁锂粉末。2.优点:通过机械力的作用使颗粒破碎、增大反应物的接触面积,使材料晶格中产生各种缺陷、位错、原子空位及晶格畸变等,有利于离子的迁移还可以增大表面活性,降低自由能,促进反应进行,降低反应温度;简化工艺路程、缩短制备周期。

3.缺点:制备的产物物相不均匀且粒度分布范围较宽。

4.改性:

四.微波法

1.流程:微波加热过程是物体通过吸收电磁能发生的自加热过程。以各盐为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)以微波加热合成LiFePO4。

例1:李发喜等采用Li2CO3和草酸亚铁(FeC2O4·H2O),磷酸氢二氨((NH4)2HPO4)用微波炉

合成LiFePO4,但是由于由于草酸亚铁(FeC2O4·H2O)不是微波接受体,因此选择活性碳作为吸波材料。结果表明,作为微波吸收体的活性碳升温时氧化产生的还原气氛能有效防止Fe2+的氧化,制备出单相纯净LiFePO4,当合成时间为14 min时,采用0. 25 C进行充放电,材料比容量可以达到96mA·h/g,与固相高温合成材料的比容量性能相当;例2:胡国荣将自制包含掺杂元素的磷酸二氢锂,草酸亚铁或乙酸亚铁、导电剂或导电剂的前驱体按照一定的比例混合均匀,然后将混合物放入惰性气氛保护的微波反应炉中煅烧和热处理,最后冷却至室温,便制得锂离子电池正极材料磷酸铁锂。此方法避免了氨气、一氧化碳等污染性气体产生,有利环境保护,工艺简单易行,适宜于工业化生产,而且所制备的磷酸铁锂电化学性能优良;例3:韩国的Song Min-Sang, Yong-Mook Kang等则报道更为有效且廉价的合成方法,他们采用磷酸锂(Li3PO4),磷酸铁(Fe3(PO4)2)为原料,添加约5wt%乙炔黑为碳源,在氩气保护下进行采用振动球磨混料,然后置入装有活性碳石英坩埚内,仅经微波加热2~5min即可合成LiFePO4/C材料。在随后的0·1C首次充放电后比容量达161mA·h/g;例4:

2.优点:由于微波能直接被样品吸收,所以在短时间内(2~20 min)样品可以被均匀快速地加热;加热时间短,热能利用率高,加热温度均匀。

3.缺点:大规模生产有一定的困难。

4.改性:但在合成LiFePO4过程中,原料草酸亚铁不是微波接受体,需添加吸波材料。一般采用添加活性碳的方法,一方面活性碳在微波场中升温速度快,另一方面在高温下可产生还原性气氛,阻止Fe2+的氧化。

五.其他热还原法

1.流程:该方法系将金属铁粉、锂的化合物、磷的化合物按照Li,Fe,P原子比为(0.95~1.1)∶1∶1进行配料,再加入碳或者碳的前驱体,在介质中均匀混合1~20 h,然后干燥、造粒,再在惰性气氛中300~500℃条件下处理1~2 h,然后在600~850℃条件下合成5~36 h,得到磷酸铁锂正极材料。

2.优点:该法使用较廉价的金属铁粉为原材料,加入碳或者碳前驱体,进行机械造粒,有效提高了磷酸铁锂的振实密度,提高了其导电性能,所制备的正极材料具有比容量高、循环性能优良、倍率性能好等特性。由于工艺简单,可操作性强,可实现大规模生产。

3.缺点:

4.改性:

B.液相法

一.水热合成法

1.流程:水热合成法属于湿法范畴,它是以可溶性亚铁盐、锂盐和磷酸为原料,在水热条件下,在可以密封的容器内进行水热合成LiFePO4的前驱体,水热温度一般在160~240℃,LiFePO4的前驱体以沉淀物形式析出,经过滤干燥后在600~750℃下煅烧即可合成LiFePO4材料。由于氧气在水热体系中的溶解度很小,水热体系为磷酸铁锂的合成提供了优良的惰性环境。

例1:T ajimi等将聚乙烯醇加入FeSO4、LiOH和H3PO4中,在150℃下,通过水热法在短时间内合成了晶型完整、粒度细小的LiFePO4。在0.5 mA/cm2的电流密度下,该材料的首次放电比容量为143 mAh/g,经15次循环后,仍具有高放电比容量;例2:Liu JL等研究了pH对水热法制备LiFePO4的影响,发现当pH为8.19时制得产物的电化学性能最佳;例3:Shigehisa T ajimi等以H3PO4和FeSO4·7H2O为前驱体,混合化学计量比的LiOH溶液和少量聚氧乙烯后,在高压容器中于150~220℃加热一段时间得到前驱体,再在氮气保护下于400℃加热1 h得到性能良好的LiFePO4,其粒度分布在0.5~1.5μm,产物在0.5mA·cm-2电流密度下充放电,初始放电容量为143mAh·g-1;例4:Kaoru Dokko等[25]也采用水热法合成了平均粒度为0.5μm的样品,其在0.1 C倍率下的放电容量为150 mAh·g-1;例5:

庄大高等将LiOH、FeSO4和H3PO4溶于去离子水,搅拌使其充分反应后,放入密闭反应釜中,在150℃下加热15 h后得到纯度高、结晶好的纳米LiFePO4,其粒度为800 nm,经550℃下聚丙烯裂解碳包覆处理后的LiFePO4/C复合材料在0.01和0.5 C倍率下的放电容量分别为163和144 mAh·g-1。

2.优点:与高温固相法比较,水热法可以在液相中制备超微细颗粒,原料可以在分子级混合。具有物相均匀、粉体粒径小以及操作简便等优点,且具有易量产、产品批量稳定性好、原料价廉易得的优点。同时生产过程中不需要惰性气氛;水热法合成的温度较低,约150度~200度;反应时间也仅为固相反应的1/5左右;尤其适合于高倍率放电领域

3.缺点:水热合成法制备的产物结构中常常存在着铁的错位,生成了亚稳态的FePO4,影响了产物的化学及电化学性能;同时也存在粒径不均匀、物相不纯净、设备投资大(耐高温高压反应器的设计制造难度大,造价也高)或工艺较复杂的缺点;只限于少量粉体的制备,工业化生产的困难较大;据称Phostech的P2粉末便采用该类工艺生产。

4.改性:

二.溶胶-凝胶法

1.流程:以可溶性盐为原料,将其分散在溶剂中,通过水解和缩聚反应形成透明溶胶,调节pH并加热形成凝胶,经过干燥和热处理制备出粉体。典型流程为首先将络合剂溶解于水中,在搅拌下加入三价铁的醋酸盐或硝酸盐,再加入锂盐(LiOH)和磷酸盐(NH4H2PO4),搅拌混合均匀,用氨水调节pH值,水浴中60~80℃下蒸发溶剂。溶剂蒸发过程中,逐渐形成凝胶,真空下干燥得到干凝胶,在400℃下进行处理,得到粉末状前驱体,球磨若干小时,然后放入瓷舟中,在N2保护气氛下650~750℃处理20h,随炉冷却至室温后。

例1:Croce等以Fe (NO3)3,H3PO4和LiOH为原料,添加质量分数1%的Cu或Ag作为导电剂,采用溶胶-凝胶法合成出LiFePO4正极材料,加入铜粉的材料在0. 2 C放电倍率下首次放电比容量为140 mA·h/g,比没有包覆金属粉末的提高了25 mA·h/g;Croce等利用抗坏血酸特殊的还原作用,在LiOH和Fe(NO3)3的溶液中加入抗坏血酸,将Fe3+还原成Fe2+,然后加入H3PO4,用氨水调节pH,加热到一定温度获得凝胶前驱体,在惰性气氛下烧结制成LiFePO4材料,以0.2 C倍率放电比容量约120 mAh/g,经50个循环后容量无衰减。Hsu K F等以柠檬酸为碳源和络合剂,在450~850℃之间合成了晶粒尺寸为20~30 nm的LiFePO4。林燕等分别以草酸亚铁和硝酸铁为原料,采用乙二醇为络合剂及碳源,通过溶胶凝胶制备出LiFePO4/C。发现使用二价铁源得到的样品电化学性能均强于三价铁源。Zhihui Xu等将一定摩尔比的H3PO4、Fe(NO3)3、CH3COOLi和柠檬酸溶于去离子水,加入一定量的聚乙烯后用氨水调节pH值,缓慢搅拌并蒸发水分后形成凝胶,将其在氮气保护下于600℃煅烧24 h后制得球形的LiFePO4/C复合材料,产物的平均粒度为100 nm,其在放电电流密度为15 mA·g-1下的初始放电容量为162mAh·g-1,达到理论容量的95.3%;Daiwon Choi 等[20]先将等摩尔FeCl2与P2O5的乙醇溶液混合,再加入CH3COOLi溶液和月桂酸,在高纯氩气保护下反应4 h后,再在气体(H2:Ar=10:90)保护下于500℃加热5 h,得到多孔纳米结构的LiFePO4。产物的粒度分布较窄(100~300 nm),其在高倍率(10 C)下的放电容量仍可达123 mAh·g-1。

2.优点:该法具有明显的优越性,如合成温度低、粒子小(在纳米级范围)、粒径分布窄、均一性好、比表面积大;溶胶-凝胶法的优点是前驱体溶液化学均匀性好,凝胶热处理温度低,粉体颗粒粒径小而且分布窄,粉体烧结性能好,反应过程易于控制,设备简单

3.缺点:合成周期长;工艺复杂;粉体干燥收缩大。

4.改性:

三.沉淀法

1.流程:共沉淀法是指在不同化学成分的可溶盐组成的混合溶液加入沉淀剂,形成难溶的超

微前驱体沉淀,再将沉淀进行干燥焙烧得到相关的超微颗粒。共沉淀法一般在水性溶液中进行,但由于Fe2+在水溶液中易被氧化,反应过程中需要通惰性气体排气,或直接以Fe3+为原料在高温煅烧阶段进行还原。

例1:K.S.Park等将(NH4)2Fe(SO4)2·6H2O和H3PO4的水溶液加入到LiOH的水溶液中,在氮气流下搅拌10min后形成绿色沉淀,将沉淀洗涤干燥后与高表面积炭黑混合,再在氮气保护下于600℃煅烧5h后合成了最终产物,该LiFePO4/C复合材料在0.1和1C倍率下放电,初始放电容量分别为125和110 mAh·g-1;Mu-Rong Yang以Fe(NO3)3、LiNO3、(NH4)2HPO4和抗坏血酸维生素C为原料,采用共沉淀法得到包覆碳的LiFePO4,产物在50℃下以1 C倍率充放电,循环100次后的放电容量仍保持在143 mAh·g-1左右。

2.优点:所制备材料活性大、粒度小且粒度分布均匀;降低了热处理温度,缩短热处理时间,减少能耗。

3.缺点:此方法也因不同原料要求具有相似的水解或沉淀条件而限制了原料的选择范围,影响了其实际应用;而且增加了产品的成本和生产工艺的复杂程度。

4.改性:

四.喷雾干燥法

1.流程:喷雾干燥法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在喷雾干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。

2.优点:

3.缺点:

4.改性:

五.氧化-还原法

1.流程:

Prosini等采用氧化还原法,将(NH4)2Fe(SO4)3·6H2O溶液、NH4H2PO4溶液和H2O2混合得到沉淀,再将FePO4沉淀与LiI发生氧化还原反应,得到无定形LiFePO4的前驱体,再在500℃下保温1~5 h得到LiFePO4。

2.优点:

3.缺点:工艺很复杂,不能大量生产,只适合实验室研究

4.改性:

六.乳液干燥法

1.流程:

Myung等将1∶1∶1的LiNO3、Fe(NO3)3、(NH4)2HPO4溶于水中,得到的混合液与一种油相(Tween 85和煤油混合物)混合得到均匀的水油型乳液。将上面得到的乳液滴在热煤油(170~180℃)中就得到粉体的前躯体,干燥后的前驱体在无空气箱中300℃或者400℃燃烧一定时间,得到的粉末然后在Ar气氛下,管式炉中继续热处理。不同温度下煅烧干燥后的前躯体发现最佳温度是750℃,制备的复合材料具有10-4S/cm的电导率,在11C倍率下放电容量超过90 mA·h/g。

2.优点:这种合成方法的优点是反应物混合均匀,有效抑制生成颗粒的团聚现象。

3.缺点:

4.改性

另外,氧化还原技术、放电等离子烧结技术、喷雾热分解技术和脉冲激光沉积技术也用于磷酸铁锂的合成。但是受到设备的限制,难以实现吨级批量的工业化生产。即使能小批量生产,成本也相对较高。

上述对比发现,液相法合成是在分子水平上均匀混合反应,具有产物的批次稳定、容易控制、合成路线易于调整、反应物可选择范围广等优点。但是制备工艺复杂或设备要求较高等原因,

难以进行规模化生产,基本为实验室和小试研究。

目前国内外已经能实现磷酸铁锂电池量产的合成方法均是高温固相法,高温固相法又分传统的(以天津斯特兰、湖南瑞翔、北大先行等为代表,以草酸亚铁做为铁源)和改进的(以美国Valence、苏州恒正为代表,以三价铁物质做为铁源,该法也称碳热还原法)两种。对碳热还原法来讲,选取的铁源主要有两种,一种是Valence的氧化铁红路线,还有一种是清华大学(已成立北京锂先锋科技)以及武汉大学(已转让浙江振华新能源)的技术,选用磷酸铁做为铁源,该法制程工艺较为简单,其最大优点是避开了其它合成方法中使用磷酸二氢铵为原料,产生大量氨气污染环境的问题,但对磷酸铁原料要求较高。目前清华大学的一个研究小组通过控制沉淀条件合成了一种粒度可控,碳掺杂的磷酸铁前驱体,但该法合成难度较高,在工业放大过程中面临一些问题。现磷酸铁锂生产基本上还是采用固相法和碳热还原法两种,如美国的A123和加拿大的phostech公司采用固相法,美国的Valence公司采用碳热还原法。

锂离子电池正极材料磷酸钒锂的研究

锂离子电池正极材料磷酸钒锂的研究 学号:093112158姓名:刘畅 (中南大学,材料科学与工程学院,湖南长沙 410083) 摘要:Li3V2(PO4)3因具有优异的电化学性能,成为目前倍受关注的锂离子电池正极材料。介绍了单斜结构磷酸钒锂[α- Li3V2(PO4)3]的结构及充放电机理,概述了几种主要的制备Li3V2(PO4)3方法,包括了固相法、溶胶-凝胶法、微波法。同时阐述了几种主要方法用来对Li3V2(PO4)3电化学性能进行改性研究,对该材料的发展前景进行了展望。 关键词:正极材料Li3V2(PO4)3锂离子电池 目前, 锂离子电池因其具有灵便、安全性好、循环寿命长、无记忆效应、无污染、高的单电池电压及高能量密度等优良特性,已成为当今便携式电子产品的可再充电式电源的主要选择对象之一。锂离子二次电池的性能和成本在很大程度上取决于正极材料的电化学性能和成本。 研究发现,以磷酸根聚阴离子为基础的正极材料能够产生比较高的氧化还原电位,而且锂离子扩散的通道加大,能够很好地进行嵌脱锂的反应,此外此类型正极材料还具有良好的安全性、热力学稳定性及较高的放电比容量[1-3] 。 在过渡金属元素中,钒的化学性质十分活泼,是典型的多价过渡金属元素,目前研究发现具有储锂性能的含钒磷酸盐体系正极材料主要有LiV2PO4 F,Li3V2 -(PO4)3,LiVP2O7和VOPO4/LiVOPO4等。其中,单斜晶系磷酸钒锂[α-Li3V2(PO4)3]是一种很有前途的锂离子电池正极材料。它具有一般聚阴离子材料高稳定性、高容量及高电位的特点,近年来也备受人们的关注。同时我国有丰富的钒矿资源,尽管资源没有铁丰富,但钢铁冶炼渣中存在含量比较高的钒。因此从经济和环境角度来看,α-Li3V2( PO4 ) 3锂电池正极材料的开发具有非常重大的意义和价值。1α-Li3V2 (PO4)3的结构及充放电机理 1. 1α-Li3V2 (PO4)3的结构 α-Li3V2(PO4)3属于P21 /n空间群,晶胞参数为[4] :a = 86.22 nm, b = 86.24 nm,c = 120.36 nm,β= 90.452°,V = 8.949×105 nm3,其晶胞结构如图1[5]所示。单斜结构[6]由VO6八面体和PO4共用氧原子顶点的三维框架构成。每个VO6八面体通过顶点与6个PO4四面体连接,而每个PO4四面体与4个VO6八面体连接。通过这种连接方式构成了三维网状V2(PO4)3单元结构, Li+位于晶胞中形成12个四面体空

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

磷酸铁锂正极材料项目

磷酸铁锂正极材料项目 简述 磷酸铁锂是近年来发展较快的锂电池正极材料,其分子式LiMPO4,Lithium Iron Phosphate ,简称LFP正极材料,其结构为橄榄石型结构,有高稳定性,和目前锂材料最大的不同是不含钴等贵重元素,没有毒性,原料价格低且磷、锂、铁存在于地球的资源含量丰富,不会有供料问题。其工作电压适中(3.2V)、电容量大(170mAh/g)、高放电功率、可快速充电且循环寿命长,在高温与高热环境下的稳定性高。用作电池的磷酸铁锂材料一般颜色为灰白色,经过包裹碳后成为黑色粉末。 磷酸铁锂具有以下几个重要的优点: (1)高性价比,目前,一般国内磷酸铁锂的价格为每吨25万元,国外产品的价格约在30万元以上。我们产品的性能基本上同国内外的主流产品,材料成本和消耗成本(电源,燃料和人工费用)约在8-10万左右,利润率较好。 (2)磷酸铁锂的单位容量约为钴酸锂的75%,成本只相当于钴酸锂的三分之一左右,而且没有爆炸等危险,无毒性,电池循环寿命约是锂电池的4-5倍,高于锂电池8-10倍高放电功率(可瞬间产生大电流),加上同样能量密度下整体重

量,约较锂电池减少30-50%,其在动力电池市场上有更广阔的前景。 建设主要内容: 计划建设年产6000吨磷酸铁锂材料生产基地,项目占地100亩,总建筑面积9000平方米。建设研发中心、原料库、成品库、加工车间及办公区域。项目分两期建设,其中一期总投资1亿元,形成年产2000吨磷酸铁锂材料产能。二期总投资4亿元,达到年产6000吨产能水平。购置设备有实验合成用气氛反应炉及控制设备台、高温纤维加热炉、高能量密度介质搅拌磨、无污染型介质搅拌磨、真空干燥箱、混合机、X射线沉降粒度仪、电超声法纳米粒度仪、比表面吸附仪等,设备总价2500万元。 总投资 5亿元,其中企业自筹3.5亿元,国内银行贷款1.5亿元 经济效益分析 按年生产6000吨磷酸铁锂材料计算,销售收入6000*25万元,利润总额6亿元,实现利税4亿元。

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;T akahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500℃下预烧,再在700℃下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3·98F0·02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA·h/g。 2.优点:工艺简单、易实现产业化 3.缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4粉末导电性能不好,需要添加导电剂增强其导电性能 4.改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能二.碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1: 杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具有优势,10 C时容量保持率为88.1%;例2:Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g;例3:P.P.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛下(Ar:H2=95:5)于550℃加热1 h后合成了最终样品,其在0.1C倍率下的室温

锂离子电池正极材料磷酸钒锂的研究进展

锂离子电池正极材料磷酸钒锂的研究进展.txt26选择自信,就是选择豁达坦然,就是选择在名利面前岿然不动,就是选择在势力面前昂首挺胸,撑开自信的帆破流向前,展示搏击的风采。本文由hnzzwxf贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 22 ? 7 材料导报 21年5月第2004卷专辑15 锂离子电池正极材料磷酸钒锂的研究进展 刘丽英,海燕陈炼。翟玉春。张,, (广东工业大学材料和能源学院,州580;2迈科科技有限公司,莞530;1广106东2803东北大学材料和冶金学院,阳100)沈104 摘要 磷酸钒锂是一种新型的锂离子电池正极材料,电化学性能受合成方法及工艺条件的影响。介绍其 了。(04。VP)的结构特点及充放电过程的电化学特征。全面综述了采用固相反应法、溶胶一胶法及微波法凝等制备磷酸钒锂的研究现状,比较了各种方法的利弊。并 关键词锂离子电池正极材料磷酸钒锂合成方法 ReerhPrgesitoeMaeiltimnduPhshaesacorsnCahdtrasLihuVaaimopt frLihi-oteyotuinBatrm LILyn,ZANGayn,CHENa。UiigHHiaLin,ZHAIYuhncu。 (FautfMaeilnegGundniestfTehooyGunzo106;2MciTehooy1clyotraadEnry,agogUnvriocnlg,aghu580yNarcnlg C.t,ogun530;Isttotrl8tlryNresenUnesySeyn104oLdDnga2803ntuefiMaeisLaMealg,otatriri,hnag100)uhvt AbtatsrcLtimaaimhshtsanwyeoahdtraoiim-oatr,oeee—ihuvndupopaeietpfctoemaeilfrlhuinbteywhslct tohmiarprisaeafceysnhssmehdnrcsodtn.nrdcinohtutrlnrcecloetrfetdbyteitosadpoescniosAnitoutoftesrcuadpeia eetohmilcaatrtcncag-icagrcsefL.())irvddTheerhporsenlcrcechrceiisihredshrepoesso3asV2P

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一. 高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等) ,磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFeP04分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFeP04粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30 C, 0.1 C 倍率下的初始放电容量达到160 mAh g-1 ;例2 : S.S.Zhang等采用二步加热法,以 FeC:2O4 2H2O和LiH2PO4为原料,在氮气保护下先于350~380 C加热5 h形成前驱体,再在800 C下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放 电容量为159 mAh g-1 ;例3 : A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4 2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300 C下预热分解,再在氮气保护下先于 450 C加热10 h,再于800 C烧结36 h,产物在放电电流密度为2.3 mA g-1时放电,室温初始放电容量在136 mAh g-1 左右;例4: Padhi 等以Li2CO3 , Fe(CH3COO)2 , NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA h /g ; Takahashi 等以LiOH H2O, FeC2O4 2H2O , (NH4)2HPO4 为原料,在675、725、800 C下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以 At+5%H2为保护气氛,在700 C下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 05C首次放电比容量为150mA h/g ;例 6 :高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139 4mA h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 15% ;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500 C下预烧,再在700 C下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3 98F0 02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA h/g。 2?优点:工艺简单、易实现产业化 3?缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次 稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4 粉末导电性能不好,需要添加导电剂增强其导电性能 4?改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能 二. 碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气 保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1:杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具 有优势,10 C时容量保持率为88.1% ;例2 : Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g ; 例3 : PP.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛

磷酸铁锂正极材料稳定性探讨

磷酸铁锂正极材料稳定性探讨 张世杰副总工程师 中国电子科技集团公司第十八研究所 目录 引言 磷酸铁锂正极材料产业现状分析 目前磷酸铁锂正极材料批产存在的主要质量问题 产生质量问题的主要原因分析 如何提高磷酸铁锂批次稳定性 讨论 1、引言 采用磷酸铁锂正极材料制备的锂离子电池与其他正极材料制备的锂离子电池比较具有三个突出的特点:一是电池安全性好,电池在过充电、过放电、短路、针刺等试验条件下安全;二是电池充放电循环寿命长且容量保持率高,能够循环2000次且容量仍能保持90%;三是电池倍率放电能力强,可以几十倍率放电。因此,磷酸铁锂正极材料被公认为是动力锂离子电池理想正极材料,也成为世人关注的“热点”。

锂离子电池制造商在使用国产磷酸铁锂正极材料试验和生产电池过程发现:国产磷酸铁锂正极材料与国际先进同类产品相比仍有较大差距、一部分磷酸铁锂供应商提供的材料存在不同程度的质量问题、批次产品之间存在质量不稳定等问题。为此,国产磷酸铁锂正极材料质量一致性又成为人们关注的“焦点”。 如何迅速解决磷酸铁锂正极材料生产中存在的关键技术问题、工艺技术问题和产品质量问题?如何提高磷酸铁锂批生产过程产品批次不稳定问题?更是从事磷酸铁锂正极材料技术研究、产品开发、中试和批生产技术攻关工作者所面临的一大“难点”。 本报告正是针对以上人们关心和关注的问题,结合实际工作中遇到的问题,浅谈一些粗浅的见解。 2、磷酸铁锂正极材料产业现状分析 国内已经形成了一批磷酸铁锂正极材料生产商,产业初具规模,并把产品投向市场,提供给锂离子电池制造商使用。但是,大家普遍感到:目前国内磷酸铁锂正极材料批量生产技术还存在突出的工艺稳定性问题。突出表现在: 一些大的锂离子电池制造商从磷酸铁锂材料平均粒径、电极加工性、电极压实密度、实际比容量、循环寿命、倍率放电、温度特性、安全性等方面对国内几个磷酸铁锂材料供应商和Valence等国外供应商所提供的材料进行了非常系统的试验评价,客观的试验数据表明:国内磷酸铁锂批产产品与Valence等国外供应商产品比较仍有较大差距; 表1: Valence公司产品与国产产品3个主要指标对比

电极正极材料磷酸铁锂初步调研报告(精)

电极正极材料磷酸铁锂初步调研报告一、锂电池正极材料情况简介

目前取代钴酸锂材料有两个方向:

一是在动力电池领域,锰酸锂和磷铁酸锂是最有希望的材料; 二是在通讯电池领域,镍钴酸锂和三元材料是最有希望代替钴酸锂的正极材料。 1.3正极材料的首选:磷酸铁锂 磷酸铁锂电池的出现,让混合动力、纯电动汽车的发展前景更为明朗,因为其动力、充电后续驶时间和成本上有很大改进。同时,磷酸铁锂的成本也要低于锰酸锂。磷酸铁锂是由 资源丰富的元素构成,价格低,而且毒性也低,有利于环境保护。由于磷与氧元素结合力强,即使电池内部发生某种短路也不会释放氧气,造成火灾危险性少。与钴酸锂型蓄电池相比,其安生性显著提高。但其致命弱点则是“导电性”不好,目前解决这一问题的主流技术有用导电碳包覆颗粒、用金属氧化物包覆颗粒、用纳米制程让颗粒微粒化等。若该问题得到有效解决,磷酸铁锂的巨大优势将促其成为车用电池的首选材料。 二、磷酸铁锂合成技术情况 正极材料的工艺极大地影响了电池的性能,因此提高和改良工艺是电池产业化的一个重要的因素。下面我们来了解几种工艺法,比较一下各自的优缺点: 1. 高温固相法 高温固相法是磷酸铁锂生产的主要方法,也是最成熟的方法。通常以铁盐(如草酸亚铁 FeC2O4 · 2H2 O、磷酸盐 (如磷酸氢二铵(NH4 2 HPO4 和锂盐(如碳酸锂Li2CO 3为原料,按化学计量比充分混匀后,在惰性气氛中先经过较低温预分解,再经高温焙烧,研磨粉碎制成。 优点: 高温固相合成法操作及工艺路线设计简单,工艺参数易于控制,制备的材料性能稳定,易于实现工业化大规模生产。 缺点:

锂离子电池及其制备方法

锂离子电池 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。 锂离子电池容易与下面两种电池混淆: (1)锂电池:存在锂单质。 (2)锂离子聚合物电池:用多聚物取代液态有机溶剂。 锂离子电池组成部分: 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,现在又出现了镍钴锰酸锂材料,电动自行车则用磷酸铁锂,导电集流体使用厚度10--20微米的电解铝箔 (2)隔膜——一种特殊的复合膜,可以让离子通过,但却是电子的绝缘体(3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔 (4)有机电解液——溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液 (5)电池外壳——分为钢壳(现在方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端。 作用机理 锂系电池分为锂电池和锂离子电池。目前手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为锂电池,而真正的锂电池由于危险性大,很少应用于日常电子产品。 锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当

量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。 工作状态和效率 锂离子电池能量密度大,平均输出电压高。自放电小,好的电池,每月在2%以下(可恢复)。没有记忆效应。工作温度范围宽为-20℃~60℃。循环性能优越、可快速充放电、充电效率高达100%,而且输出功率大。使用寿命长。不含有毒有害物质,被称为绿色电池。 化学解析: 和所有化学电池一样,锂离子电池也由三个部分组成:正极、负极和电解质。电极材料都是锂离子可以嵌入(插入)/脱嵌(脱插)的。 正极 正极材料:如上文所述,可选的正极材料很多,目前商业化产品多采用钴酸锂。不同的正极材料对照 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。充电时:LiCoO2 → Li1-x CoO2 + xLi + xe 放电时:Li1-x CoO2 + xLi + xe →LiCoO2负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。负极反应:放电时锂离子脱插,充电时锂离子插入。充电时:xLi + xe + 6C → LixC6 放电时:LixC6 → xLi + xe + 6C

锂电池正极材料--生产磷酸铁锂的上市公司一览

锂电池正极材料--生产磷酸铁锂的上市公司一览 本文来自:财富赢家https://www.doczj.com/doc/1c7110350.html, 作者:冬季风点击1055次 原文:https://www.doczj.com/doc/1c7110350.html,/viewthread.php?tid=145421 上市公司, 正极, 锂电池, 磷酸, 生产 磷酸铁锂是一种新型锂离子电池电极材料。目前全球已经有很多厂家开始了工业化生产,国外美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。其特点是放电容量大,价格低廉,无毒性,不造成环境污染。世界各国正竞相实现产业化生产。 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂离子电池的正极材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。 [1]、杉杉股份 (600884): 湖南杉杉新材料有限公司,控股75%。主要生产锂离子电池正极材料,是中国国内发展最快、规模最大的锂离子电池正极材料制造商。拥有年产5000吨锂电正极材料的生产规模,钴酸锂年生产能力为4000吨,锰酸锂500吨。目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。2007年钴酸锂占国内市场份额的40%以上,稳稳占据全国第一、世界第三的锂离子电池正极材料生产商地位。长沙杉杉动力电池有限公司,控股82%。主要生产锂离子动力电池。目前有钢壳液态锂离子电池、聚合物锂离子电池等几十种动力电池产品。产品材料体系有锰酸锂系列、磷酸亚铁锂系列、三元体系电池。 [2]、中国宝安 (000009): 在锂电池正负极材料上拥有绝对的行业话语权。主要通过2家控股子公司进行。控股55%的贝特瑞公司是国内唯一的锂电池碳负极材料标准制定者;也是国内唯一的锂电池磷酸铁锂正极材料标准制定者,贝特瑞公司,控股55%。是锂电池碳负极材料和磷酸铁锂正极材料的龙头。锂电池碳负极材料国内第一,市占率80%,全球第二;磷酸铁锂正极材料国内第一,目前全球第三。贝特瑞09年碳负极材料产能是6000吨/年,磷酸铁锂正极材料产能是1500吨/年。天骄公司,控股75%。主营的三元正极材料,08年销量居国内第一,市场占有率30-40%。08年三元正极材料产量805吨,销量665吨;09年保守产能是1400吨,负极材料钛酸锂180吨,正极材料磷酸铁锂09年6月达产,年产能是150吨。 [3]、金瑞科技 (600390): 正极材料是锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模产业化并广泛应用于商品锂离子电池的正极材料。公司子公司长远锂科(公司占16%,大股东占84%)是专业生产钴酸锂的高新技术企业。05年钴酸锂年产量达1500吨,其中采用具有自主知识产权的湿法新技术生产的球状钴酸锂为1000吨。08年金瑞科技开展了磷酸亚铁锂制备技术和镍钴锰酸锂三元材料的研究。新型锂离子正极材料镍钴锰酸锂其比容量比钴酸锂高出30%以上。

磷酸铁锂电池简介

磷酸铁锂电池简介 1.磷酸铁锂电池定义 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 2.磷酸铁锂正极材料 磷酸铁锂作为锂离子电池用正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定。同时,该材料无毒、无污染、安全性能好、可在高温环境下使用、原材料来源广泛等优点,是目前电池界竞相开发研究的热点。该材料具有发上图所示的晶体结构。工作电压范围:2.5~3.6V,平台约3.3V,比钴酸锂电池3.7V低一些。由于该材料导电性差,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或者往磷酸铁锂颗粒表面包覆导电碳材料,提高材料的电子电导率;或掺杂金属离子来提高导电性。这样材料的密度低,做成电池的体积比容量低,只有180Wh/L(钴酸锂可做到400Wh/L 以上),在小电池领域,同样尺寸电池只有现有电池容量的一半不到。 3.磷酸铁锂的优点: (1)安全。磷酸铁锂的安全性能是目前所有的材料中最好的。绝不用担心爆炸。 (2)稳定性高。包括高温充电的容量稳定性,储存性能等。这是最大的优点。 (3)环保。整个生产过程清洁无毒。所有原料都无毒。不像钴是有

毒的物质。 (4)价格便宜。 4.磷酸铁锂的缺点: (1)导电性差,目前可通过添加C或其它导电剂得到解决。即:LiFePO4/C正极。 (2)振实密度较低。一般只能达到1.3-1.5,电池极片的面密度低,所以同样型号的电池容量更低。从消费便携电子产品上看,磷酸铁锂没有前途,在特定的电池领域使用较有优势,如动力电池。 (3)制造成本偏高,在电池生产上加工困难、倍率放电不稳定(需要特定的电池工艺配合,受工艺影响很大)。 (4)技术还未成熟。由于振实密度低,比表面积大,需要改变电池先行工艺。而且电解液也需重新开发适用的电解液体系,用现有的成熟电解液难发挥其性能。没有批量配套的保护线路和充电器,较难在现有的电子设备上发挥出其特性,需要一个整体的行业整合。 5.磷酸铁锂电池产业:优势分析 (1)磷酸铁锂产业符合政府产业政策的导向,各国都把储能电池和动力电池的发展放在国家战略层面高度,配套资金和政策支持的力度很大,中国在这方面有过之而不及,过去关注镍氢电池,现在则把目光更多的集中到磷酸铁锂电池上。 (2)LFP代表了电池未来发展的方向,随着技术成熟,甚至可能成为

磷酸铁锂公司企业名录

磷酸铁锂公司企业名录 Document number:PBGCG-0857-BTDO-0089-PTT1998

1、深圳市比克电池有限公司 成立于2001年8月,美国纳斯达克上市公司,注册资本8260万美元,是一家集锂电池研发、生产、销售为一体的国家高新技术企业。比克工业园区坐落于深圳东部大鹏湾占地26万平方米,员工6000余人。 2、湖南杉杉新材料有限公司 是由宁波杉杉股份有限公司(占75%的股份)和中南大学(占25%的股份)联合创办。成立于2003年11月,锂离子电池正极材料制造商,是湖南省高新技术企业,专业致力于生产锂离子电池正极材料,以钴酸锂为主要产品,应用于便携式资讯设备如手机、笔记本电脑、移动DVD、数码相机、电动工具等领域,同时于2004年3月正式推出了锰酸锂,应用于电动交通工具等大型动力电源领域。 目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。 中国锂电池正极材料行业重点企业简介 二、中国宝安集团股份有限公司 三、厦门钨业股份有限公司 四、中信国安盟固利电源技术有限公司 五、石家庄市中洲实业总公司 六、湖南瑞翔新材料有限公司 七、宁波金和新材料有限公司 八、北京当升材料科技有限公司 九、北大先行科技产业有限公司

十、深圳市振华新材料股份有限公司 3、深圳市山木电池科技有限公司 1997年10月在广东省珠海市成立,是中国第一家专业生产可充电锂电池的厂家,2006年初,山木公司将工厂搬迁至深圳市横岗深坑村第三工业区厂B公司现主要有以下 1.圆柱电池事业部. 2.数码电池事业部. 3.动力电池事业部. 异型圆柱电池系列有直径07系,08. 10 .12 铁锂动力电车系列有400mah到10000mah等不同容量近10个规格品牌mottcell型号IFR26650 基本参数 电池类型锂电池电压有效期1年 技术参数 标准容量3000mAh充放电次数2000电池容量3000mah 开路电压快速充电电流3000mA快速充电时间1h 适用范围机车型:电动自行车电动轿车电动工具标准电压 适用温度范围-20;+60 ℃直径26*65mmmm贮存温度20度 最大连续工作电流6000mah标准充电电流1500mA标准充电时间2h 品牌mottcell型号IFR42120 基本参数 使用期5年额定容量10AH 技术参数标准电压直径42 mm充放电次数1500 标准充电时间2h标准充电电流5000mA标准容量10000mAh

硼掺杂磷酸铁锂正极材料提高倍率

Delivered by Publishing Technology to: University of New South Wales IP: 149.171.232.34 On: Wed, 27 Feb 2013 03:01:32 Copyright American Scientific Publishers RESEARCH ARTICLE Copyright?2013American Scienti?c Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology V ol.13,1535–1538,2013 Research on High Rate Capabilities B-Substituted LiFePO4 Fu Wang,Yun Zhang?,and Chao Chen College of Materials Science and Engineering,Sichuan University,Chengdu610064,P.R.China LiFePO4is currently recognized as one of the most promising electrode materials for large-scale application of lithium ion batteries.However,the limitation of rate capability is believed to be intrinsic to this family of compounds due to the existence of larger tetrahedral(PO4 3?unit and quasi-hexagonal close-packed oxygen array.This paper report here a systematic investigation of the enhancement of rate performance by partly substitution of light small triangle oxyanion,(BO3 3?, for the larger tetrahedral(PO4 3?units in LiFePO4.Cathode electrode materials LiFeB X P 1?X O4? , in which X=0 3 6and9,mol%,were synthesized by solid-state method.The as-synthesized products were characterized by X-Ray Diffraction(XRD),Scanning Electron Microscope(SEM)and Electrochemical Measurements.The results showed that6mol%of boron substitution had no effect on the structure of LiFePO4material,but signi?cantly improved its rate performance.The initial discharge capacity of the LiFeB0 06P0 94O4? sample was145.62mAh/g at0.1C,and the capacity retention ratios of81%at2C and76%at5C were obtained,demonstrating that a proper amount of boron substitution(lower than6mol%)could signi?cantly improve the rate performance of LiFePO4 cathode material. Keywords:LiFePO 4 ,High Rate Capability,Li-Ion Battery,Nano-Particles,Boron. 1.INTRODUCTION LiFePO4has recently received a great deal of attention owing to their advantages of competitive high theoreti- cal capacity,good cycle stability,excellent thermal stabil- ity and low toxicity,1–3aimed at utilizing it as a cathode material for large-scale application of lithium ion batter- ies,such as electric vehicle and hybrid electric vehicle. Moreover,its voltage,about3.5V versus lithium,is com- patible with the window of a solid-polymer Li-ion elec- trolyte.However,this kind of compound is a wide-gap semiconductor(3.7eV)and has an inherently extremely low electronic conductivity(~10?9S cm?1 at room tem-perature because of the existence of larger tetrahedral (PO4 3?units and quasi-hexagonal close-packed oxygen array.1Various material processing approaches have been adopted to overcome this drawback,including methods of carbon coating,4reducing particle size to nano level,5 6 and doping with super valence cations.7The aforemen- tioned methods for improving electronic conductivity and rate capability are not the most optimistic choice and have their intrinsic limitations:the shortcomings of carbon coat- ing including the lower content of active materials in the cathode material and no actual improvement in conductiv- ity for the core of LiFePO4particles.The preparation of ?Author to whom correspondence should be addressed.nano-sized particles with a uniform size distribution are extremely dif?cult for industrial scale production.And the quantity of Fe3+/Fe2+redox couples is reduced by super valence cations substitution. LiFeBO3,as a new potential cathode material with a theoretical capacity of220mAh/g which is much larger than that of LiFePO4,has been reported to have the actual speci?c capacity of over190mAh/g at1/20C.8In addi- tion,from the thermodynamic study performed in the case of LiFeBO3,the Fe3+/Fe2+reduction couple lies between 3.1V and2.9V(vs.Li/Li+ ,demonstrating an impor-tant inductive effect of BO3group,and the electrical con- ductivity of LiFeBO3is reported to be1 5×10?4S/cm,9 which is also much higher than that of LiFePO4.10Thus, it is believed that partly replacing the tetrahedral anion units,(PO4 3?,to plane triangle oxyanion,(BO3 3?,could be signi?cantly increasing the electronic conductivity of the LiFePO4particles because of the smaller and lighter (BO3 3?and the controlled off-stoichiometry of oxygen element formed. In this regard,we proposed a new method,partly sub- stitution of boron element for phosphorus element in LiFePO4,for improving the rate capability of the cathode material.We report here a systematic investigation of the enhancement of capacity at high rates of charge and dis- charge by partly substitution of light small plane triangle J.Nanosci.Nanotechnol.2013,Vol.13,No.21533-4880/2013/13/1535/004doi:10.1166/jnn.2013.59811535

相关主题
文本预览
相关文档 最新文档