当前位置:文档之家› 极限思想在高中数学的应用

极限思想在高中数学的应用

极限思想在高中数学的应用
极限思想在高中数学的应用

极限思想在高中解题中的运用

宜宾县一中 雷勇

极限的思想是近代数学的一种重要思想,我们在大学所学的数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科。而在高中一些数学问题的解答上如运用极限的思想,会是我们的解答简单而高效。

所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。下面将用例题举出极限思想的妙处。尝试将极限思想和方法渗透、融合在解题教学中,实现方法与内容的整合实践,以期引起广大师生的广泛关注和高度重视。

例1、过抛物线

)0(2

>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与QF 的长分别是p 、q ,则q p 1

1+等于( )

(A)a 2 (B) a 21

(C) a 4 (D) a 4

分析:本题是有关不变性的问题,常规解法是探求a q p 、、的关

系,过程繁琐,且计算较复杂。若能充分借助于极限思想即取PQ 的极限位置可使问题变得简便易行:将直线PQ 绕点F 顺时针方向旋转到与y 轴重合,此时Q 与O 重合,点P 运动到无穷远处,虽不能再称它为抛物线的弦了,

它是弦的一种极限情形,因为

a OF p QF 41

=

==,而+∞→=q PF ,所以

a q

p 41

1→+,故选择(C )

。针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸现了试题的选拔功能。

例2、正n 棱锥中,相邻两侧面所成的二面角的取值范围是( ) A (

2,n n ππ-) B (1

,n n

ππ-) C (0,2

π

) D (

21

,n n n n

ππ--) x

y

F

P

Q

O

H

A n

A 1

A 2

A 3

S

分析:当正棱锥的顶角无限接近底面时,两侧面所成的二面角无限接近π.当正棱锥的高无限增大时,两侧面所成的二面角无限接近正n 多边形的一个内角,即为2n n π-,因此,所求二面角的范围应为(2

,n n

ππ-)

例3、已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和

AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 坐标为),0,(4x 若,2x 14<<则

θtg 的取值范围是( )

A .)1,31(

B .)32,31(

C .)2

1,52(

D .)3

2,52(

分析:本题命制得很有趣,它把人们常见的台球活动模型迁移到数学试题中,考查了处理几何、代数问题的能力,是一个小型综合题,我们可以充分利用几何关系通过“极端位置”找出θtg 的取值范围,根据极限的观点,令14→x ,不妨令

4P 与0P 重合,依据入射角等于反射角,即知1P 、2P 、3P 均为各边中点,此时

2

1

tan =

θ,而四个选择项中仅有选择项(C )与此数据有关,故选(C )

例4、已知函数21()(1)4

f x x =+,若存在,t t 为实数,只要[1,]x m ∈(1)

m >,就有

()f x x ≤,则m 的最大值是

分析:作函数y x =与21(1)4

y x =+的图像,平移f(x)的图像.使之与直线y x =交于(1,1)和(,),(1)m m m >两点,此时所得的图像是()y f x t =+,图像的极端位置;于是解方程组(1)1()f t f m t m +=??+=?

,再由1m >,得4

9t m =-??=?,所以max 9m =

x

θ

4P B

C

D

P 1

P 2

P 3

P A

y

例5、 已知数列{}n a 中,51=a 且对于任意正整数n ,总有2

1-=

+n n

n a a a ,是否存在实数b a ,,使得n n b a a )4

3

(--=,对于任意正整数n 恒成立?若存在,给出证

明;若不存在,说明理由。

分析: 如果这样的b a ,存在的话,则由n

n b a a ??

?

??--=43,可得a a n n =∞

→lim 。

对21-=

+n n n a a a 两边取极限,得2

-=a a

a ,解得0=a 或3=a 。 若0=a ,则数列{}n a 应该是以51=a 为首项、以43

-=q 为公比的等比数列,

于是,1

435-?

?

?

??-?=n n a ,415

4351

22-

=?

?

?

??-?=-a 不符合2112-=a a a 显然,不可能对任意的正整数n 都满足2

1-=

+n n

n a a a ; 若3=a ,将51=a 代入n

n b a a ???

??--=43 ,可求得38=b ,此时,n

n a ??? ??--=43383,

验证:2

24338335??

?

??--≠=a ,不符合n

n a ??

?

??-

-=43383。 所以,这样的实数b a ,不存在。

例6、设n 为自然数,求证:()4

1

121251912

<++++n 分析: 当1=n 时,不等式显然成立。 设()1≥=k k n 时,不等式成立,即

()4

1

121251912

<++++k ()1 那么,当1+=k n 时,

()()()

222321

4132112125191++<++++++k k k

由于

()4

1

321412

>++k , 证到此处,用数学归纳法证题思路受阻。

之所以用数学归纳法证题思路行不通,其原因在于

4

1

是一个常数,从k 到()1+k 右边常量不变,而左边在增大,这样,无法使用归纳假设。

当联想()4114lim

=+∞→n n n ,且当1=n 时,()9

1

8114>=+n n ,

不妨把要证结论强化为:()()

14121251912+<++++n n

n ()2 证明:①当1=n 时,

()9

1

8114>=+n n ,不等式()2成立, ②设()1≥=k k n 时,不等式()2成立,即

()()

14121251912+<++++k k k 那么,当1+=k n 时,

()())

2(41)42)(22(1

141)32(1)1(43211212519122

2++=

+++

+<++

+<++++++k k k k k k k k k k k 即当1+=k n

时,不等式()2成立,所以有

()

()4114121251912

<+<++++n n n

通过以上例题可以看出,让学生掌握和运用极限思想,不仅降低了某些问题的解题难度,而且在寻找解题思路、探索发现新结论有着重大作用。

极限思想及其应用

本科毕业论文(设计) 极限思想及其应用 学生姓名:孙金龙 学 号:071611140系 部:应用数学系专业:金融数学 指导教师:刘炎讲师 提交日期:2011年3月21日 广东金融学院 2008-JX16-

毕业论文基本要求 1.毕业论文的撰写应结合专业学习,选取具有创新价值和实践意义的论题。 2.论文篇幅一般为8000字以上,最多不超过15000字。 3.论文应观点明确,中心突出,论据充分,数据可靠,层次分明,逻辑清楚,文字流畅,结构严谨。 4.论文字体规范按《广东金融学院本科生毕业论文写作规范》和“论文样板”执行。 5.论文应书写工整,标点正确,用用微机打印后,装订成册。

本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学生签名: 时间:年月日 关于论文(设计)使用授权的说明 本人完全了解广东金融学院关于收集、保存、使用学位论文的规定,即: 1.按照学校要求提交学位论文的印刷本和电子版本; 2.学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务,在校园网上提供服务; 3.学校可以采用影印、缩印、数字化或其它复制手段保存论文; 本人同意上述规定。 学生签名: 时间:年月日

摘要 极限思想作为一种数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。 极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。极限思想是微积分理论的基础,而微积分与经济学、物理学、机械自动化等与生活息息相关的学科是密不可分的。尤其是对于经济学来说,是一个透过现象看本质的必不可少的工具,经济学的核心词语“边际”便是一个将导数经济化的概念。只有结合微积分等数学知识,才能使经济学从一个仅仅对表面现象进行肤浅的常识推理、流于表面化的学科,变为一个用科学的方法进行数理分析、再结合各社会学科的丰富知识,从而分析出深层次的、更具有广泛应用性的基本结论的学科。 其他学科也是如此,极限思想的应用无处不在,理解掌握并合理应用极限要思想,可以让我们在解决实际问题的过程中,能较快发现解决问题的方法,提高实际效果.本文就利用数学的极限思想在解决各个学科中的实际问题的思考过程做出初步的探索和分析。 [关键词]:极限思想;微积分;经济学

高中数学《函数的极限(一)》教案

课 题:2.3函数的极限(一) 教学目的: 1.理解当x →+∞,x →-∞,x →∞时,函数f (x )的极限的概念. 2.从函数的变化趋势,理解掌握函数极限的概念. 3.会求当函数的自变量分别趋于+∞,-∞,∞时的极限 教学重点:从函数的变化趋势来理解极限的概念,体会极限思想. 教学难点:对极限概念如何可从变化趋势的角度来正确理解. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项a n 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项a n 趋近于a 是在无限过程中进行的,即随着n 的增大a n 越来越接近于a ;另一方面,a n 不是一般地趋近于a ,而是“无限”地趋近于a ,即|a n -a |随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01lim =∞→n n (2)C C n =∞→lim (C 是常数) (3)无穷等比数列}{n q (1

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

极限思想在高中数学及应用

极限思想在高中解题中的运用 宜宾县一中 雷勇 极限的思想是近代数学的一种重要思想,我们在大学所学的数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科。而在高中一些数学问题的解答上如运用极限的思想,会是我们的解答简单而高效。 所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。下面将用例题举出极限思想的妙处。尝试将极限思想和方法渗透、融合在解题教学中,实现方法与内容的整合实践,以期引起广大师生的广泛关注和高度重视。 例1、过抛物线 )0(2 >=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与QF 的长分别是p 、q ,则q p 1 1+等于( ) (A)a 2 (B) a 21 (C) a 4 (D) a 4 分析:本题是有关不变性的问题,常规解法是探求a q p 、、的关 系,过程繁琐,且计算较复杂。若能充分借助于极限思想即取PQ 的极限位置可使问题变得简便易行:将直线PQ 绕点F 顺时针方向旋转到与y 轴重合,此时Q 与O 重合,点P 运动到无穷远处,虽不能再称它为抛物线的弦了, 它是弦的一种极限情形,因为 a OF p QF 41 = ==,而+∞→=q PF ,所以 a q p 41 1→+,故选择(C )。针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸现了试题的选拔功能。 例2、正n 棱锥中,相邻两侧面所成的二面角的取值范围是( ) A ( 2,n n ππ-) B (1 ,n n ππ-) C (0,2 π ) D ( 21 ,n n n n ππ--) x y F P Q O H A n A 1 A 2 A 3 S

高考数学主要考查哪些知识点

2019年高考数学主要考查哪些知识点 第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计。这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。 第七,解析几何。是高考的难点,运算量大,一般含参数。 “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”

为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。 对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。 对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧

高中数学知识点专题复习-极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1,21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

数学中的极限思想及其应用

摘要:本文对数学极限思想在解题中的应用进行了诠释,详细介绍了数学极限思想在几类数学问题中的应用,如在数列中的应用、在立体几何中的应用、在函数中的应用、在三角函数中的应用、在不等式中的应用和在平面几何中的应用,并在例题中比较了数学极限思想与一般解法在解题中的不同。灵活地运用极限思想解题,可以避开抽象、复杂的运算,优化解题过程、降低解题难度。极限思想有利于培养学生从运动、变化的观点看待并解决问题。 关键词:极限思想,应用 Abstract: In this paper, the application of the limit idea in solving problems is explained. What’s more, the applications in several mathematic problems, such as the application in series of numbers, the application in solid geometry, the application in function, the application in trigonometric function, the application in inequalities, the application in plane geometry are introduced in detail. The mathematic limit idea is compared with a common solution in a example, showing their differences in solving a problem. Solving problem by applying the limit idea can avoid abstract and complex operation, optimize the process of solving problem and reduce difficulty of solving problem. Students will benefit from the limit idea, treating and resolving problems from views of the movement and the change. Keywords:the limit idea,application

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高考数学常考知识点之极限

高考数学常考知识点之极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学复习专题讲座极限的概念及其运算

高中数学复习专题讲座极限的概念及其运算 高考要求 极限的概念及其渗透的思想,在数学中占有重要的地位,它是人们研究许多问题的工具 旧教材中原有的数列极限一直是历年高考中重点考查的内容之一 本节内容主要是指导考生深入地理解极限的概念,并在此基础上能正确熟练地进行有关极限的运算问题 重难点归纳 1 学好数列的极限的关键是真正从数列的项的变化趋势理解数列极限 学好函数的极限的关键是真正从函数值或图象上点的变化趋势理解函数极限 2 运算法则中各个极限都应存在 都可推广到任意有限个极限的情况,不能推广到无限个 在商的运算法则中,要注意对式子的恒等变形,有些题目分母不能直接求极限 3 注意在平时学习中积累一些方法和技巧,如 )1|(|0lim ,0)1(lim <==-∞→∞→a a n n n n n ???? ? ????><==++++++--∞→时当不存在时当时当l k l k l k b a b x b x b a x a x a l l k k k n ,,0,lim 0 1 1 10110 典型题例示范讲解 例1已知lim ∞ →x (12+-x x -ax -b )=0,确定a 与b 的值 命题意图 在数列与函数极限的运算法则中,都有应遵循的规则,也有可利用的规律, 既有章可循,有法可依 因而本题重点考查考生的这种能力 也就是本知识的系统掌握能力 知识依托 解决本题的闪光点是对式子进行有理化处理,这是求极限中带无理号的式子常用的一种方法 错解分析 本题难点是式子的整理过程繁琐,稍不注意就有可能出错 技巧与方法 有理化处理 解 b ax x x b ax x x b ax x x x x +++-+-+-=--+-∞ →∞ →1)()1(lim )1(lim 2 2 22 b ax x x b x ab x a x +++--++--=∞ →1) 1()21()1(lim 2 222 要使上式极限存在,则1-a 2=0, 当1-a 2=0时, 1) 21(1)21(1111)21(lim 1)1()21(lim 22 2 22=++-++-=+++--++-=+++--+--=∞→∞→a ab a ab a x b x x x b ab b ax x x b x ab x x 由已知得上式 ∴

极限思想在实际生活中的应用【开题报告】

开题报告 信息与计算科学 极限思想在实际生活中的应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 极限的思想可以追溯到我国古代, 刘徽的割圆术就是建立在直观基础上的一种原始的极限思想的应用; 古希腊人的穷竭法也蕴含了极限思想, 但由于希腊人“对无限的恐惧”, 他们避免明显地“取极限”, 而是借助于间接证法——归谬法来完成了有关的证明. 到了16世纪, 荷兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的穷竭法, 他借助几何直观, 大胆地运用极限思想思考问题, 放弃了归缪法的证明. 如此, 他就在无意中指出了把极限方法发展成为一个实用概念的方向. 极限思想的进一步发展是与微积分的建立紧密相联系的. 16世纪的欧洲处于资本主义萌芽时期, 生产力得到极大的发展, 生产和技术中大量的问题, 只用初等数学的方法已无法解决, 要求数学突破只研究常量的传统范围, 而提供能够用以描述和研究运动、变化过程的新工具, 这是促进极限发展、建立微积分的社会背景. 起初牛顿和莱布尼茨以无穷小概念为基础建立微积分, 后来因遇到了逻辑困难, 所以在他们的晚期都不同程度地接受了极限思想. 牛顿用路程的改变量与时间的改变量之S ?t ?比表示运动物体的平均速度, 让无限趋近于零, 得到物体的瞬时速度, 并由此引S t ??t ?出导数概念和微分学理论. 他意识到极限概念的重要性, 试图以极限概念作为微积分的基础, 他说:“两个量和量之比, 如果在有限时间内不断趋于相等, 且在这一时间终止前互相靠近, 使得其差小于任意给定的差, 则最终就成为相等.”但牛顿的极限观念也是建立在几何直观上的, 因而他无法得出极限的严格表述. 牛顿所运用的极限概念, 只是接近于下列直观性的语言描述, “如果当无限增大时, 无限地接近于常数, 那么就说以为极限” . n n a A n a A 这种描述性语言, 人们容易接受, 现代一些初等的微积分读物中还经常采用这种定义. 但是, 这种定义没有定量地给出两个“无限过程”之间的联系, 不能作为科学论证的逻辑基础. 正因为当时缺乏严格的极限定义, 微积分理论才受到人们的怀疑与攻击, 极限思想的完

高等数学习题及解答(极限-连续与导数)

高等数学习题库 淮南联合大学基础部 2008年10月

第一章 映射,极限,连续 习题一 集合与实数集 基本能力层次: 1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B 解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }. 2: 证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。即结论成立。 基本理论层次: 习题二 函数、数列与函数极限 基本能力层次 1: 解: 2: 证明:由得cxy ay ax b -=+即 ay b x cy a += -,所以 ()x f y = 所以命题成立

3: (1)2 2x y -= (2)lg(sin )y x = (3 []y x = (4)0,01,0x y x ≥?? =??取N =[1 ω ],则当n>N 时,就有 11|1|n n n ω--=<有定义变知1lim 1n n n →∞-=成立 5:求下列数列的极限 (1)lim 3n n n →∞ (2)222 3 12lim n n n →∞+++ (3) (4)lim n 解:(1) 233n n n n <,又 2lim 03n n x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0 (2)由于 222 3 312(1)(21)111 (1)(2)6n n n n n n n n n ++ +++= =++ 又因为:1111 lim (1)(2)63 n n n n →∞++=,所以:2223121 lim 3 n n n →∞+++ (3)因为: 所以: (4) 因为:111n n ≤+,并且1 lim(1)1n n →∞+=, 故由夹逼原理得 1n =

高等数学-求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim , 第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞→x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

高中数学知识点体系框架超全超完美

高中数学基础知识整合 函数与方程区间建立函数模型 抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布 单调性:同增异减赋值法,典型的函数 零点函数的应用 A 中元素在 B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多 函数的基本性质 单调性奇偶性周期性 对称性 最值 1.求单调区间:定义法、导数法、用已知函数的单调性。 2.复合函数单调性:同增异减。 1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ). 2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0. 3.偶函数图象关于y 轴对称,反之也成立。 f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。 函数的概念 定义 列表法解析法图象法 表示三要素使解析式有意义及实际意义 常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等 定义域 对应关系值域 函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换 基本初等函数正(反)比例函数、一次(二次)函数幂函数 指数函数与对数函数三角函数 定义、图象、性质和应用 函数 映 射 第二部分映射、函数、导数、定积分与微积分 退出 上一页 第二部分映射、函数、导数、定积分与微积分 导数 导数概念函数的平均变化率运动的平均速度曲线的割线的斜率 函数的瞬时变化率运动的瞬时速度曲线的切线的斜率 ()()的区别 与0x f x f ' '0 t t t v a S v ==,() 0' x f k =导数概念 基本初等函数求导 导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1 log sin cos cos sin 0''' ' 1' 'x x x x a n n e e a a a x x a x x x x x x nx x c c ==== -====-;;;;;;; 为常数()()()()[]()() ()()[]()()()()()()()()()()()[]2)3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=? ? ????+=?±=±是可导的,则有:,设()()[]()() x u u f x g f ' ' ' ?=1.极值点的导数为0,但导数为0的点不一定是极值点; 2.闭区间一定有最值,开区间不一定有最值。导数应用函数的单调性研究函数的极值与最值 曲线的切线变速运动的速度生活中最优化问题 ()()()(). 00''在该区间递减在该区间递增,x f x f x f x f ?1.曲线上某点处切线,只有一条;2.过某点的曲线的切线不一定只一条,要设切点坐标。 一般步骤:1.建模,列关系式;2.求导数,解导数方程;3.比较区间端点函数值与极值,找到最大(最小)值。 定 积分与微积分 定积分概念 定理应用 性质定理含意微积分基本 定理 曲边梯形的面积变力所做的功 ()的极限 和式i n i i x f ?∑-=1 1 ξ定义及几何意义 1.用定义求:分割、近似代替、求和、取极限; 2.用公式。 ()()()()[]()()()()()()()() c b a dx x f dx x f dx x f dx x f dx x f dx x g dx x f dx x g x f dx x f k dx x kf c b b a c a a b b a b a b a b a b a b a <<=-=±=±=?????????? .;;;()()()()()() 莱布尼兹公式牛顿则若--==?a F b F dx x f x f x F b a ,'1.求平面图形面积;2.在物理中的应用(1)求变速运动的路程: (2)求变力所作的功; ()?=b a dx x F W ()dt t v s a b ?=

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

相关主题
文本预览
相关文档 最新文档