当前位置:文档之家› 湖南理工学院高等代数第六章线性空间测试题

湖南理工学院高等代数第六章线性空间测试题

湖南理工学院高等代数第六章线性空间测试题
湖南理工学院高等代数第六章线性空间测试题

高等代数第六章——线性空间测试题

一、填空题

(1) 已知R 3

的两组基Ⅰ)1,0,0(),0,1,0(),0,0,1(321===ααα; Ⅱ)0,1,1(),1,1,0(),1,0,1(321===βββ

那么由Ⅱ到Ⅰ的过渡矩阵为 。

(2)在2

2?P

中,已知???? ?

?=11

11

1A ,???? ?

?=01112A ,???? ??=0011

3A ,???

?

??=0001

4A 是2

2?P

的基,那么,???

?

?

?=43

21

A 在该基下的坐标为 。 (3)设1W 是方程组04321=+++x x x x 解空间,2W 是方程组??

?=+-+=-++0

43214321x x x x x x x x 那么1W ∩2W 是方程组 的解空间。

(4)设()()()()()()3,2,1,1,1,0,1,0,1,0,1,121L W L W == ()=+21dim W W 。 (5)设1W 、2W 都是V 的子空间,

且1W +2W 为直和,那么()=?21dim W W 。 二、判断题:

(1)一个线性方程组的全体解向量必做成一个线性空间。( ) (2)实数域R 上的全体n 几级可逆矩阵做成n n P ?的子空间。( ) (3)齐次线性方程组的解空间的维数等于自由未知数的个数。( ) (4)线性空间V 中任意两个子空间的并集仍是V 的子空间。( )

(5)在子空间的和1W +2W 中,如果),(0221121w w ∈∈+=αααα,且这种表示形式唯一,那么1W +2W 为直和。( )

三、在22?P 中,,1111

???? ??=a

G

,111

,111

32???? ??=???? ??=a G a G ???

?

??=a G 111

4

当a 为何值时,4321,,,G G G G 线性相关? 当a 为何值时,4321,,,G G G G 线性无关?

四、设}{P a a a x a x a a x P o o ∈++=212213,,|][

(1)证明1,1,12--x x 是3][x P 的基,并求由该基到基1,,2x x 的过渡矩阵。 (2)求21)(x x x f ++=在基1,1,12--x x 下的坐标。

五、设1,1,0(),0,1,1(),,(21211===ααααL W ,2W 是齐次方程0321=++x x x 的解空间,求1W +2W ,21W W ?的一组基和维数。

六、设{}1,,,,|),(2-=∈++=i R d c b a di c bi a V 把V 看成R 上的线性空间,证明:

),0(),1,0(),0,(),0,1(4321i i ====αααα是V 的一组基。

七、设0,12==AX W A A 是的解空间,2W 是 0)(=-X E A 的解空间,证明:

n

P W W =⊕21。

八、设}{R b a b a b a a W ∈-+=,|),,(证明:

(1)W 关于3R 中的向量的加法和数乘运算做成R 上的线性空间。 (2)2

R W ?。

线性空间习题解答

第六章 线性空间习题解答P267 .1设,,M N M N M M N N ?==证明: 证明: 一方面.M N M ? 另一方面, 由于M M ?,,N M ? 得 .N M M ? 2 证明: (1))()()(L M N M L N M =. (2))()()(L M N M L N M = 证 明 : (1) . ),(L N x M x L N M x ∈∈∈且则设 即 .M x N x M x ∈∈∈或且 L x ∈且. 于是有)()(L M N M x ∈. 另一方面,因为 )(,)(L N M L M L N M N M ??,所以 )()()(L N M L M N M ?. (2) 一方面, ))(,)(L M L N M N M L N M ??,所以 )()()(L M N M L N M ?. 另一方面, .),()(L M x N M x L M N M x ∈∈∈?且则 若).(,L N M x M x ∈∈则 若 ∈∈∈?x L x N x M x 所以且则.,.L N 总之有 ) ()()(),(L N M L M N M L N M x ?∈所以. 3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间. (1) 次数等于n(n 1)的实系数多项式的全体,对于多项式的加法和数量乘法. (2) 设A 是n n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法. (3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法. (4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法. (5) 全体实数的二元数列,对于下面定义的运算:

线性空间-知识点及其注释

第五章 线性空间-知识点及其注释 知识点:n 维数组向量,向量空间,线性空间,线性组合,线性表示,向量组等价,线性相关,线性无关,极大无关组,秩,生成子空间,子空间,基,维数,坐标,基变换,坐标变换,同构,交子空间,和子空间,直和,线性方程组的解空间,基础解系,特解,通解。 #n 维数组向量#简称为n 维向量,是指由数域F 中n 个数n a a a ,,,21 组成的n 元有序数组,常记为12(,,,)T n a a a 或),,,(21n a a a ,又称为n 元(数组)向量。由数域F 上所有n 维数组向量所构成的线性空间称为n 维(元)(数组)向量空间,记为n F 。 #线性组合#表达式1122s s k k k ααα+++称为向量组s ααα,,,21 的系数分别为12,,,()s k k k F ∈的线性组合,s k k k ,,,21 称为线性组合系数。 #线性表示#向量α可由向量组s ααα,,,21 线性表示(出)是指存在数域F 中的数s k k k ,,,21 ,使1122s s k k k αααα=+++。 向量组s ααα,,,21 可由向量组12,,,t βββ线性表示是指每个i α(1,2,...,i s =)都可由向量组12,,,t βββ线性表示。显然,向量组的线性表示具有传递性。 在n F 中,向量α可由向量组s ααα,,,21 线性表示?线性方程组 1122 s s x x x αααα+++=有解? 1212(,, ,,)(,, ,)s s rank rank ααααααα=。 #向量组等价#向量组s ααα,,,21 与向量组12,,,t βββ等价是指向量组 s ααα,,,21 与向量组12,,,t βββ可以相互线性表示。显然,向量组等价是 等价关系,即具有自反性、对称性和传递性。

《高等代数》期末试卷B

教育科学系14级小学教育(科学与数学)专业2014—2015学年度春学期 期末考试《高等代数Ⅱ》试卷(B ) 试卷说明:1.本试卷共2页,4个大题,满分100分,120分钟完卷; 2.试题解答全部书写在本试卷上。 班号: 学号 姓名 一、选择题:(每题3分,共15分) 1.当λ=( )时,方程组1231 231 222x x x x x x λ++=??++=?,有无穷多解。 A 1 B 2 C 3 D 4 2.若向量组中含有零向量,则此向量组( )。 A 线性相关 B 线性无关 C 线性相关或线性无关 D 不一定 3.设α是n 阶可逆矩阵A 的属于特征值λ的特征向量,在下列矩阵中,α不是( ) 的特征向量。 A 2()A E + B -3A C *A D T A 4.若A 为n 阶实对称矩阵,P 为n 阶正交阵,则1P A P -为( )。 A 实对称阵 B 正交阵 C 非奇异阵 D 奇异阵 5.设矩阵 A , B , C 均为n 阶矩阵,则矩阵A B 的充分条件是( )。 A A 与 B 有相同的特征值 B A 与B 有相同的特征向量 C A 与B 与同一矩阵相似 D A 一定有n 个不同的特征值 1.已知向量组)4,3,2,1(1=α,)5,4,3,2(2=α,)6,5,4,3(3=α,)7,6,5,4(4=α,则向量=+-+4321αααα 。 2.若120s ααα++ +=,则向量组12,, ,s ααα必线性 。 3.设向量空间1212{(,, )|0,}n n i V x x x x x x x R =++ +=∈,则V 是 维 空间。 4.A ,B 均为3阶方阵,A 的特征值为1,2,3,1B =-,则*A B B += 。 5.设矩阵A 满足条件2560A A E -+=,则矩阵A 的特征值 是 。 6.二次型yz xz xy z y x z y x f 222),,(222---++=的矩阵是____________。 二、填空题:(每题3分,共27分)

高中空间向量试题

高中空间向量试题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高二数学单元试题 1.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( ) A . 1 B . 51 C . 53 D . 5 7 2.已知与则35,2,23+-=-+=( )A .-15 B .-5 C .-3 D .-1 3.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) A .OM ++= B .OM --=2 C .3 1 21++ =D .3 1 3131++= 4.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为 ( ) A . 0° B . 45° C . 90° D .180° 5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 A .2 B .3 C .4 D .5 6.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =xa +yb +zc .其中正确命题的个数为( )A . 0 B .1 C . 2 D .3 7.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则?→ ?AB +1 ()2 BD BC +等于( ) A .?→ ?AG B . ?→ ?CG C . ?→ ?BC D .21?→? BC 8.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A . +-a b c B .-+a b c C . -++a b c D . -+-a b c 9.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 10.已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点,且3||||AC AB =,则点的坐标是 ( ) A .715(,,)222- B . 3(,3,2)8- C . 107(,1,)33- D .573(,,)222 - 11.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=?=?=?,则△BCD 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不确定 12.(理科)已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,则点B 到平 面EFG 的距离为( ) A . 1010 B . 11112 C . 5 3 D . 1 二.填空题(本大题4小题,每小题4分,共16分) 13.已知向量a =(λ+1,0,2λ),b =(6,2μ-1,2),若a ∥b,则λ与μ的值分别是 . 14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b -c ,则m ,n 的夹角为 . 15.已知向量a 和c 不共线,向量b ≠0,且()()??=??a b c b c a ,d =a +c ,则,??d b = .

子空间的和与直和

5.5 子空间的和与直和 授课题目: 子空间的和与直和. 教学目标: 1.理解并掌握子空间的概念. 2.掌握子空间的判别方法,熟悉几种常见的子空间. 3.掌握子空间的交与和的概念. 授课时数:3学时 教学重点:子空间的判别. 教学难点:子空间的交与和. 教学过程: 一 子空间的的和 回忆: 令W 是数域F 上向量空间V 的一个非空子集.如果W 对于V 的加法以及标量与向量的乘法来说是封闭的,那么就称W 是V 的一个子空间. 一个向量空间V 本身和零空间叫做V 的平凡子空间。V 的非平凡子空间叫做V 的真子空间。 1. 定义:设12,W W V ?,则称V 的子集{}121122/,W W αααα+∈∈ 为1212w w W W +与的和,记为 即12W W +={}121122/,W W αααα+∈∈ 定理5.5.1:若12,W W 均为V 的两个子空间,则12W W +仍然是子空间. 证明:12,W W θθθθθ∈∈∴=+∈ 12W W +故12W W +≠φ 对121212,,,,a b F W W αβαααβββ?∈?+=+=+有, 111222,,,W W αβαβ∈∈ 12W W +均为v 子空间. ∴ 111222,a b W a b W αβαβ+∈+∈ 于是 ()()()()1212112212a b a b a b a b W W αβααββαβαβ+=+++=+++∈+ ∴ 12W W +是V 的子空间。 推广:12,,,n W W W V n 为的个子空间,则 {}12121122/,,,n n n n W W W W W W αααααα+++=+++∈∈∈ 仍然是V 的子空间. 补充:若1W =L ()r ααα,,,21 ,()212,,,t W L βββ= 则12W W +=L ()t r βββααα,,,,,,,2121

条据书信 如何证明是向量空间

如何证明是向量空间 向量空间证明解题的基本方法: 1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位; 3)计算有关点的坐标值,求出相关向量的坐标; 4)求解给定问题 证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。 证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可 只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法 2 解: 因为x+y+z=0 x=-y-z y=y+0xz z=0xy+z (x,y,z)=(-1,1,0)xy+(-1,0,1)xz y,z为任意实数

则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2) 步骤1 记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c) =i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A) =-asinC+csinA=0 接着得到正弦定理 其他 步骤2. 在锐角△ABC中,设BC=a,AC=b,AB=c。篇二:《空间向量在几何证明题解法》 空间向量在几何体中例题 1如图,在四棱椎P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点。 (1)求证:EF⊥CD; (2)证明:PA//平面DEF 3.已知四棱锥P ABCD的底面为直角梯形,AB//DC, DAB90,PA底面ABCD,且PA AD DC 1 2

2013_814高等代数(试题)

南京航空航天大学 2013年硕士研究生入学考试初试试题( A 卷) 科目代码: 814 科目名称: 高等代数 满分: 150 分 注意: ①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无 效;③本试题纸须随答题纸一起装入试题袋中交回! 一、(15分)设有向量组T T T a a )1,,3(,)3,1,1(,)1,1,2(321?=?==ααα,这里“T ”表示转置,以下各题相同. 1.求参数a ,使得321,,ααα线性相关; 2.在题1的基础上,记T A 21αα=,求方程组3α=AX 的通解. 二、(25分)设二次型AX X X f T =)(的秩为3,其中???? ??????=212111b b a A ,???????????=121α是A 的伴随 矩阵*A 的特征向量. 1.求参数a 和b ; 2.求正交矩阵P ,使得AP P T 为对角矩阵; 3.求二次型)(X f 在条件1232221=++x x x 下的最大值. 三、(15分)设1V 是由向量组T T T )7,6,9(,)1,0,3(,)3,2,1(321?==?=ααα生成的子空间, 2V 是由向量组T T T b a )1,2,(,)1,1,0(,)0,1,(321=?==βββ生成的子空间. 1.若11V ∈β,求参数a ; 2.若1V 与2V 有相同的维数,求参数b a ,满足的条件; 3.问:对任意给定的常数b a ,,21V V +是否有可能是直和?说明理由. 四、(25分)设3R 的线性变换Γ使得,222321 321321321??????????++++?+=??????????Γbx x x ax x x x x x x x x 且T )1,1,1(=α是Γ的一个特征 向量.

线性空间和欧式空间

第六章 线性空间和欧式空间 §1 线性空间及其同构 一 线性空间的定义 设V 是一个非空集合,K 是一个数域,在集合V 的元素之间定义了一种代数运算, 叫做加法;这就是说,给出了一个法则,对于V 中任意两个元素α和β,在V 中都有唯一的一个元素γ与他们对应,成为α与β的和,记为βαγ+=。在数域K 与集合V 的元素之间还定义了一种运算,叫做数量乘法,即对于数域K 中任一数k 与V 中任一元素α,在V 中都有唯一的一个元素δ与他们对应,称为k 与α的数量乘积,记为αδk =,如果加法与数量乘法满足下述规则,那么V 称为数域K 上的线性空间。 加法满足下面四条规则: 1)αββα+=+;交换律 2))()(γβαγβα++=++;结合律 3)在V 中有一个元素0,对于V 中任一元素α都有αα=+0(具有这个性质的元 素0称为V 的零元素); 存在零元 4)对于V 中每一个元素α,都有V 中的元素,使得0=+βα(β称为α的负元素). 存在负元 数量乘法满足下面两条规则: 5)αα=1; 存在1元 6)αα)()(kl l k =. 数的结合律 数量乘法与加法满足下面两条规则: 7)αααl k l k +=+)(; 数的分配律 8)βαβαk k k +=+)(. 元的分配律 在以上规则中,l k ,表示数域中的任意数;γβα,,等表示集合V 中任意元素。 例1. 元素属于数域K 的n m ?矩阵,按矩阵的加法和矩阵的与数的数量乘法,构成 数域K 上的一个线性空间,记为,()m n M K 。 例2. 全体实函数(连续实函数),按函数的加法和数与函数的数量乘法,构成一个实 数域上的线性空间。 例3. n 维向量空间n K 是线性空间。

(完整版)高等代数(下)期终考试题及答案(B卷)

高等代数(下)期末考试试卷及答案(B 卷) 一.填空题(每小题3分,共21分) 1. 22 3[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为 2. 设n 阶矩阵A 的全体特征值为12,,,n λλλL ,()f x 为任一多项式,则()f A 的全体特征值为 . 3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A ()-n P[x]= ,的核(0)= 1A A A 4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ?? ? ? ?+?? ,则A (λ)的不变 因子________________________; 3阶行列式因子 D 3 =_______________. 5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形 J= 6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηηL 下的坐标是 12(,,,)n x x x L ,那么(,)i ξη= 7. 两个有限维欧氏空间同构的充要条件是 . 二. 选择题( 每小题2分,共10 分) 1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为 (A) 1; (B) 2; (C) 3; (D) 4 2. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C) A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A

线性空间证明题库Lecture02

LECTURE2 De?ntion.A subset W of a vector space V is a subspace if (1)W is non-empty (2)For everyˉv,ˉw∈W and a,b∈F,aˉv+bˉw∈W. Expressions like aˉv+bˉw,or more generally k a iˉv+i i=1 are called linear combinations.So a non-empty subset of V is a subspace if it is closed under linear combinations.Much of today’s class will focus on properties of subsets and subspaces detected by various conditions on linear combinations. Theorem.If W is a subspace of V,then W is a vector space over F with operations coming from those of V. In particular,since all of those axioms are satis?ed for V,then they are for W. We only have to check closure! Examples: De?ntion.Let F n={(a1,...,a n)|a i∈F}with coordinate-wise addition and scalar multiplication. This gives us a few examples.Let W?F n be those points which are zero except in the?rst coordinate: W={(a,0,...,0)}?F n. Then W is a subspace,since a·(α,0,...,0)+b·(β,0,...,0)=(aα+bβ,0,...,0)∈W. If F=R,then W ={(a1,...,a n)|a i≥0}is not a subspace.It’s closed under addition,but not scalar multiplication. We have a number of ways to build new subspaces from old. Proposition.If W i for i∈I is a collection of subspaces of V,then W i={ˉw∈V|ˉw∈W i?i∈I} W= i∈I is a subspace. Proof.Letˉv,ˉw∈W.Then for all i∈I,ˉv,ˉw∈W i,by de?nition.Since each W i is a subspace,we then learn that for all a,b∈F, aˉv+bˉw∈W i, and hence aˉv+bˉw∈W. Thought question:Why is this never empty? The union is a little trickier. Proposition.W1∪W2is a subspace i?W1?W2or W2?W1. 1

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

习题与复习题详解(线性空间)----高等代数

习题5. 1 1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈o 其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R + + ?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈o , 所以R + 对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2) ()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==o ; (6)()()a a a a a λ μμλμλμλλμ??==== ??? o o o o ; (7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕o o o ; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间.

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

第六章线性空间自测练习

第六章 线性空间—自测练习 一.判断题 1.两个线性子空间的和(交)仍是子空间。 2.两个线性子空间的并仍是子空间。 维线性空间中任意n 个线性无关的向量可以作为此空间的一组基。 4.线性空间中两组基之间的过渡阵是可逆的。 5.两个线性子空间的和的维数等于两个子空间的维数之和。 6.同构映射的逆映射仍是同构映射。 7.两个同构映射的乘积仍是同构映射。 8.同构的线性空间有相同的维数。 ? 9.数域P 上任意两个n 维线性空间都同构。 10.每个n 维线性空间都可以表示成n 个一维子空间的和。 二.计算与证明 1. 求[]n P t 的子空间1011{()|(1)0,()[]}n n n W f t a a t a t f f t P t --==++=∈……+的基与维 数。 2. 求22P ?中由矩阵12113A ??= ?-??,21020A ??= ???,33113A ??= ???,41133A ??= ?-??生成的子空间的基与维数。 3.设4P 的两个子空间112(,)W L αα=,其中1(1,1,0,1)α=-,2(1,0,2,3)α=,21234124{(,,,)|20}W x x x x x x x =+-=。求12W W +与12W W 的基与维数。 4.P 为数域,22P ?中1,,x x V x y z P y z ?-???=∈?? ?????,2,,a b V a b c P a c ????=∈?? ?-???? 1)证明:12,V V 均为22P ?的子空间。 2)求12V V +和1 2V V 的维数和一组基。 5. P 为数域,3P 中{}1(,,),,,V a b c a b c a b c P ===∈,{}2(0,,),V x y x y P =∈ {

线性空间与子空间

第一讲 线性空间 一、 线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交() 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R )和复数域(C )。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1. 线性空间的定义: 设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和 x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+;

(3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为

大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()() x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++= 2 2 221 n n n n n n ππ ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

大一上学期高数期末考试题

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1.. (A)(B)(C)(D)不可导. 2.. (A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小; (C)是比高阶的无穷小;(D)是比高阶的无穷小. 3.若,其中在区间上二阶可导且,则(). (A)函数必在处取得极大值; (B)函数必在处取得极小值; (C)函数在处没有极值,但点为曲线的拐点; (D)函数在处没有极值,点也不是曲线的拐点。 4. (A)(B)(C)(D). 二、填空题(本大题有4小题,每小题4分,共16分) 5. . 6. . 7. . 8. . 三、解答题(本大题有5小题,每小题8分,共40分) 9.设函数由方程确定,求以及. 10. 11. 12.设函数连续,,且,为常数. 求并讨论在处的连续性. 13.求微分方程满足的解. 四、解答题(本大题10分) 14.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此 曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分) 15.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D. (1)求D的面积A;(2) 求D绕直线x = e 旋转一周所得旋转体的体积 V. 六、证明题(本大题有2小题,每小题4分,共8分) 16.设函数在上连续且单调递减,证明对任意的,. 17.设函数在上连续,且,.证明:在内至少存在两个不同的点,使(提示: 设) 解答 一、单项选择题(本大题有4小题, 每小题4分, 共16分)

1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分) 5. . 6.. 7. . 8.. 三、解答题(本大题有5小题,每小题8分,共40分) 9.解:方程两边求导 , 10.解: 11.解: 12.解:由,知。 ,在处连续。 13.解: , 四、解答题(本大题10分) 14.解:由已知且, 将此方程关于求导得 特征方程:解出特征根: 其通解为 代入初始条件,得 故所求曲线方程为: 五、解答题(本大题10分) 15.解:(1)根据题意,先设切点为,切线方程: 由于切线过原点,解出,从而切线方程为: 则平面图形面积 (2)三角形绕直线x = e一周所得圆锥体体积记为V1,则 曲线与x轴及直线x = e所围成的图形绕直线x = e一周所得旋转体体积为V2 D绕直线x = e旋转一周所得旋转体的体积 六、证明题(本大题有2小题,每小题4分,共12分) 16.证明: 故有: 证毕。

高等代数期末试题及解答xxl

西南财经大学2010 — 2011学年第二学期 周二 学 号 评定成绩 (分) 学生 担任教师 《 高等代数 》 期末 A 卷 一、填空(每小题2分,共10分) 1.设向量空间1212{(,, )|0,}n n i V x x x x x x x R =+++=∈,则V 是 n-1 维空间。 2.A ,B 均为3阶方阵,A 的特征值为1,2,3,1B =-,则*A B B += -84 3.设二次型222 1231231223(,,)22f x x x x x x x x tx x =++++正定,则t 满足t > 4.设矩阵A 满足条件2 560A A E -+=,则矩阵A 的特征值是 2 ,3 5.三维线性空间V 的秩为2,则零度为 1 。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号。 每小题2分,共20分) 1.设α是n 阶可逆矩阵A 的属于特征值λ的特征向量,在下列矩阵中,α不是( D ) 的特征向量 (A )2 ()A E + (B )-3A (C )*A (D )T A 2.已知A , B 为同阶正交矩阵,则下列( C )是正交阵。 (A )A B + (B )A-B (C )AB (D )kA 3, 设A 为n 阶方阵,则下列结论不成立的是( C ) (A )若A 可逆,则矩阵A 的属于特征值λ的特征向量也是矩阵1 A -的属于特征值 1 λ 的特征向量 (B )若矩阵A 存在属于特征值λ的n 个线性无关的特征向量,则A E λ=

(C )矩阵A 的属于特征值λ的全部特征向量为齐次线性方程组()0E A X λ-=的全部解 (D )A 与T A 有相同的特征值 4.若A 为n 阶实对称矩阵,P 为n 阶正交阵,则1P A P -为( A )。 (A )实对称阵 (B )正交阵 (C )非奇异阵 (D )奇异阵 5.设A ,B 都是正定阵,则( C ) (A )AB ,A+B 一定都是正定阵 (B )AB 是正定阵,A+B 不一定是正定矩阵 (C )AB 不一定是正定阵,A+B 是正定阵 (D )AB ,A+B 都不是正定阵 6.当( C )时,0a A b c ?? = ??? 是正交阵。 (A )1,2,3,a b c === (B )1a b c === (C )1,0,1a b c ===- (D )1,0a b c === 7.设A ,B 均为n 阶矩阵,且A 与B 合同,,则( D) (A )A,B 有相同的特征值 (B )A,B 相似 (C )A B = (D )()()r A r B = 8. 3 R 上的线性变换T 在基1111000,1,0001ααα?????? ? ? ?=== ? ? ? ? ? ???????下的矩阵为 121012111A ?? ? = ? ?-?? 则基在123,2,ααα下的矩阵为( A ) (A )141011121?? ? ? ?-?? (B )141044121?? ? ? ?-?? (C )1211012111?? ? ? ? ?-?? (D )242024222?? ? ? ? -?? 9.对于n 阶实对称矩阵A ,结论( C )正确。 (A )A 一定有n 个不同的特征值 (B )A 一定有n 个相同的特征值 (C )必存在正交矩阵P ,使1 P AP -成为对角矩阵

相关主题
文本预览
相关文档 最新文档