当前位置:文档之家› 空间向量与立体几何单元测试题

空间向量与立体几何单元测试题

空间向量与立体几何单元测试题
空间向量与立体几何单元测试题

空间向量与立体几何单元测试题一、选择题

1、若a,b,c是空间任意三个向量, R

λ∈,下列关系式中,不成立的是()

A.a b b a

+=+ B.

()

a b a b

λλλ

+=+

C.()()

a b c a b c

++=++

D.

b a

λ

=

2、给出下列命题

①已知a b

⊥, 则

()()

a b c c b a b c

?++?-=?

;

②A、B、M、N为空间四点,若

,,

BA BM BN

不构成空间的一个基底, 则A、B、M、N共面;

③已知a b

⊥,则,a b与任何向量不构成空间的一个基底;

④已知{}

,,

a b c

是空间的一个基底,则基向量

,a b

可以与向量

m a c

=+构成空间另一个基底.

正确命题个数是()

A.1 B.2 C.3 D.4

3、已知,a b

均为单位向量,它们的夹角为60?,那么

3

a b

+

等于()

A

B

C

D.4

4、

1,2,,

a b c a b

===+

c a

⊥,则向量a b

的夹角为()

A.30?B.60?C.120?D.150?

5、已知

()()

3,2,5,1,,1,

a b x

=-=-

2

a b?=,则x的值是()

A.3 B.4 C.5 D.6 6、若直线l的方向向量为

a,平面α的法向量为n,则能使//lα的是( )

A

()()

1,0,0,2,0,0

a n

==-

B.

()()

1,3,5,1,0,1

a n

==

C

()()

0,2,1,1,0,1

a n

==--

D .

()()

1,1,3,0,3,1

a n

=-=

7.空间四边形OABC中,OB OC

=,

3

AOB AOC

π

∠=∠=,则cos<,

OA BC>的值是()

A.

2

1

B.

2

2

C.-

2

1

D.0

8、正方体ABCD-1

1

1

1

D

C

B

A的棱长为1,E是

1

1

B

A中点,则E到平面

1

1

D

ABC的距离是

()

A

.B.C.

1

2

D.

9.若向量a与b的夹角为60°,4

=

b,(2)(3)72

a b a b

+-=-,则a=()

A.2B.4 C.6 D.12

10.如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是()

A.

10

30

B.

2

1

C.

15

30

D.

10

15

11.在三棱锥P-ABC中,AB⊥BC,AB=BC=

2

1

PA,点O、D分别是AC、PC的中点,OP⊥底面ABC,则直线OD与平面ABC所成角的正弦值()

A.

4

2

B.

3

3

C.

4

14

D.

30

10

12.正三棱柱

111C B A ABC -的底面边长为3,侧棱32

3

1=

AA ,D 是C B 延长线上一点,且BC BD

=,则二面角B AD B --1的大小( )

A .3π

B .6π

C .

6

D .

3

二、填空题

13、已知(1

21)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC = 14、△ABC 和△DBC 所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=60?,则AD 与平面BCD 所成角为 .

15、若直线l 的方向向量为(4,2,m),平面α的法向量为(2,1,-1),且l ⊥α,则m = .

16、已知ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,则P 到AB 的距离为

三、解答题

17、已知四棱锥P-ABCD 的底面是边长为a 的正方形,PA ⊥底面ABCD,E 为PC 上的点且CE :CP=1:4,求在线段AB 上是否存在点F 使EF//平面PAD?

18、如图,已知点P 在正方体ABC D -A 1B 1C 1D 1的 对角线BD 1上,∠PDA=60°. (1)求DP 与CC 1所成角的大小; (2)求DP 与平面AA 1D 1D 所成角的大小.

19、三棱锥被平行于底面

ABC

的平面所截得的几何体如图所示,截面为

111A B C ,

90BAC ∠=,

1A A ⊥平面ABC

,1A A

,AB =,2AC =,111AC =,

1

2

BD DC =. (Ⅰ)证明:平面1A AD ⊥平面11BCC B ;

(Ⅱ)求二面角1A CC B --的平面角的余弦值.

20.如图所示的多面体是由底面为

ABCD 的长方体被截面1AEC F 所截面而得到的,其中

14,2,3,1AB BC CC BE ====.

(Ⅰ)求BF 的长;

(Ⅱ)求点C 到平面1AEC F 的距离.

A 1

A

C 1

B 1

B

D

C

参考答案

选择题

DCCCC DDBCA CA 填空题

13. (042)

--

,,14. 30?15. -2

16.

解答题

17、解:建立如图所示的空间直角坐标系,设PA=b,

则A(0,0,0),B(a,0,0),C(a,a,0),D(0,a,0),P(0,0,b),

()

,, CP a a b

=--

,

∵E为PC上的点且CE:CP=1:3, ∴

()

11

,,,,

44444

a a b

CE CP a a b

??

=?=?--=--

?

??

∴由

33

,,

444

a a b

CE AE AC AE CE AC

??

=-?=+= ?

??,

设点F的坐标为(x,0,0,) (0≤x≤a),

33

,,

444

a a b

EF x

??

=---

?

??,

又平面PAD的一个法向量为

()

,0,0

AB a

=

,

依题意,

33

44

a a

EF AB x a x

??

⊥?-?=?=

?

??,

∴在线段AB上存在点F,满足条件,点F在线段AB的

3

4处.

18解:如图,以D为原点,DA为单位长建立空间直角坐标系D xyz

-.

则(100)

DA =,,,(001)

CC'=,,.连结BD,B D''.

在平面BB D D

''中,延长DP交B D''于H.

设(1)(0)

DH m m m

=>

,,,由已知60

DH DA

<>=

,,

由cos

DA DH DA DH DA DH

=<

>

可得

2m=m=

所以

2

1

DH

??

= ??

??

.(Ⅰ)因为

0011

cos DH CC

++?

'

<>==

所以45

DH CC'

<>=

,.即DP与CC'所成的角为

45.

(Ⅱ)平面AA

D D

''的一个法向量是(01

0)

DC=,,.

因为

01101

cos

2

DH DC

+?

<>==

,,所以60

DH DC

<>=

,.

可得DP与平面AA D D

''所成的角为30.

19.解:解法一:(Ⅰ)

1

A

A⊥平面ABC BC

?

,平面ABC,

1

A A BC

⊥.在Rt ABC

△中,

2

AB AC BC

=∴=

,,

:1:2

BD DC=,BD

∴=,又

BD AB

AB BC

==,

DBA ABC

∴△∽△,90

ADB BAC

∴∠=∠=,即AD BC

⊥.

1

A A AD A

=,BC

∴⊥平面

1

A AD,

BC?平面

11

BCC B,∴平面

1

A AD⊥平面

11

BCC B.

(Ⅱ)如图,作

1

AE C C

⊥交

1

C C于E点,连接BE,

由已知得AB⊥平面

11

ACC A.

AE

∴是BE在面

11

ACC A内的射影.

由三垂线定理知

1

BE CC

⊥,AEB

∴∠为二面角

1

A CC B

--的平面角.

1

C

1

C F AC

⊥交AC于F点,则1

CF AC AF

=-=,

11

C

F A A

=

1

60

C CF

∴∠=.

在Rt AEC

中,sin602

AE AC

==

=

在Rt BAE

中,tan

AB

AEB

AE

===

.AEB

∴∠=

即二面角

1

A CC B

--

解法二:(Ⅰ)如图,建立空间直角坐标系,

11

(000)0)(020)(00

A B C A C

,,,,,,,,,,

:1:2

BD DC=,

1

3

BD BC

∴=.D

点坐标为

2

33

??

?

?

??

,,.

22

33

AD

??

= ?

?

??

,,,

1

(220)(00

BC AA

=-=

,,,.

1

BC AA =,0

BC AD=,

1

BC AA

∴⊥,BC AD

⊥,又

1

A A AD A

=,

BC

∴⊥平面

1

A AD ,又BC?平面

11

BCC B,∴平面

1

A AD⊥平面

11

BCC B .

(Ⅱ)BA⊥平面

11

ACC A,取(20)

AB

==,,

m为平面

11

ACC A 的法向量,

设平面

11

BCC B的法向量为()

l m n

=,,

n,则

1

00

BC CC

==

n n.

A1

A

C1

B1

B D

C

F

E

(第19题,

解法一)

(第19题,解法二

200m m ?+=?∴?-+=??,

,l n ∴==,,如图,可取1m =,

3?

=???,n ,

2

2010cos (2)1?+<>=

=+,m n 即二面角1A CC B --为15. 20. 解:(I )建立如图所示的空间直角坐标系,则(0,0,0)D ,(2,4,0)B

1(2,0,0),(0,4,0),(2,4,1),(0,4,3)A C E C 设(0,0,)F z .

∵1AEC F 为平行四边形,

.

62,62||).

2,4,2().2,0,0(.2),2,0,2(),0,2(,,

11的长为即于是得由为平行四边形由BF BF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴

(II )设1n 为平面1AEC F 的法向量,

)1,,(,11y x n ADF n =故可设不垂直于平面显然

???=+?+?-=+?+??????=?=?02020140,0,011y x y x n n 得由??

?

??-==∴???=+-=+.41,1,022,014y x x y 即

1

11),3,0,0(n CC CC 与设又=的夹角为

α

,则

.33

33

4116

1133cos 1111=

++

?=

?=

n CC α

∴C 到平面1AEC F 的距离为.11

33

4333343cos ||1=?==αCC d

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

立体几何空间向量练习

立体几何空间向量练习 1.在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题. (1)求EF的长 (2)证明:EF∥平面AA1D1D; (3)证明:EF⊥平面A1CD. 2.如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A 1B与C1D所成角的余弦值; (2)求平面ADC1与平面A1BA所成的锐二面角(是指不超过90°的 角)的余弦值.

3.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设P A=1,AD=2. (1)求平面BPC的法向量; (2)求二面角B﹣PC﹣A的正切值. 4.如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知 BM=2,CD=3,AD=4,AA1=5. (1)求直线A1C和平面ABCD的夹角; (2)求点A到平面A1MC的距离.

5.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2,AD=CD=1,E是PB的中点. (1)求证:平面EAC⊥平面PBC; (2)若二面角P﹣AC﹣E的余弦值为, 求直线P A与平面EAC所成角的正弦值. 6.如图,在正三棱柱ABC﹣A1B1C1中,D为AC的中点. (1)证明:AB1∥平面BC1D; (2)证明:BD⊥平面AA1C1C; (3)若AA1=AB,求直线BC1与平面AA1C1C所成角的正弦值.

7.如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l. (1)证明:l⊥平面PDC; (2)已知PD=AD=1,Q为l上的点,QB=, 求PB与平面QCD所成角的正弦值. 8.如图,在正方体ABCD﹣A1B1C1D1中,E为BB1的中点. (Ⅰ)求证:BC1∥平面AD1E; (Ⅱ)求直线AA1与平面AD1E所成角的正弦值.

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a r 、b r 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos ||||||a b a b r r g r r (2)求线面角 设l r 是斜线l 的方向向量,n r 是平面α的法向量, 与平面α所成的角α=arcsin |||||| l n l n r r g r r 则斜线l (3)求二面角

方法一:在α内a r l ⊥,在β内b r l ⊥,其方向如图,则二面角l αβ--的平面角 α=arccos |||| a b a b r r g r r 方法二:设12,,n n u r u u r 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=1212arccos |||| n n n n u r u u r g u r u u r 2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n r 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ==u u u r r u u u r g r 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO uuu r . (2)求异面直线的距离 方法一:找平面β使b β?且a βP ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. a r 、 b r 分别为异面直线a 、b 的方向 法二:在a 上取一点A, 在b 上取一点B, 设

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等 的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向 量也叫做共线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ), a ρ b ρa ρb ρλ=)1(=++=y x y x 其中 a ± 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件 是存在实数,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量 p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫 做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三 个有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组 (,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐 标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 注:①点A (x,y,z )关于x 轴的的对称点为(x,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。②在y 轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z) (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位 正交基底,用{,,}i j k r r r 表示。空间中任一向量k z j y i x a ++==(x,y,z ) (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

用向量方法解立体几何题

用向量方法求空间角和距离前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos | |||||a b a b (2)求线面角 设l 是斜线l 的方 向向量,n 是平面α的法向量, α所成的角α=arcsin ||||||l n l n 则斜线l 与平面 (3)求二面角 方法一:在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ --的平面角α=arccos |||| a b a b 12,,n n 是二面角l αβ--的两个半平面的方法二:设 法向量,其方向 一个指向内侧,另一个指向外侧,则二的平面角α=1212arccos |||| n n n n 面角l αβ--2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到

α的距离|||||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示, 可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就 转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上 取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|||||cos |||AB n d AB n θ==(此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 解:(Ⅰ)记异面直线1DE FC 与所成的角为α, 则α等于向量1DE FC 与的夹角或其补角, 图建立空间坐标系D xyz -, (II )如1 1||||111111cos ||()()|||||| 222||,arccos DE FC DE FC DD D E FB B C DE FC αα∴=++=-==∴=

空间向量与立体几何知识点汇总

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

空间向量与立体几何知识点学生

用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos ,a b a b a b ?<>= ?, 但务必注意两异面直线所成角θ的范围是0,2π?? ? ??, 故实质上应有:cos cos ,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sin θ=| cos φ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量;

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

立体几何与空间向量

第30练 空间角的突破方略 题型一 异面直线所成的角 例1 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求异面直线BA 1与AC 所成的角. 破题切入点 利用BA 1→·AC →=|BA 1→|·|AC →|×cos 〈BA 1→,AC →〉,求出向量BA 1→与AC →的夹角〈BA 1→,AC →〉, 再根据异面直线BA 1,AC 所成角的范围确定异面直线所成角.还可用几何法或坐标法. 解 方法一 因为BA 1→=BA →+BB 1→,AC →=AB →+BC →, 所以BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2. 所以BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉, cos 〈BA 1→,AC →〉=-a 2 2a ×2a =-12. 所以〈BA 1→,AC →〉=120°. 所以异面直线BA 1与AC 所成的角为60°. 方法二 连接A 1C 1,BC 1,则由条件可知A 1C 1∥AC , 从而BA 1与AC 所成的角亦为BA 1与A 1C 1所成的角, 由于该几何体为边长为a 的正方体, 于是△A 1BC 1为正三角形,∠BA 1C 1=60°, 从而所求异面直线BA 1与AC 所成的角为60°. 方法三 由于该几何体为正方体,

空间向量与立体几何讲义

高 二 年级 数学 学科 一、空间向量的数量积坐标运算 1.空间向量的坐标表示:给定一个空间直角坐标系O -xyz 和向量a ,且设i 、j 、k 为 x 轴、y 轴、z 轴正方向的单位向量,则存在有序实数组{,,}x y z ,使得a xi y j zk =++ ,则称有序实数组{,,}x y z 为 向量a 的坐标,记着p = . 2.空间向量的直角坐标运算 (1)若123(,,)a a a a = ,123(,,)b b b b = ,则112233(,,)a b a b a b a b +=+++ , 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈ , (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =--- . 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 2.数量积:即 ?=332211b a b a b a ++ 3 .夹角:cos ||||a b a b a b ??==? 4.模长公式:若123(,,)a a a a = ,则||a == . 5.平行与垂直: 112233//,,()a b a b a b a b R λλλλ?===∈ 00332211=++?=??⊥b a b a b a 6.距离公式:若111(,,)A x y z ,222(,,)B x y z , 则||AB == , 或,A B d = 【典型例题】例1 如图,空间四边形OABC 中,,OA a OB b == , OC c = ,点M 在OA 上,且OM =2MA ,点N 为BC 的中点,则MN = .

空间向量与立体几何知识点

1 立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形 法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都 是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 当a 、b 为非零向量时.a b=0u a 丄b 是数形结合的纽带之一,这是运用空间向 量研究线线、线面、 面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决 垂直的 论证问题. COS C a,b >= 是应用空间向量求空间中各种角的基础,用这个公式可以求 两异 面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取 值范围上的区别), 再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、 直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念, 通过研究方向向量与法向量之间的关系, 可以确定直线与直线、 的位置关系以及有关的计算问题. 5、 用空间向量判断空间中的位置关系的常用方法 (1) 线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2) 线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即 2、 4耳 3、 公式 I 直线与平面、 平面与平面等 空间向ft 的缆性运算,数ft 稅及其坐标衷示 空诃向 a 与 立体几河

(3) 线面平行 用向量证明线面平行的方法主要有: ① 证明直线的方向向量与平面的法向量垂直; ② 证明可在平面内找到一个向量与直线方向向量是共线向量; ③ 利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向 量. (4) 线面垂直 用向量证明线面垂直的方法主要有: ① 证明直线方向向量与平面法向量平行; ② 利用线面垂直的判定定理转化为线线垂直问题. (5) 面面平行 ① 证明两个平面的法向量平行(即是共线向量); ② 转化为线面平行、线线平行问题. (6) 面面垂直 ① 证明两个平面的法向量互相垂直; ② 转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 呻片 a b COS c a, b >=暮厲 利用公式 同讪, 故实质上应有: (2) 求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量, 通过数量积求 出直线与平面所成角; 另一种方法是借助平面的法向量, 先求出直线方向向量与平面法向量 的夹角0,即可求出直线与平面所成的角 0,其关系是sin 0 = | cos ? (3) 求二面角 用向量法求二面角也有两种方法: 一种方法是利用平面角的定义, 在两个面内先求出与 棱垂直的两条直线对应的方向向量, 然后求出这两个方向向量的夹角, 由此可求出二面角的 大小;另一种方法是转化为求二面角的两个面的法向量的夹角, 它与二面角的大小相等或互 补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1) 点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2) 点与面的距离 点面距离的求解步骤是: ① 求出该平面的一个法向量; ② 求出从该点出发的平面的任一条斜线段对应的向量; ③ 求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距 「2」, 但务必注意两异面直线所成角 0的范围是 彳寸I cos 日=cos v a, b m

法向量解立体几何专题训练

法向量解立体几何专题训练 一、运用法向量求空间角 1、向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不 需要用法向量。 2、设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为sin θ= cos( 2π -θ) = |cos| = AB AB n n ?? 3、 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点 A 、B ,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=|| || AB n n ? 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y = 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则

1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥ 四、应用举例: 例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值. 解:(I )以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系, 则D(0,3,0)、D 1(0,3,2)、E(3,0,0)、F(4,1,0)、C 1(4,3,2) 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有 1330 1320n DE x y x y x y z n EC ⊥-=? ?==-++=⊥?? ???? ?? 11111(1,1,2), (0,0,2), cos 3 ||||1tan 2n AA CDE n AA C DE C n AA n AA θθθ∴=--=∴--?== = ?∴= 向量与平面垂直与所成的角为二面角的平面角 (II )设EC 1与FD 1所成角为β,则 1111cos 14 |||| 1EC FD EC FD β?= = = ? 例2:(高考辽宁卷17)如图,已知四棱锥P-ABCD ,底面ABCD 是菱形,∠DAB=600,PD ⊥平面ABCD ,PD=AD ,点E 为AB 中点,点F 为PD 中点。 (1)证明平面PED ⊥平面PAB ; (2)求二面角P-AB-F 的平面角的余弦值 证明:(1)∵面ABCD 是菱形,∠DAB=600, ∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900,

相关主题
文本预览
相关文档 最新文档