当前位置:文档之家› 第十讲含参变量的积分

第十讲含参变量的积分

第十讲含参变量的积分
第十讲含参变量的积分

第十讲含参变量的积分

10 . 1 含参变量积分的基本概念

含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义

设()y x f ,定义在平面区域[][]d c b a D ,,?=上的二元函数,对任意取定的[]b a x ,∈.

()y x f ,关于 y 在[]d c ,上都可积,则称函数

()()[]b a x dy y x f x I d

c

,,,∈=?

为含参量二的正常积分.

一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称

()()()

()

[]b a x dy y x f x I x d x c ,,,∈=?

为含参量x 的正常积分.

同样可定义含参量 y 的积分为

()()[]d c y dx y x f y J b

a

,,,∈=?或()()()

()

[]d c y dx y x f y J y b y a ,,,∈=?

2 .性质(以 I ( x )为例叙述)

( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈?,()()(

)

()

?=

→000

,lim 0x d x c x x dy y x f x I

( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有

()()()?

????==b

a

b a

d c

b

a

d

c

dx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, ·

( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()()

()()()()()()x c x c x f x d x d x f dy y x f x I x d x

c x

'

'

'

,,,-+=

以上性质的证明见参考文献[ 1 ] ,这里从略,

例10. l 求积分?>>-?

?? ??1

0,ln 1ln sin a b dx x

x

x x a

b 解法 1 (用对参量的微分法):设()?>>-?

?

? ??=1

00,ln 1ln sin a b dx x x

x x b I a

b ,

()()()

()()()()b I b b dx x x x x b x d x b dx x x b x b x b x d x dx

x x b I b b b b b b b '

2

2101012

1

1

021

0101

01

11

'

11111ln sin |1ln cos 111ln cos 11

1ln cos 11|1ln sin 111ln sin 1ln sin +-+=??

??

????? ??-??? ??+=?

?? ??+=

??? ??++??? ??+=???? ??+??? ??=??

?

??=?????++++

所以()()

()()

()?

++=++=?++=

C b db b b I b b I 1arctan

1

11

1

11

2

2

'

,令a b =,则 ()()()1arctan 1arctan

0+-=?++==a C C a a I 所以原积分()()()1arctan 1arctan

+-+==a b b I I 解法 2 : (交换积分顺序方法)因为

x

x x dy x a

b b

a

y

ln -=?

,所以

??????

?

??=??? ??=1010

1ln sin 1ln sin b a y b a y dx x x dy dy x x dx I

同解法

()?++=??

? ??1

021

111ln sin y dx x x y

,所以有 ()

()()?

+-+=++=b

a

a b dy y I 1arctan 1arctan

1

11

2

注:在以上解题过程中,需要验证对参量积分求导和交换积分顺序的条件,为简洁省略了,

但按要求是不能省的. 例10.2 设()()()dz z f yz x y x F xy

y

x ?-=

,,其中f 为可微函数,求()y x F xy

解:

()()

()()()()

()()()

()

()()()()

()

()

()()

()xy f y y x y x f y x xy f xy x xy f y y x xy f y x x y f y x xy xf F xy f y yx dz z f xy f xy x y dz z f y x f x x y xy f xy x y dz z f F xy xy

y

x xy

y

x xy

y x x '

2222'222222213213111-+???

? ??+

-=-+-+??

?

??+=-+=-+=???

?

??--

-+=???

二、含参量的广义积分

含参量的广义积分包括两类:含参量的无穷积分和含参量的瑕积分 (一)含参量的无穷积分

1 .定义:设 ()y x f ,定义在[][)+∞?=,,c b a D 上,对每个取定的[]b a x ,∈,积分 ,

()()[]?

+∞

∈=c

b a x dy y x f x I ,,,都收敛(也叫逐点收敛)

,它是一个定义在[]b a ,上的函数,称该积分为含参量x 的无穷积分 同样可以定义 ()()[]?

+∞

∈=a

d c y dx y x f y J ,,,

2 .一致收敛

若对c M >?>?,0ε,当 A > M 时,对一切[]b a x ,∈,恒有

()()()εε<<-?

?+∞

A

A c

dy y x f dy y x f x I ,,或

则称含参量积分在[]b a ,上一致收敛.

注:非一致收敛定义:若00>?ε,使得c M >?,总存在M A >0,及存在[]b a x ,0∈,,使得

()()()000000

,,εε<<-?

?

+∞

A A c

dy y x f dy y x f x I 或

3 .一致收敛的柯西准则

含参量积分( l )在[]b a ,上一致收敛?对 c M >?>?,0ε,当 M A A >>12时,对一切[]b a x ,∈,都有

()ε

2

1

,A A dy y x f

注:非一致收敛的柯西准则:含参量积分( 1 )在[]b a ,上非一致收敛c M >?>??,00ε存在M A A >>12,及存在[]b a x ,0∈,使得

()002

1

A A dy y x f

4.一致收敛判别法

( I ) M 判别法:若()()()D y x y g y x f ∈?≤,,,而

()?

+∞

c

dy y g 收敛,则()?

+∞

c

dy y x f ,在

[]b a ,上一致收敛(同时也绝对收敛) .

( 2 )阿贝尔判别法: ①

()?

+∞

c

dy y x f ,在[]b a ,上一致收敛; ② 对每一个[]b a x ,∈,

()y x g ,关于y 单调,月关于x 一致有界,则积分()()?

+∞c

dy y x g y x f ,,在[]b a ,上一致收敛.

( 3 )狄利克雷判别法: ①

()[]()c A b a x M dy

y x f A

c

>?∈?≤?,,,(即一致有一界);

② 对每一个[]()y x g b a x ,,,∈必关于 y 单调,且当 +∞→y 时()y x g ,对x 一致趋于零,

则积分

()()?

+∞

c

dy y x g y x f ,,在[]b a ,上一致收敛 ·

例 10 . 3 讨沦下列积分的一致收敛性: (1)

()

?∞

++-1

2

2

2

2

2dx y x

x y 在()+∞∞-,;(2)[)?+∞

-+∞∈0

,0,sin y dx x

x

e xy 解: ( 1 )因为

()

()

()()+∞∞-∈?≤+=

++≤+-,1

12

222

2

2

2

22

2

2

2

2y x

y x y x

y x y x

x y ,而积分 ?

+∞

1

21

dx x 收敛,由M 发,()

?∞++-12222

2dx y

x x y 在()+∞∞-,一致收敛 ·

( 2 )因为

?

+∞

sin dx x

x

收敛,且与y 无关,故关于y 一致收敛,而xy e -对固定的y 关于x 在[)+∞,1上单调减,且1≤-xy

e ,对()()()+∞?+∞∈?,0,0,y x .由阿贝尔判别法知,积分

?

+∞

-0

sin dx x

x

e xy

在()+∞∈,0y 上一致收敛. 5 .分析性质

( l )连续性:若满足:

① ()y x f ,在[][)+∞?=,,c b a D 上连续; ② ()()[]?

+∞

∈=

c

b a x dy y x f x I ,,,一致收敛;

则()x I 在[]b a ,上连续,即()()()dy y x f x I x I c

x x ?

+∞

→==,lim 000

·

( 2 )可积性:参量 []b a x ,∈若满足: ①()y x f ,在[][)+∞?=,,c b a D 上连续; ② ()()[]?

+∞

∈=

c

b a x dy y x f x I ,,,一致收敛;

则()x I 在[]b a ,上可积,即

()()()?

???

?+∞+∞

==b

a

b

a

c

c

b a

dx y x f dy dy y x f dx dx x I ,,

参量[)+∞∈,a x ,若满足:

① ()y x f ,在 [)[)+∞?+∞=,,c a D 上连续; ②

()[]()c d d c y dy y x f a

>?∈?

+∞

,,,和

()[]()a b b a x dy y x f c

>?∈?

+∞

,,,都一致收敛;

③ 积分

()?

?

+∞

+∞

a

c

dy y x f dx ,与()??

+∞+∞

c

a

dx y x f dx ,收敛;

则()x I 在[]b a ,上收敛,且

()()dx y x f dy dy y x f dx a

c

c

a

?

??

?

+∞

+∞

+∞

+∞

=,,

( 3 )可微性:若满足:

①()y x f ,和()y x f x ,在 [][)+∞?=,,c b a D 上连续; ② ()()[]b a x dy y x f x I c

,,,∈=?

+∞

收敛;

()[]b a x dy y x f c

x ,,,∈?

+∞

一致收敛;

则()x I 在[]b a ,上可微,且()()[]b a x dy y x f x I c

x ,,,'

∈=

?

+∞

注: ( 1 )在定理的条件下,必可导出 ② 也是一致收敛的. ( 2 )定理的条件都是充分而非必要的. 6 .狄尼( Dini )定理

若()y x f ,在 [][)+∞?=,,c b a D 连续且非负,则

()()dy y x f x I c

?

+∞

=,在[]b a ,上连续()x I 在[]b a ,上一致收敛.

证明:充分性是显然的,下证必要性. (反证法)假设()()[]b a x dy y x f x I c

,,,∈=

?

+∞

不一致收敛,由定义,00>?ε,对c

M >?总存在[]b a x M A ,,00∈?>,使得()()0000,ε≥-?

A c

dy y x f x I .特别地,取 M 大于c 的

自然数n ·则分别存在 []b a x n A n n ,,∈> ,使得()()0,ε≥-?

n

A c

n n dy y x f x I · 注意到

f 非负,可写作()()0,ε≥-

?

n

A c

n n dy y x f x I .由于{}[]b a x n ,?有界,记为{}(),...2,1=k x n ,

则[]b a x x nk k ,lim 0∈=∞

→,不妨设......21<<<

()()()()?

?

≥-≥-1

0,,n nk

A c

A c

nk nk nk nk dy y x f x I dy y x f x I ε (*)

由已知条件,对固定的1n A ,函数()()()?-=1

,n A c

dy y x f x I x F 在[]b a ,上连续,对(*)令

∞→k 取极限得()()()00001

,ε≥-=?

dy y x f x I x F n A c

.此与()x I 的定义(即逐点收敛)矛

盾,即()()[]?

+∞

∈=

c

b a x dy y x f x I ,,,一致收敛 ·

(二)含参量的瑕积分 1 .定义

设()y x f ,在区域[](]d c b a D ,,?=上有定义,对取定的[]c y b a x =∈,,为函数 f 的瑕点, 若积分

()()[]?∈=d

c

b a x dy y x f x I ,,,

收敛,它是一个定义在[]b a ,上的函数,称其为含参量x 的瑕积分.

2 一致收敛

对c d -<?δδε0:,0,当δη<<0时,恒有

()εη

+c c

dy y x f ,,对一切

[]b a x ,∈成立,称()()dy y x f x I d

c

?=,在[]b a ,上一致收敛.

3.M 判别法

设 g ( y )为定义在( c , d ]上以 c y =瑕点的非负函数.且()()[]()b a x y g y x f ,,∈?≤ ,而

()dy y g d c

?收敛,则()()[]b a x dy y x f x I d

c

,,,∈=?必一致收敛

其余的可仿照含参量无穷积分的相关内容平行推得,当然也可以将它转化为无穷积分进 行讨论,这里不再赘述.

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

第十章定积分的应用§4旋转曲面的面积_数学分析

§4 旋转曲面的面积 (一) 教学目的:理解微元法的基本思想和方法,掌握旋转曲面的面积计算公式. (二) 教学内容:旋转曲面的面积计算公式. 基本要求:掌握求旋转曲面的面积的计算公式,包括求由参数方程定义的旋转曲面的面积;掌握平面曲线的曲率的计算公式. (三) 教学建议: 要求学生必须熟记旋转曲面面积的计算公式,掌握由参数方程定义的旋转曲面的面积. ———————————————————— 一 微元法 用定积分计算几何中的面积,体积,弧长,物理中的功,引力等等的量,关键在于把所求量通过定积分表达出来. 元素法就是寻找积分表达式的一种有效且常用的方法. 它的大致步骤是这样的:设所求量 是一个与某变量(设为x )的变化区间 有关的量,且关于区间 具有可加性. 我们就设想把 分成n 个小区间,并把其中一个代表性的小区间记坐 , 然后就寻求相应于这个小区间的部分量 的近似值(做这一步的时候,经常画出示意图帮助思考),如果能够找到 的形如 近似表达式(其中 为 上的一个连续函数在点x 处的值, 为小区间的长度),那么就把 称为量 的元素并记做 ,即 dx x f dU )(= 以量 的元素作为被积表达式在 上进行积分,就得到所求量 的积分表达式: ?b a dx x f )( 例如求由两条曲线)(,)(21x f y x f y == (其中],[,21b a C f f ∈)及直线 b x a x ==, 所为成图形的面积A.容易看出面积元素dx x f x f DA |)()(|21-=于是得平面图形 b x a x f y x f ≤≤≤≤,)()(21 的面积为 ?-=b a dx x f x f A |)()(|21

第十八章 含参变量的广义积分

第十八章 含参变量的广义积分 1. 证明下列积分在指定的区间内一致收敛: (1) 220cos() (0)xy dy x a x y +∞≥>+? ; (2) 20 cos() ()1xy dy x y +∞ -∞<<+∞+?; (3) 1 ()x y y e dy a x b +∞-≤≤?; (4) 1 cos (0,0)xy p y e dy p x y +∞->≥?; (5) 20sin (0)1p x dx p x +∞ ≥+?. 2. 讨论下列积分在指定区间上的一致收敛性: (1) 20 (0)x dx αα-<<+∞?; (2) 0 xy xe dy +∞-?, (i )[,] (0)x a b a ∈>,(ii )[0,]x b ∈; (3) 2 ()x e dx α+∞ ---∞?, (i )a b α<<,(ii )α-∞<<+∞; (4) 22(1)0sin (0)x y e xdy x +∞ -+<<+∞?. 3. 设()f t 在0t >连续,0()t f t dt λ+∞ ?当,a b λλ==皆收敛,且a b <。求证: 0()t f t dt λ+∞ ?关于λ在[,]a b 一致收敛. 4. 讨论下列函数在指定区间上的连续性: (1) 22 0()x F x dy x y +∞ =+?,(,)x ∈-∞+∞; (2) 20()1x y F x dy y +∞ =+?,3x >; (3) 20sin ()()x x y F x dy y y π π-=-?,(0,2)x ∈.

5. 若(,)f x y 在[,][,)a b c ?+∞上连续,含参变量广义积分 ()(,)c I x f x y dy +∞ =? 在[,)a b 收敛,在x b =时发散,证明()I x 在[,)a b 不一致收敛. 6. 含参变量的广义积分()(,)c I x f x y dy +∞ =?在[,]a b 一致收敛的充要条件是:对任一 趋于+∞的递增数列{}n A (其中1A c =) ,函数项级数 111(,)()n n A n A n n f x y dy u x +∞∞ ===∑∑? 在[,]a b 上一致收敛. 7. 用上题的结论证明含参变量广义积分()(,)c I x f x y dy +∞ =?在[,]a b 的积分交换次序 定理(定理19.12)和积分号下求导数定理(定理19.13). 8. 利用微分交换次序计算下列积分: (1) 210()() n n dx I a x a +∞ +=+? (n 为正整数,0a >); (2) 0sin ax bx e e mxdx x --+∞ -?(0,0a b >>); (3) 20sin x xe bxdx α+∞-? (0α>). 9. 用对参数的积分法计算下列积分: (1) 220ax bx e e dx x --+∞-? (0,0a b >>); (2) 0 sin ax bx e e mxdx x --+∞ -?(0,0a b >>). 10. 利用2(1)2011y x e dy x +∞-+=+?计算拉普拉斯积分 20cos 1x L dx x α+∞=+? 和 120sin 1x x L dx x α+∞=+? . 11. 2 0(0)xy e dy x +∞ -=>计算傅伦涅尔积分

定积分典型例题56177

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘入和式中各 项.于是将所求极限转化为求定积分.即 3321lim )n n n →∞+=3 1lim )n n n n →∞+=03 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π. 例18 计算 2 1 ||x dx -? . 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1 ||x dx -? =02 1 ()x dx xdx --+?? =220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算 2 20 max{,}x x dx ? . 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717 max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且1 ()3()f x x f t dt =+? ,则()________f x =. 分析 本题只需要注意到定积分 ()b a f x dx ? 是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而 1 ()f t dt ? 是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且1 1 (3)()x a dx f t dt a +==??. 所以

第十五章 含参变量的积分(数学分析)课件

第十五章含参变量的积分 教学目的与要求 1 掌握含参变量的常义积分的定义及分析性质; 2 能应用含参变量的常义积分的分析性质证明某些理论问题. 3 理解含参变量的反常积分的一致收敛的定义; 4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质; 5 能利用参变量的反常积分的分析性质求函数的导数、积分等; 6 掌握Beta函数和Gamma函数的定义及其相互关系; 7 掌握Beta函数和Gamma函数的性质。 教学重点 1 应用含参变量的常义积分的分析性质证明某些理论问题; 2 求含参变量的常义积分的极限、导数、积分; 3 含参变量的反常积分的一致收敛的定义; 4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质; 5 利用参变量的反常积分的分析性质求函数的导数、积分等 6 Beta函数和Gamma函数的性质。 教学难点 1 应用含参变量的常义积分的分析性质证明某些理论问题; 2 含参变量的反常积分的一致收敛的定义; 3 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;

§1 含参变量的常义积分 教学目的 1 掌握含参变量的常义积分的定义及分析性质; 2 能应用含参变量的常义积分的分析性质证明某些理论问题. 教学过程 1 含参变量的常义积分的定义 (P373) 2 含参变量的常义积分的分析性质 2.1 连续性定理P374 T h e o r e m 1 若函数),(y x f 在矩形域] , [ ] , [d c b a D ?=上连续 , 则函数 ?=d c dy y x f x I ),()(在] , [b a 上连续 . Theorem 2 若函数),(y x f 在矩形域] , [ ] , [d c b a D ?=上连续, 函数)(1x y 和 )(2x y 在] , [b a 上连续 , 则函数? =)() (21),()(x y x y dy y x f x G 在] , [b a 上连续. 例 1 求下列极限 (1)dx y x y ? -→+1 1 2 20lim (2) dx n x n n ? ++∞→1 )1(11lim 2.2 积分次序交换定理P375 例2 见教材P375. 2.3 积分号下求导定理P375—376 T h e o r e m 3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ?=上连续, 则函数? = d c dy y x f x I ),()(在] , [b a 上可导 , 且 ??=d c d c x dy y x f dy y x f dx d ),(),(. ( 即积分和求导次序可换 ) . Theorem 4设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ?=上连续, 函 数)(1x y 和)(2x y 定义在] , [b a , 值域在] , [d c 上, 且可微 , 则含参积分

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

第十章 定积分的应用

第十章 定积分的应用 §1.平面图形的面积 习题 1. 求由抛物线2 22x y x y -==与所围图形的面积。 解:设所围图形的面积为S ,如图10-1 解方程组 2 2 2y x y x ?=??=-?? 得两曲线两交点坐标为(1,1),(1,1)A B -,则积分区间为[1,1]-, 图形面积为 11 221 1 1 221 (2)[(2)]83 S x dx x dx x x dx ---=--=--= ??? 2. 求由x y ln =与直线 ,10,101 == x x 和10,0x y ==所围图形的面积。 解:设所围图形总面积为S , 110 11 10 1 101110 (ln )ln (ln ) (ln ) 1 (99ln1081)10 S x dx xdx x x x x x x =-+=--+-= -?? 3. 抛物线x y 22=把圆 822=+y x 分成两部分,求这两部分面积之比。 解:设12,S S 分别表示被抛物线分割成的两部分圆面积,则 2 2 12244 )28 8cos 3423 y S dy d π πθθπ--==- =+ ??

2184 823463 S S ππππ=-=--=- 124 2323492 63 S S ππππ+ += =-- 4. 试证摆线33cos ,sin (0)x a t y a t a ==>所围图形的面积(图10—7)。 解:设所围图形的全部面积为S ,取积分变量为t ,当t 由2 π 变到0时,就得到曲线在第一象限的部分, '2 2322 2 4220 224()()12sin cos (sin )12sin (1sin )3153112()4226422 83 S y t x t dt a t t t dt a t t dt a a πππ ππ π==?-=?-???=?-????=??? 5. 求心形线(1cos )(0)r a a θ=+>所围图形的面积。 解:设所围图形面积为S ,取积分变量为θ,当θ由0变到π时,即得到曲线在x 轴上方部分,由极坐标系下面积的积分表达式有: 2 202220 2 212(1cos )2(12cos cos )31 [2sin sin 2]2432 S a d a d a a ππ πθθ θθθ θθθπ=?+=++=++=?? 6. 求三叶形线)0(3sin >=a a r θ所围图形的面积。 解:2 223 3 013sin 63(sin 3)()2224 4 a S a d a ππθθπ θθ=?= -= ?

不定积分的典型例题

例1.計算 dx x x ?++1 1 42 解法1 ).12)(12(1224+- ++ =+x x x x x 而 +++)12(2x x )1(2)12(22+=+-x x x 所以 )121 121(21112242dx x x dx x x dx x x ???++++-=++ . )]12arctan()12[arctan(2 11 )12( ) 1221 1 )12( ) 12(21) 21)22(121)22(1[212 2 22c x x x x d x x d dx x dx x +++-= ++++ +--=++ ++- =???? 解法2 dx x x x x x x x dx x x ??+++-++-=++)12)(12(2)12(112 2242 . arctan 21)12arctan(211212242 c x x dx x x x x dx +++=++++=?? 解法3 ???+-=++=++≠22222421)1 (11111,0x x x x d dx x x x dx x x x 当 c x x x x x x d +-=+--=?21arctan 212)1() 1 (22 ,2 221arctan 2 1lim 20 π - =-+ →x x x Θ ,2 221arctan 21lim 20π=--→x x x

由拼接法可有 .0 2 221arctan 2100 ,2 221arctan 21112242 ??? ? ? ? ?<+--=>++-=++?x c x x x x c x x dx x x ππ 例2.求 .) 1()1(2 2 23dx x x x ?+++ 解 将被积函数化为简单的部分分式 (*)1 )1(1)1()1(222223?????++++++=+++x D Cx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .2 11)1(2)1(2 3=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为 . 2.24 26)1() 2(2)1(3lim ]12[lim )1() 1()1(2[lim 2232212312 2231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以 .2 1 -=D 分解式(*)两边同乘以x ,再令,+∞→x 得 .1,1-=?+=C C A 故有 . arctan 2 1 )1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dx x D Cx x B x A dx x x x +-+-+-+=++++++=+++?? 例3. 求 .) ()1(2 424dx x x x x ? ++ 解 令 ,2x u =再用部分分式,則

定积分的应用

第十章 定积分的应用 应用一 平面图形的面积 1、积分()b a f x dx ?的几何意义 我们讲过,若[,]f C a b ∈且()0f x ≥,则定积分()b a f x dx ? 表示由连线曲线y=f(x),以及直线x=a,b 和 x 轴所围成的曲边梯形的面积。当()b a f x dx ? <0时,定积分表示的是负面积,即()b a f x dx ?表示的是f 在[a,b] 上的正负面积代数和。例如 552220 2sin (sin sin )sin 321xdx xdx xdx xdx ππππ π π =++=-=? ???。若计算sinx 在 [0,5 2 π]上的面积,则变为55222002sin (sin sin )sin 325x dx xdx xdx xdx ππ ππππ=+-=+=????。 2、f(x),g(x)在[a,b]上所围的面积 由几何意义得()()[()()]b b b a a a S f x dx g x dx f x g x dx = -=-? ??,该式当f(x)和g(x)可判断大小的情况下 适合,但f(x)和g(x)无法判断大小时,要修改为|()()|b a S f x g x dx =-? 。如果f(x)和g(x)有在积分区域[a,b] 内交点,设为12,x x ,且12x x <,则|()()|b a S f x g x dx = -= ? 2 1 |()()|x x f x g x dx -? 。所以此时求f(x)和g(x) 在[a,b]上的面积,即为f(x)和g(x)所围成的面积,要先求出交点,作为它们的积分区域。 例1、求2y x =,2 x y =所围的面积S 。 例2、求sin y x =、cos y x =在[0,2]π上所围图形的面积。 例3、已知2y ax bx =+通过点(1,2)与22y x x =-+有个交点10x >,又a<0,求2y ax bx =+与 22y x x =-+所围的面积S ,又问a,b 为何值时,S 取最小值? 例4、求抛物线2 2y x =与直线4x y -=所围成的图形的面积。 例5、有一个椭圆柱形的油灌,某长度为l ,底面是长轴为a ,短轴为b 的椭圆,问油灌中油面高为h 时,油量是多少?(已知油的密度为ρ) 3、参数方程形式下的面积公式 若所给的曲线方程为参数形式:() () x x t y y t =?? =? (t αβ≤≤),其中y(x)是连续函数,x(t)是连续可微函 数,且()0x t '≥且()x a α=,()x b β=,那么由() ()x x t y y t =??=? ,x 轴及直线x =a ,x =b 所围图形的面积S 的公 式为||()S y dx t β α= ?。 (αβ<) 例1、求旋轮线:(sin ) (1cos )x a t t y a t =-?? =-? (a>0)一个拱与x 轴所围的图形的面积。

最新不定积分的典型例题

不定积分的典型例题

例1.計算?Skip Record If...? 解法1 ?Skip Record If...? 而?Skip Record If...??Skip Record If...?所以 ?Skip Record If...? ?Skip Record If...? 解法2 ?Skip Record If...? ?Skip Record If...? 解法3 ?Skip Record If...? ?Skip Record If...? ?Skip Record If...??Skip Record If...? 由拼接法可有 ?Skip Record If...? 例2.求?Skip Record If...? 解将被积函数化为简单的部分分式 ?Skip Record If...? 两边同乘以?Skip Record If...?,约去?Skip Record If...?的因子后令?Skip Record If...?得?Skip Record If...? 两边同乘以?Skip Record If...?,对?Skip Record If...?求导,再令?Skip Record If...?,施以上运算后,右端得A,而左端为 ?Skip Record If...? 在分解式(*)中令?Skip Record If...?得?Skip Record If...?所以?Skip Record If...?分解式(*)两边同乘以?Skip Record If...?,再令?Skip Record If...?得?Skip Record If...?故有 ?Skip Record If...? 例3.求?Skip Record If...? 解令?Skip Record If...?再用部分分式,則 ?Skip Record If...? ?Skip Record If...?两边乘以?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?两边乘以?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?两边乘以 ?Skip Record If...?再令?Skip Record If...?得?Skip Record If...?令?Skip Record If...? ?Skip Record If...? 例4 ?Skip Record If...? ?Skip Record If...??Skip Record If...? 例5.求?Skip Record If...?

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

不定积分典型题型

不定积分典型题型 1. 原函数 2.积分公式 3.第一类换元积分法(也称凑微分法) 4.第二类换元积分法 5. 分部积分法 原函数 1. 若F’(x)=f(x), G’(x)=f(x), 则 ?=dx x f )(( ) A. G (x ) B. F (x ) C. F (x )+C 分析:此题考查不定积分和原函数之间的关系。 2. 下列函数中,是同一个函数的原函数的为( ) A.lnx,ln(x+2) B.arcsinx,arccosx C.lnx,ln2x 分析:验证两个函数的差是否为常数。运用对数函数的运算。Ln2x=ln2+lnx 积分公式 1.=? dx e x x 3 分析:运用公式 ? a x dx= a ln 1a x +C , 把3e 看做一个整体,化为x e )3(。 答: C e x x ++3 ln 13 2.=+?dx x x 2 2 13 分 析 : 对 函 数 进 行 “ 加 一 项 减 一 项 ” 处 理 , 则 C x x dx x x x dx x x +-=+-=+-+=+???)arctan (3)11 1(311131322222 3.=? dx x 2tan 分析:运用三角恒等式,1sec tan 2 2-=x x 则C x x dx x ec s dx x +-=-=? ?tan )1(tan 2 2 4. =?dx x x 22sin cos 1 分 析 : 运 用 三 角 恒 等 式 sin 2x+cos 2x=1, 则 C x x dx x x dx x x x x dx x x +-=+=+=???cot tan )csc (sec sin cos cos sin sin cos 12 2222222.

10数学分析教案-(华东师大版)第十章定积分的应用旋转曲面的面积

§4 旋转曲面的面积 定积分的所有应用问题,一般总可以按分割,近似求和,取极限三个步骤导出所求量的积分形式,但为简便实用起见,也常采用下面介绍的微元法.本节和下一节将采用此法来处理. 一 微元法 在上一章知道若令()()x a x f t dt Φ= ?,则当f(x)为连续函数时,Φ'(x)=f(x),或d Φ=f(x)dx,且Φ(a)=0,()()b a b f x dx Φ=?,现在恰好把问题倒过来:如果所求量Φ是分布在某区间[a,x]上的,或者 说它是该区间端点x 的函数,即Φ=Φ(x),x ∈[a,b],而且当x=b 时Φ(b)为最终所求的值。 在任意小区间[x,x+?x]?[a,b]上恰当选取Φ的微小量?Φ的近似可求量?'Φ(指用来近似代替?Φ的有确定意义而且可以计算的量。例如当Φ是由函数f(x)确定的曲边梯形的面积时)?'Φ是以f(x)为长,?x 为宽的矩形面积,当Φ是已知平行截面面积A(x)的几何体的体积时,?'Φ是以面积为A(x)d 的截面为底,?x 为高的柱体体积,这里矩形的面积和柱体的体积都是有确定意义的,而且可以利用公式进行计算)。若能把?'Φ近似表示为?x 的线性形式?'Φ≈f(x)?x,其中f(x)为某一连续函数,而且当?x→0时?'Φ-f(x)?x=o(x),则记d Φ=f(x)dx,那么只要把定积分()b a f x dx ?计算出来,就是该问题所 求的结果。 上述方法通常称为微元法,在采用微元法时必须注意以下三点: 1)所求量Φ关于分布区间必须是代数可加的 2)微元法的关键是正确给出?Φ的近似可求量?'Φ。严格来说,?Φ的近似可求量?'Φ应该根据所求量Φ的严格定义来选取,如曲线的弧长公式讨论中在任意小区间[t,t+?t]?[α,β]上微小增量?s 的近似可求为对应的线段的长度?'s=([x(t+?t)-x(t)]2+[y(t+?t)-y(t)]2)^0.5,一般说来?Φ的近似可求量?'Φ的选取不是唯一的,但是选取不恰当将会产生错误的结果。例如在本节后面旋转曲面的面积公式的推导中,如果?S 的近似可求量?'S 采用对应的圆柱的侧面积而不是对应的圆台的侧面积,将会得到错误的面积公式2()b a S f x dx π=?。所以本章的讨论中对于未严格定义的量均视为规定。 3)当我们将?'Φ用线性形式f(x)?x 代替时要严格检查?'Φ-f(x)?x 是否为?x 的高阶无穷小,以 保证其对应的积分和的极限是相等的。在导出弧长公式的过程的后一部分,实际上是在验证 i i t t 是否为||T'||的高阶无穷小量。 对于前三节所求的平面图形的面积、立体体积和曲线弧长,改用微元法来处理,所求量的微元表达式分别为?A≈|y|?x,并有dA=|y|dx, ?V≈A(x) ?x,并有dV=A(x)dx, ?s≈(1+y'2)^0.5?x,并有ds=(1+y'2)^0.5dx.如果在上面三个公式中把弧长增量的近似可求量(1+y'2)^0.5?x 近似表示为(1+y'2)^0.5?x≈?x,将导致b a s dx b a ==-?的明显错误,事实上,此 时0lim 10x ?→=≠,除非y=f(x)为常数。 二 旋转曲面的面积 设平面光滑曲线C 的方程为y=f(x),x ∈[a,b](不妨设f(x)≥0),这段曲线绕x 轴旋转一周得到旋转曲面(图10-20),下面用微元法导出它的面积公式。 通过x 轴上的点x 和x+?x 分别作垂直于x 轴的平面,它们在旋转曲面上截下一条夹在两个圆形截线间的狭带,当?x 很小时,此狭带的面积?S 近似于由这两个圆所确定的圆台的侧面积?'S , 即[()([2()S f x f x x f x y x ππ'?=++?=+?,其中?y=f(x+?x)-f(x),

含参变量积分

目录 摘要 (1) 前言 (2) 一、预备知识 (2) (一)、含参变量积分的定义 (2) (二)、含参变量反常积分的定义 (2) (三)、定理 (3) 1、含参变量积分的相关定理 (3) 2、含参变量反常积分的相关定理 (4) 二、含参变量积分的应用 (5) (一)、用含参变量积分解决积分计算的解题模式 (5) 1、利用含参变量积分解决定积分、广义积分的解题模式 (5) 2、用含参变量积分解决二重、三重积分的模式 (6) (二)、证明等式 (7) (三)、证明不等式 (9) (四)、求极限 (10) (五)、求隐函数的导数 (12) 三、含参量反常积分的性质 (13) (一)、含参量反常积分的局部一致收敛与连续性 (13) 1、局部一致收敛概念 (13) 2、连续的等价条件 (13) 3、几种收敛性的关系 (15) (二)、含参量反常积分局部一致收敛的判别法 (17) 1、主要结果 (17) 2、主要引理 (18) (三)、计算含参量反常积分的一些特殊方法 (21) 1、利用反常积分的定义和变量替换求解 (21) 2、通过建立微分方程求积分值 (21) 3、引入收敛因子法求解 (22) 4、级数解法 (23) 5、利用其他的积分 (24) 总结 (25) 参考文献 (25)

含参变量积分 赵洁 (渤海大学数学系辽宁锦州121000中国) 摘要:本文主要研究含参变量积分的两种类型:含参变量(正常)积分和含参变量反常积分。首先,给出了它们的定义和相关定理;然后,介绍了含参变量(正常)积分在证明等式、不等式和求极限等方面的应用;最后,给出了含参变量反常积分的性质和计算的一些特殊方法。 关键词:含参变量积分;二重积分;定积分;广义积分;局部一致收敛;一致收敛;含参量反常积分 Parameter Integral Zhao Jie (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:In this paper, two kinds of parameter integral are studied:parameter (normal) integral and parameter improper integral.Firstly their definitions and related theorems are given;Secondly the applications of parameter (normal) integral in proving equality,proving inequality and solving limit are introduced;Finally the qualities and some special solving methods of parameter improper integral are given. Keywords:parameter integral;double integral;definite integral;improper integral;locally uniformly convergence;uniform covergence;parameter improper integral

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

相关主题
文本预览
相关文档 最新文档