当前位置:文档之家› 第二章 有导体时的静电场讲解

第二章 有导体时的静电场讲解

第二章 有导体时的静电场讲解
第二章 有导体时的静电场讲解

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

静电场静电场中的导体(精)

静电场、静电场中的导体 判断题 (×)1. 静电场中电场线可以是闭合的。 (×)2. 电场是标量场,电势是矢量场。 (×)3.静电场的高斯定理i S 01E dS q ε?=∑?中E 取决于高斯面内部的电荷。 (×)4.高斯面上的电场强度是仅仅由高斯面包围的电荷产生的。 选择题 1、关于静电场的电场线,以下说法错误的是 C (A )静电场的电场线总是从正电荷出发,到负电荷终结; (B )静电场的任何两条电场线不会相交; (C )沿静电场的电场线方向电场强度的大小减小; (D )静电场的电场线的切线方向就是该点电场强度的方向。 2、下列关于高斯定理∑??=?i S q S d E 0 1ε 说法正确的是 D (A) 若闭合曲面S 内电荷的代数和为零,则面上任一点的电场强度为零; (B) 若0=???S S d E ,则闭合曲面内一定没有电荷; (C) 由高斯定理可知,静电场的电场线是有起点和终点的; (D) 由高斯定理可知,静电场是保守力场。 3、一平行板空气电容器,极板面积为S ,极板间的距离为d ,充电至带电Q 后与电源断开,然后用力缓缓地把两极板拉开到d 2。电容器的能量( B ) (A)不变 (B )增大 (C )减小 (D )不可确定 4、在静电场中,下列说法正确的是(无答案) A 、 电势为零处,场强必为零。 B 、 场强为零处,电势必为零。 C 、 场强大小相等处,电势必相等。 D 、电势处处相等处,场强必为零。

5、关于静电场中的高斯定理??∑=?i q s d E 01ε ,下列说法正确的是( D ) A 、E 为高斯面内电荷所产生的场强,∑i q 为高斯面内电荷的代数和。 B 、E 为高斯面内电荷所产生的场强,∑i q 为高斯面内外电荷的代数和。 C 、E 为高斯面内外电荷所产生的场强,∑i q 为高斯面内自由电荷代数和。 D 、E 为高斯面内外电荷所产生的场强,∑i q 为高斯面内电荷的代数和。 7. 下列说法正确的是(B ) A 、闭合曲面上各点的电场强度都为零时,曲面内一定没有电荷 B 、闭合曲面上各点的电场强度都为零时,曲面内电荷的代数和必为零 C 、闭合曲面的电通量为零时,曲面上各点的电场强度必为零 D 、闭合曲面的电通量不为零时,曲面上任一点的电场强度都不可能为零 填空题 1.边长为a 正方体中心放置一个电荷Q ,则通过任一个正方体侧面的电通量为 0 6εQ 。 2.半径为R 的球面均匀带电,所带总电量为q ,则球内距球心距离为r (r

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

第二章有导体时的静电场(8学时)

第二章有导体时的静电场(8学时) 一、目的要求 1.深刻理解导体静电平衡的条件和特点; 2.了解导体平衡时的讨论方法; 3.掌握电容、电容器及电容的计算方法; 4.了解带电体系的静电能。 二、教学内容 1.静电场中的导体(2学时) 2.封闭金属壳内外的(2学时) 3.电容器及其电容(2学时) 4.带电体系的静电能(2学时) 三、本章思路 本章主要研究导体在静电场中的特性,其基本思路是:导体的电结构→ 静电平衡条件→静电场中导体的特性→静电场中导体特性的应用→电容、静电屏蔽、尖端放电。 四、重点难点 重点:导体静电平衡的特性 五、讲课提纲 §2.1 静电场中的导体 一、教学内容 (1)静电平衡 (2)带电受到的静电力 (3)孤立导体形状对电荷分布的影响 (4)导体静电平衡时的讨论方法 (5)平行板导体组举例 二、教学方式 讲授 三、讲授提纲 (一)导体的静电平衡 1.导体的特性 导体内存在着大量的自由电荷,它们在电场作用下可以移动。 中性导体:导体若不受外场作用,又不带净电荷,则自由电子均匀地迷漫于正离子点阵 ρ; 间,从宏观上看,导体处处电中性,即净电荷体密度0 = 带电导体:净余电量不为零的导体;

孤立导体:距其它物体无限远的导体。 电荷的分布和电场的分布相互影响、相互制约。 2.导体的静电平衡 (1)静电平衡的定义 导体中的电荷不作宏观运动,因而电场分布不随时间而变的状态。 (2)静电平衡条件 导体内部的场强处处为零。 即所有场源(包括分布在导体上的电荷)产生的电场在导体内部处处抵消,即0=i E ? 。 [反证] 若导体内某点场强不为零,则该点的自由电荷将在电场力的作用下作定向运动,导体便没有达到静电平衡,与定义矛盾。 (3)导体的静电感应 中性导体无外电场作用时,自由电荷只作微观热运动,无宏观电量的迁移,处于静电平衡。 当加上外电场0E ?(施感外场)时,0E ? 推动导体内的自由电荷作定向运动,引起自由电荷重新分布,在导体表面出现等量异号电荷,这种现象叫静电感应,导体表面上出现的电荷称感 应电荷。这些感应电荷产生的附加场'E ?在导体内与外场0E ?反向。当E '? <0 E ? 时,0≠E ρ,自 由电荷将继续运动,导体表面的感应电荷增多,E '? 增大,总有一个时候使得导体内部00='+=E E E ???(E '? 与0 E ?在导体内完全抵消)时,无净电力作用于电荷,则它停止定向运动,电荷重新分布过程结束——达到新的静电平衡。 可见:导体处在电场中达静电平衡时,导体上总有一定感应电荷分布,否则无E '? ; 导体上感应电荷产生的场与外电场的合场强在导体内处处为零,导体内不能有电场线穿越。 [示例]:导体球置于均匀外电场0 E ? 中。图2-1(a)为原问题,图2-1(b)为静电平衡时的情 形:导体内0 E ?与E '? 反方,至0 =内E ?止;导体外0 E ?与E '? 叠加,场发生畸变,成为E E E '+=???0。 (a) (b) 图2-1 (4)导体静电平衡时的性质 ① 导体静电平衡时,导体是等势体、导体表面是等势面。 ∵ 导体内处处0=E ? , 设P 、Q 是导体上任意两点(包括表面) ∴ 导体上任两点电势差? =?=Q P PQ l d E U 0? ?,即 Q P U U = 。 ②静电平衡时,导体所带电荷只能分布在导体表面上

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

导体和电介中的静电场

二、导体和电介质中的静电场 一、 选择题: 1、在一静电场中,作一闭合曲面S ,若有??=?0s d D ??,(式中D ?为电位移矢量),则S 面内必定: A :既无自由电荷,也无束缚电荷; B :没有自由电荷; C :自由电荷和束缚电荷的代数和为零; D :自由电荷代数和为零。 [ ] 2、一带正电荷的物体M ,靠近一不带电的金属导体N ,N 的左端感应出负电荷,右端感应出正电荷,若将N 的左端接地,如图所示,则 (A ) N 上的负电荷入地 (B ) N 上的正电荷入地 (C ) N 上的电荷不动 (D ) N 上所有电荷都入地 [ ] 3、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A)高斯定理成立,且可用它求出闭合面上各点的场强; (B)高斯定理成立,但不能用它求出闭合面上各点的场强; (C)由于电介质不对称分布,高斯定理不成立; (D)即使电介质对称分布,高斯定理也不成立。 [ ] 4、有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电量为q 的点电荷,则 (A)只有当q>0时,金属球才下移. (B)只有当q

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球 A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有 ∑=0q 而导体的电势V ≠0。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答:必须注意以下两点: (1)这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6为什么不能使一个物体无限制地带电? 答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q′。其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与

静电场中的导体

第七章 静电场中的导体、电介质 一、选择题: 1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示,则板外两侧的电场强度的大小为:[ ] (A )E=0 2εσ (B )E=02εσ (C )E=0εσ (D )E=02d εσ 2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的电势为[ ] (A )U 1 (B )U 2 (C )U 1+U 2 (D )2 1 (U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是[ ] (A )U A =U B =U C (B )U B > U A =U C (C )U B >U C >U A (D )U B >U A >U C 4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为h 的两点a 、b 之间的电势差为: [ ] (A )零 (B )02εσ (C )0εσh (D )0 2εσh 5. 当一个带电导体达到静电平衡时: [ ] (A) 表面上电荷密度转大处电势较高

(B) 表面曲率较大处电势。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、 外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ] (A )E= r Q U r Q 02 04,4πεπε= (B )E=0, 1 04r Q πε (C )E=0, r Q 04πε (D )E=0,2 04r Q πε 7. 设有一个带正电的导体球壳,若球壳内充满电介质,球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内、外均为真空时,壳外一点的场强大小和电势用E 2、U 2表示,则两种情况下,壳外同一处的场强大小和电势大小的关系为: [ ] (A )E 1=E 2, U 1=U 2 (B )E 1=E 2, U 1>U 2 (C )E 1>E 2, U 1>U 2 (D )E 1

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

第二章 静电场与导体

第二章 静电场与导体 一、判断题(正确划“∨”错误码划“?” ) 1、由公式 0εσ = E 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该 点场强仅由该点附近的导体上的面上的面电荷产生的。( )× 2、一导体处静电场中,静电平衡后导体上的感应电荷分布如图,根据电场线的性质,必有一部分电场线从导体上的正电荷发出,并终止在导体的负电荷上。( )× 3、一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。( )× 4、孤立带电导体圆盘上的电荷应均匀分布在圆盘的两个圆面上。( )√ 5、对于一个孤立带电导体,当达到静电平衡时,面电荷的相对分布与导体表面的曲率成正比。( )√ 6、一个接地的导体空腔,使外界电荷产生的场强不能进入腔内,也使内部电荷产生的场不进入腔外。( )×抵消 7、若电荷间的相互作用不满足平方反比律,导体的屏蔽效应仍然存在。( )× 8、用一个带电的导体小球与一个不带电的绝缘大导体球相接触,小球上的电荷会全部传到大球上去。( )× 9、带电体的固有能在数值上等于该带电体从不带电到带电过程中外力反抗电力作的功。( )√ 10、静电平衡时,某导体表面的电荷在该导体内部产生的场强处处必为零。( )× 11、两个带有同种电荷的金属球,一定相斥。( )× 12、真空中有一中性的导体球壳,在球中心处置一点电荷q ,则壳外距球心为r 处的场强为2 04r q E πε= ,当点电荷q 偏离中心时,则r 处的场强仍为2 04r q πε。( )√ 13、接地的导体腔,腔内、外导体的电荷分布,场强分布和电势分布都不影响。( )√ 14两个导体A 、B 构成的带电系的静电能为) (B B A A q q ?+?21,则式中的A A q ?21及 B B q ?21 分别表示A 和B 的自能。( )× 15、两个半径相同的金属球,其中一个是实心的,一个是空心的,通常空心球比实心球的电容大。( )× 二、选择题、

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

填空与选择(有导体存在时的静电场)

导体中的静电场 一.选择题: 1*.有一点电荷q 及金属球A ,且A 处于静电平衡状态。下列说法中正确的是 ( ) (A )金属球A 内E = 0, 点电荷 q 不在金属球A 内产生电场; (B )金属球A 内E ≠0, 点电荷 q 在金属球A 内产生电场; (C )金属球A 内E = 0, 点电荷 q 在金属球A 内产生电场; (D )金属球A 内E ≠0, 点电荷 q 不在金属球A 内产生电场。 2*.将一个带负电的物体M 靠近一个不带电的导体N ,在N 的左端感应出正电荷, ( ) 右端感应出负电荷。若将导体N 的左端接地(如图所示),则 (A )N 上的负电荷入地; (B )N 上的正电荷入地; (C )N 上的所有电荷入地; (D )N 上所有的感应电荷入地。 3*.孤立金属导体球带有电荷Q ,由于它不受外电场作用,则 ( ) (A )孤立导体电荷均匀分布,导体内电场强度不为零; (B )电荷只分布于导体球表面,导体内电场强度不为零; (C )导体内电荷均匀分布,导体内电场强度为零; (D )电荷分布于导体表面,导体内电场强度为零。 4*.当一个带电导体达到静电平衡时,下列说法中正确的是 ( ) (A )表面上电荷面密度较大的地方电势较高; (B )表面曲率半径较大的地方电势较高; (C )导体内部的电势比表面的电势高; (D )导体内任意一点与其表面处的电势差为零。 5. 如图所示,绝缘的带电导体上有a 、b 、c 三点,三点处的电荷密度 ( ) (A )a 点最大; (B )b 点最大; (C )c 点最大; (D )一样大。 二.填空题: 1*.如图所示,将一个电荷量为q 的点电荷放在一个半径为R 的不带电的 导体球附近,点电荷距导体球球心为d ,设无穷远处为零电势, 则导体球球心O 点处的电场强度E = ;电势U = 。 2*.一孤立带电导体球,其表面附近处电场强度的方向 ;当将另一带电体 放在这个导体附近时,该导体球表面附近处电场强度的方向 。 3*.球状导体A 外罩一同心球壳B ,A 的带电量为+Q ,B 不带电,达到静电平衡后球壳B 内表面上所带的电量为 ;外表面上所带的电量为 。 4*.点电荷 -q 向一不带电的孤立导体靠近,如图所示。则导体内的 场强 ,导体内的电势 (填升高、不变或降低)。 图中各点的电势 U a ′ U a U b U b ′(填 >,<,= )。 注:加“*”的为必做题! -q a ′ ′ 题3图 a M + - N

静电场与导体

第二章静电场与导体 教学目的要求: 1、深入理解并掌握导体的静电平衡条件及静电平衡时导体的基本性质,加深对高斯定理和环路定理的理解,结合应用电场线这一工具,会讨论静电平衡的若干现象,会结合静电平衡条件去理解静电感应、静电屏蔽等现象,并会利用前章的知识求解电场中有导体存在时的场强和电势分布。 2、确理解电容的概念,并能计算几种特殊形式的电容器的电容值。 3、进一步领会静电能的概念、会计算一些特殊带电导体的静电能。 4、深刻理解电场能量的概念,会计算电场能。 教学重点: 1、静电场中的导体 2、电容和电容器 教学难点: 1、静电场的唯一定理 §2.1 静电场中的导体 §2.2 电容和电容器 §2.3 静电场的能量 §2.1 静电场中的导体 1、导体的特征功函数 (1)金属导体的特征 金属可以看作固定在晶格点阵上的正离子(实际上在作微小振动)和不规则运动的自由电子的集合。 ①大量自由电子的运动与理想气体中分子的运动相同,服从经典的统计规律。 ②自由电子在电场作用下将作定向运动,从而形成金属中的电流。 ③自由电子的平均速率远大与定向运动速率。 (2)功函数 金属表面存在一种阻止自由电子从金属逸出的作用,电子欲从金属内部逸出到外部,就要克服阻力作功。 一个电子从金属内部跑到金属外部必须作的最小功称为逸出功,亦称功函数。 2、导体的静电平衡条件 (1)什么是静电感应? 当某种原因(带电或置于电场中)使导体内部存在电场时,自由电子受到电场力的作用而作定向运动,使导体一侧因电子的聚集而出现负电荷布另一侧因缺少电子而有正电荷分布,这就是静电感应,分布在导体上的电荷便是感应电荷。 (2)静电平衡状态 当感应电荷在导体内产生的场与外场完全抵消时,电子的定向运动终止,导体处于静电平衡状态。 (3)静电平衡条件 所有场源包括导体上的电荷共同产生的电场的合场强在导体内部处处为零。 静电平衡时: ①导体是等势体。 ②导体外表面附近的电场强度与导体表面垂直。 ③导体表面是一个等势面,且与导体内部的电势相等。 3、导体上的电荷分布

静电场中的导体和电介质

静电场中的导体和电介质 引文: 产生静电场的源电荷通常来自金属导体上的自由电荷和绝缘介质上的极化电荷,当然还有一种空间电荷,它不依赖于任何载体。 静电场的基本规律是普适的,与源电荷的来源和产生机制无关。 一.导体 1.导体中自由电子气概念:经典电子论;原子实按一定秩序构成晶格,价电子 做共有化运动,充满自由电子气 2.导体达到静电平衡状态后,在导体外部,由原外场和附加场叠加而成的总场 一般呈现复杂的分布,这相当程度上源于附加场的复杂性。(附加场不仅在导体内部起到抵消原外场的作用,在导体外部也必定产生场强) 3.导体静电平衡条件 a.静电平衡导体内部体电荷密度处处为零 b.带电的或电中性的导体,其电荷分布于表面,这种自由电荷面分布来保证导体内部合场强为零 注:对于导体静电平衡条件的论证通常总是反证法思辩之。即若其中一条特性不被满足,则必有或违背静电场的高斯定理,或违背的静电场的环路定理,或违背已知的导体静电平衡条件 4. 解决导体静电问题的理论基础:静电平衡条件静电场的高斯定理和环路定理 5. 导体静电平衡的唯一性定理:当导体系中各导体的电量(或电势)被给定,则满足导体静电平衡条件的电荷分布(或电量分布)是唯一的,从而空间电场分布也是唯一的 当然,同任何数学上或物理上的唯一性定理一样,导体静电平衡的唯一性定理仅指明其解是唯一的,并不回答这唯一的解是什么,求解结果有赖于导体静电平衡条件及其他相关的物理定理求得。当然,也可以凭借经验和对称性分析而给出一试探解,若其满足导体内部合场强为零,则这试探解就是唯一正确的解,要注意这种思维方式的运用。 6. 单一导体表面不可能出现异号电荷分布;单一导体表面曲率半径越小处,表面电荷密度越大,其外侧场强越大 7. 一类空腔导体和静电屏蔽的第一种含义:空腔内没有电荷或其他带电体 一类空腔导体静电平衡特性: a.内表面电荷密度处处为零,电荷全部分布在外表面 b.在空腔区域和导体内部(实心区域)合场强为零 c.先前确定的有关导体静电平衡的所有条件 注:一类空腔导体在空腔区域和导体内部(实心区域)合场强为零是依赖其外表面电荷分布来实现的,这与无空腔的实心导体无异。换言之,若在实心导体中挖除一个空腔,则无论其空腔大小,形状和位置如何,都不会改变导体原面电荷分布。 静电屏蔽的第一种含义:一类空腔导体通过自身外表面自由电荷的重新分布,而屏蔽了空间其他带电体对空腔内部场强的影响,使合场强为零得以保证,即

静电场中的导体和电介质

第六章 静电场中的导体和电介质 将一个带电物体移近一个导体壳,带电体单独在导体空腔内激发的电场是否等于零静电屏蔽的效应是如何体现的 答:带电体单独在导体空腔内激发的电场不为零。静电屏弊效应体现在带电体的存在使导体腔上的电荷重新分布(自由电子重新分布),从而使得导体空腔内的总电场为零。 将一个带正电的导体 A 移近一个接地的导体 B 时,导体 B 是否维持零电势其上面是否带电 答:导体B 维持零电势,其上带负电。 在同一条电场线上的任意两点 a 、b ,其场强大小分别为a E 及b E ,电势分别为a V 和b V ,则以下结论正确的是: (1 ) b a E E =; (2 ) b a E E ≠; (3) b a V V = ; (4) b a V V ≠ 。 答:同一条电场线上的两点,电场强度可以相同,也可以不同,但沿着电场线电势降低,所以选(4)。 电容器串、并联后的等值电容如何决定在什么情况下宜用串联什么情况下宜用并联 解:串: ∑=i i c c 1 1 并:∑=i i c c 当手头的电容器的电容值比所需要的电容值小,宜用并联。当手头的电容器的耐压值比所需要的大,宜采用电容器串联。 两根长度相同的铜导线和铝导线,它们两端加有相等的电压.问铜线中的场强与铝线中的场强之比是多少铜线中的电流密度与铝线中的电流密度之比是多少(已知 m 1082m,104487?Ω?=ρ?Ω?=ρ--..铝铜) 答:电压V 相同和导线长度l 相同,则电场强度E 相同; 由 ρ σE E j = = 得:1107 10 4410827 8=??=ρρ= ? ρ=ρ--..铜 铝铝 铜铝铝铜铜j j j j

第2章 有导体时的静电场

第二章有导体时的静电场 (一)要求 1、掌握导体静电平衡的条件,了解导体表面的电荷分布,掌握平行板导体组场强及电势的计算 2、掌握空腔内有电荷以及没有电荷时的电场特点,静电屏蔽效应。 3、了解孤立导体的电容,掌握电容器的电容及电容器的串、并联。 4、了解带电体系的静电能及电容器的静电能 5、演示实验: (1)静电平衡的实验 (2)静电屏蔽的实验 (二)要点 l、静电平衡 (1)静电平衡 (2)导体静电平衡问题的讨论方法 (3)平行板导体组的场强和电势问题 2、封闭金属壳内外的静电场 (1)壳内空间的场 (2)壳外空间的场 3、电容器及其电容 (1)孤立导体的电容 (2)电容器及其电容 (3)电容器及其联接 4、带电体系的静电能 (1)带电体系的静电能 (2)电容器的静电能

(三)难点 1、静电平衡条件和电学性质 2、静电屏蔽 3、电容计算和电容储能。 第二章导体周围的静电场 §2-1 导体的静电平衡条件 一、静电平衡 1、静电感应 金属导体有大量自由电子作无规则的热运动。 导体内的电荷因外电场的作用而重新分布的现象叫静电感应。由于静电感应而出现的电荷叫感应电荷。 导体B上有感应电荷 2、静电平衡 导体上的感应电荷和整个空间的电场都达到稳定分布的状态叫静电平衡。 静电平衡的必要条件是:其内部场强处处为零。如果有非静电力,则必要条件改为导体内部可以移动的电荷所受的一切力的合力为零。但本章不讨论有非

静电力的情况。 静电平衡时有如下性质 1:导体是等势体,导体的表面是等势面。 设在导体内取任意两点A 和B ,则它们之间的电位差为 ??=-=B A B A AB l d E V V U 因为在静电平衡条件下,其内部场强处处为零,所以A 和B 两点电势相等:0=AB U 。 2:在静电平衡时,导体内部无净电荷,电荷只分布在导体的表面上。 证明:反证法,设导体内有 一未被抵消的净电荷0q , 00 0≠=??εq S d E S 于是S 面上的E 不能处处为零,与静电平衡条件矛盾。 3:导体表面的场强分布 静电平衡时,导体周围场强分布的特点是:导体表面附近的场强方向处处于表面垂直,大小于该处导 体表面的电荷面密度成正比,关系式为00 n E εσ= 设导体表面外附近空间有一点P 处的场强为E , 该点附近表面上的电荷面密度为σ。过P 作一圆柱面为高斯面,通过高斯面的电通量为

13静电场中的导体和电介质习题详解(精)

第1页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q,其外部同心地罩一内、外半径分别为r1和 r2的金属球壳。设无穷远处为电势零点,则球壳内半径为r的P点处的场强和电势为[] (A)E= Q4πε0r 2 , U=Q4πε0r Q4πε0r ; (B)E=0, U=(D)E=0, U= Q4πε0r1 Q4πε0r2 ;(C)E=0, U=; 。 答案:D 解:由静电平衡条件得金属壳内E=0;外球壳内、外表面分别带电为-Q和+Q,根据电势叠加原理得

U= Q4πε0r + -Q4πε0r + Q4πε0r2 = Q4πε0r2 2.半径为R的金属球与地连接,在与球心O相距d=2R处有一电量为q的点电荷,如图所示。设地的电势为零,则球上的感应电荷q'为[] (A)0;答案:C 解:导体球接地,球心处电势为零,即U0=球心的距离相等,均为R),由此解得q'=- 3.如图,在一带电量为Q的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为εr,壳外是真空,则在壳外P点处(OP=r)的场强和电位移的大小分别为[](A)E=(C)E=答案:C 解:由高斯定理得电位移 D= 4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半 Q4πr 2 (B) q2 ;(C)- q2 ;(D)-q。 q4πε0dRd +q2 q'4πε0R =0(球面上所有感应电荷到 q=- 。

Q4πε0εrr 2 ,D= Q4πε0r 2 ;(B)E= Q4πεrr 2 ,D= Q4πr 2 ; Q4πε0r 2 ,D= Q4πr 2 ;(D)E= Q4πε0r 2 ,D= Q4πε0r 2 。 ,而 E= D ε0 = Q4πε0r 2 。 第2页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 为空气,如图所示。当两极板带上恒定的等量异号电荷时,有一个 质量为m、带电量为+q的质点,在极板间的空气区域中处于平衡。此后,若把电介质抽去,则该质点[]

电磁学练习题(静电场中的导体)

静电场中的导体 两个导体球A 、B 相距很远(可以看成是孤立的),其中A 球原来带电,B 球不带电。A 、B 两球半径不等,且A B R R >。若用一根细长导线将它们连接起来,则两球所带电量A q 与B q 间的关系: ()A A B q q >; ()B A B q q =; ()C A B q q <; ()D 条件不足,无法比较。 答案:()A 一带正电荷的物体M ,靠近一不带电的金属导体N ,N 的左端感应出负电荷,右端感应出正电荷,若将N 的左端接地,如图所示,则 ()A N 上的负电荷入地; ()B N 上的正电荷入地; ()C N 上的电荷不动; ()D N 上所有电荷都入地 答案: ()B 把A 、B 两块不带电的导体放在一带正电导体的电场中,如图所示。设无限远处为电势零点,A 的电势为A U ,B 的电势为 B U ,则 ()A B A 0U U >≠; ()B B A 0U U >=; ()C B A U U =; ()D B A U U <。 答案: ()D 难度系数等级:2 半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电荷为q 的点电荷,如图所示。设地的电势为零,则球上的感生电荷q '为 ()A 0; ()B 2q ; ()C 2 q -; ()D q 。 答案: ()C 题号:30511005 分值:3分 难度系数等级:1 当一个带电导体达到静电平衡时: ()A 表面上电荷密度较大处电势较高; ()B 导体内任一点与其表面上任一点的电势差等于零; ()C 导体内部的电势比导体表面的电势高;()D 表面曲率较大处电势较高。 答案: ()B 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是: ()A 内表面均匀,外表面也均匀; ()B 内表面不均匀,外表面均匀; ()C 内表面均匀,外表面不均匀; ()D 内表面不均匀,外表面也不均匀。 答案: ()B 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中。当用导线将两者连接后,则与未连接前相比系统静电场能量将 ()A 增大; ()B 减小; ()C 不变; ()D 如何变化无法确定。

相关主题
文本预览
相关文档 最新文档