当前位置:文档之家› 第二章 有导体时的静电场习题及解答

第二章 有导体时的静电场习题及解答

第二章  有导体时的静电场习题及解答
第二章  有导体时的静电场习题及解答

第二章 有导体时的静电场

一、判断题(正确划“∨”错误码划“?” )

1、由公式

0εσ=

E 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该 点场强仅由该点附近的导体上的面上的面电荷产生的。( )×

2、一导体处静电场中,静电平衡后导体上的感应电荷分布如图,根据电场线的性质,必有一部分电场线从导体上的正电荷发出,并终止在导体的负电荷上。( )×

3、一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。( )×

4、孤立带电导体圆盘上的电荷应均匀分布在圆盘的两个圆面上。( )√

5、对于一个孤立带电导体,当达到静电平衡时,面电荷的相对分布与导体表面的曲率成正比。( )√

6、一个接地的导体空腔,使外界电荷产生的场强不能进入腔内,也使内部电荷产生的场不进入腔外。( )×

7、若电荷间的相互作用不满足平方反比律,导体的屏蔽效应仍然存在。( )×

8、用一个带电的导体小球于一个不带电的绝缘大导体球相接触,小球上的电荷会全部传到大球上去。( )×

9、带电体的固有能在数值上等于该带电体从不带电到带电过程中外力反抗电力作的功。( )√

10、静电平衡时,某导体表面的电荷在该导体内部产生的场强处处必为零。( )×

11、两个带有同种电荷的金属球,一定相斥。( )×

12、真空中有一中性的导体球壳,在球中心处置一点电荷q ,则壳外距球心为r 处的场强为204r q E πε=,当点电荷q 偏离中心时,则r 处的场强仍为204r q

πε。( )√

13、接地的导体腔,腔内、外导体的电荷分布,场强分布和电势分布都不影响。( )√

14两个导体A 、B 构成的带电系的静电能为)(B B A A q q ?+?21,则式中的A A q ?21及

B B q ?21分别表示A 和B 的自能。( )×

15、两个半径相同的金属球,其中一个是实心的,一个是空心的,通常空心球比实心球的电

容大。( )×

二、选择题、

1、关于导体有以下几种说法:(B )

(A )接地的导体都不带电。

(B )接地的导体可带正电,也可带负电。

(C )一导体的电势零,则该导体不带电。

(D )任何导体,只要它所带的电量不变,则其电势也是不变的。

2、一面积为S 的很大金属平板A 带有正电荷,电量为Q ,把另一面积亦为S 的不带电金属平板平行放在A 板附近,若将A 板接地,则A 、B 两板表面上的电荷面密度是:(A )

(A )04321=σ=σ=σ=σ

(B )43222σ-=-=σσ==σS Q S Q ,

(C )32410σ-==σ=σ=σS Q ,

(D )43210σ-==σ=σ=σS Q , 3、一点电荷+q 位一本来不带电的金属球外,q 到球心的距离为a ,球的半径为R (如图),若P 为金属球内的一点,它的坐标是(b 、θ),金属球内的感应电荷在P 点产生的场强的大小是:(A )

(A ))(θ-+πε=

cos 2422ab b a q E O

(B ) 0=E

(C ) 204a q E πε=

(D ) 204R q E πε=, 4、两个平行放置的带电大金属板A 和B ,四个表面电荷面密度为4321σσσσ、、、如图所示,则有(A )

(A )3241σ-=σσ=σ,

(B )3241σ=σσ=σ,

(C )3241σ-=σσ-=σ,

(D )3241σ=σσ-=σ,

5、如图所示 两个同心球电容器的联接法是:(B)

(A ) (a )串联 (b )并联

(B ) (a )并联 (b )串联

(C ) (a )(b )均并联

(D ) (a )(b )均串联

a ) ()

6、将一接地的导体B 移近一带正电的孤立导体A 时,A 的电势。(B ) Q Q 1234

(A )升高 (B )降低 (C )不变 (D )无法判断

7、一个电容量为C 的平行板电容器,两极板的面积都是S ,相距为d ,当两极板加上电压U 时,(略去边缘效应),则两极板间的作用力为:(C )

(A )d CU F 22=排斥力 (B )

d CU F 2

= 排斥力 (C )

d CU F 22=吸引力 (D )d CU F 2

2=吸引力

8、a 、b 、c 为带电导体表面上的三点,如图所示,静电平衡时,比较三点的电荷密度,电势及面外附近的场强,下诉说法中错误的是:(B )

(A )a σ>b σ>

c σ

(B )a σ>b σ<

c σ (C )a E >b E >c E (D )c b a

?=?=? 9、有一点电荷q 及金属导体A ,且A 处于静电平衡状态,下列说法中正确的是:(C )

(A )导体内E=0, q 不在导体内产生电场。

(B )导体内E ≠0,q 在导体内产生电场。

(C )导体内E=0,q 在导体内产生电场。

(D )导体内E ≠0,不在导体内产生电场。

10、真空中有一组带电导体,某一导体表面电荷面密度为σ处,其表面附近的场强0εσ=E ,

该场强E 是由:(D )

(A )该处无穷小面元上的电荷产生的。 (B )该面元以外的电荷产生的。

(C )该导体上的全部电荷产生的。 (D )所有导体表面上的电荷产生的。

11、一半径为R 的孤立导体球,带有正电荷q ,其电势分布曲线?—r 是:(B)

(A ) (B )

(C ) (D )

12、平行板电容器两极板的面积都是S ,相距为d ,其间有一厚度为t 的金属板与极板平行放置面积亦是S 则系统电容是:(B)

(A )d s 0ε (B )t d s -ε0 (C )t s 0ε (D )

)(t d s 110-=ε 13、半径分别为a 和b 的两个金属球,球心间距为r ,(r ?a ,r ?b)今用一根电容可忽略的细线将两球相连,该系统的电容是:(A)

r ??r ?r

静电场经典例题

静电场练习题一 1、一个挂在绝缘细线下端的带正电的小球B,静止在图示位置,若固定的带正电小球A的电荷量为Q,B球的质量为m,带电荷量为q,θ=37°,A和B在同一条水平线上,整个装置处于真空中,求A,B两球间的距离. 2、如图所示,有一水平方向的匀强电场,场强大小为900 N/C,在电场 内一水平面上作半径为10 cm的圆心为O的圆,圆上取 A,B两点,AO沿电场方向,BO⊥OA,另在圆心处放一电荷 量为10-9 C的正点电荷,求A处和B处场强大小。 3、如图,光滑斜面倾角为37°,一质量m=1×10-2 kg、电荷量q=+1×10-6 C的小物块置于斜面上,当加上水平向右的匀强电场时,该物体恰 能静止在斜面上,g=10 m/s2,求: (1)该电场的电场强度大小; (2)若电场强度变为原来的,小物块运动的加速度大小.

4、如图所示,真空中,带电荷量分别为+Q和-Q的点电荷A,B相距r, 则: (1)点电荷A,B在中点O产生的场强分别为多大?方向如何? (2)两点电荷连线的中点O的场强为多大? (3)在两点电荷连线的中垂线上,距A,B两点都为r的O′点的场强如何? 5、一试探电荷q=+4×10-9 C,在电场中P点受到的静电力F=6×10-7N.则: (1)P点的场强大小为多少; (2)将试探电荷移走后,P点的场强大小为多少; (3)放一电荷量为q′=1.2×10-6 C的电荷在P点,受到的静电力F′的大小为多少? 6、竖直放置的两块足够长的平行金属板间有匀强电场. 其电场强度为E,在该匀强电场中,用丝线悬挂质量为m 的带电小球,丝线跟竖直方向成θ角时小球恰好平衡, 此时小球与极板间的距离为b,如图所示.(重力加速度

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

物理选修3_1_第一章《静电场》典型例题

【典型例题】 [例1] 如图中虚线表示等势面,相邻两等势面间电势差相等。有一带正电 的粒子在电场中运动,实线表示该带正电的粒子只在电场力作用下的运动轨迹, 粒子在a点的动能为20 eV,运动到b点时的动能为2 eV。若取c点为零势点, 则当粒子的电势能为一6 eV时,它的动能是() A. 16 eV B. 14 eV C. 6 eV D. 4 eV 解析:因该带正电的粒子从a点运动到b点动能减少了18eV,则运动至c等势面时的动能Ekc=20 eV一=8eV,带电粒子的总能量E=Ekc+Ec=8eV+0=8eV。当粒子的电势能为-6eV时,动能Ek=8eV一(一6)eV=14eV,选项B正确。 说明:带电粒子只在电场力作用下运动,动能和电势能相互转化,总能量守恒。 [例2] 如图所示,在真空中,两条长为60 cm的丝线一端固定于O点,另一 端分别系一质量均为0.1g的小球A和B。当两小球带相同的电荷量时,A球被光 滑的绝缘挡板挡住,且使OB线保持与竖直方向成60?角而静止。求: (1)小球所带电荷量;(2)OB线受到的拉力。 解析:作B 球的受力分析图如图所示,B受G、F、T三力作用,三力平衡时 表示三力的有向线段依次相接可以组成一个封闭的力三角形。由图可知,该力三角形与几何三角形AOB 相似,由于ΔAOB为等边三角形,故力三角形也是等边三角形。 设AB长为l,则(1)由F==mg,得小球电荷量为 Q===2.0×10-6 C (2)OB线受的拉力为T=G=mg=0.1×10—3×10 N=10—3 N [例3] 如图所示,用电池对电容器充电,电路a、b之间接有一灵敏电流表,两极板之间有一个电荷q处于静止状态。现将两极板的间距变大,则() A. 电荷将向上加速运动 B. 电荷将向下加速运动 C。电流表中将有从a到b的电流 D。电流表中将有从b到a的电流

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

静电场典型例题集锦(打印版)

静电场典型题分类精选 一、电荷守恒定律 库仑定律典型例题 例1 两个半径相同的金属小球,带电量之比为1∶7,相距为r ,两者相互接触后再放回原来的位置上,则 相互作用力可能为原来的多少倍? 练习.(江苏物理)1.两个分别带有电荷量Q -和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F 。两小球相互接触后将其固定距离变为2 r ,则两球间库仑力的大小为 A . 112F B .34F C .4 3 F D .12F 二、三自由点电荷共线平衡.. 问题 例1.(改编)已知真空中的两个自由点电荷A 和B, 94 A Q Q =,B Q Q =-,相距L 如图1所示。若在直线AB 上放一自由电荷C,让A 、B 、C 都处于平衡状态,则对C 的放置位置、电性、电量有什么要求? 练习 1.(原创)下列各组共线的三个自由电荷,可以平衡的是( ) A 、4Q 4Q 4Q B 、4Q -5Q 3Q C 、9Q -4Q 36Q D 、-4Q 2Q -3Q 2.如图1所示,三个点电荷q 1、q 2、q 3固定在一直线上,q 2与q 3的距离为q 1与q 2距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电量之比q 1∶q 2∶q 3为( ) A .-9∶4∶-36 B .9∶4∶36 C .-3∶2∶-6 D .3∶2∶6 三、三自由点电荷共线不平衡... (具有共同的加速度)问题 例1.质量均为m 的三个小球A 、B 、C 放置在光滑的绝缘水平面的同一直线上,彼此相隔L 。A 球带电量10A Q q =,B Q q =, 若在小球C 上外加一个水平向右的恒力F ,如图4所示,要使三球间距始终保持L 运动,则外力F 应为多大?C 球的带电量C Q 有多大? 图1 图4

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

静电场的能量(精)

静电场的能量 静电场的能量 一个物体带了电是否就具有了静电能?为了回答这个问题,让我们把带电体的带电过程作下述理解:物体所带电量是由众多电荷元聚集而成的,原先这些电荷元处于彼此无限离散的状态,即它们处于彼此相距无限远的地方,使物体带电的过程就是外界把它们从无限远聚集到现在这个物体上来。在外界把众多电荷元由无限远离的状态聚集成一个带电体系的过程中,必须作功。根据功能原理,外界所作的总功必定等于带电体系电势能的增加。因为电势能本身的数值是相对的,是相对于电势能为零的某状态而言的。按照通常的规定,取众多电荷元处于彼此无限远离的状态的电势能为零,所以带电体系电势能的增加就是它所具有的电势能。于是我们就得到这样的结论:一个带电体系所具有的静电能就是该体系所具有的电势能,它等于把各电荷元从无限远离的状态聚集成该带电体系的过程中,外界所作的功。 那么带电体系所具有的静电能是由电荷所携带呢,还是由电荷激发的电场所携带?也就是,能量定域于电荷还是定域于电场?在静电学范围内我们无法回答这个问题,因为在一切静电现象中,静电场与静电荷是相互依存,无法分离的。随时间变化的电场和磁场形成电磁波,电磁波则可以脱离激发它的电荷和电流而独立传播并携带了能量。太阳光就是一种电磁波,它给大地带来了巨大的能量。这就是说,能量是定域于场的,静电能是定域于静电场的。 既然静电能是定域于电场的,那么我们就可以用场量来量度或表示它所具有的能量。 , 式中C是电容器的电容。电容器所带电量从零增大到Q的整个过程中,外力所作的总功为 . 外力所作的功A等于电容器这个带电体系的电势能的增加,所增加的这部分能量,储存在电容器极板之间的电场中,因为原先极板上无电荷,极板间无电场,所以极板间电场的能量,在数值上等于外力所作的功A,即 . (9-77) 若电容器带电量为Q时两极板间的电势差为U AB ,则平行板电容器极板间电场的能量还可以表示为

高中物理静电场经典习题30道 带答案

一.选择题(共30小题) 1.(2014?山东模拟)如图,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若 三个小球均处于静止状态,则匀强电场场强的大小为( ) D c 的轴线上有a 、b 、 d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q (q >0)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)( ) D 系数均为k 0的轻质弹簧绝缘连接.当3个小球处在静止状态时,每根弹簧长度为l .已知静电力常量为k ,若不考虑弹簧的静电感应,则每根弹簧的原长为( ) ﹣ 个小球,在力F 的作用下匀加速直线运动,则甲、乙两球之间的距离r 为( ) D

7.(2015?山东模拟)如图甲所示,Q1、Q2为两个被固定的点电荷,其中Q1带负电,a、b两点在它们连线的延长线上.现有一带负电的粒子以一定的初速度沿直线从a点开始经b点向远处运动(粒子只受电场力作用),粒子经过a、b两点时的速度分别为v a、v b,其速度图象如图乙所示.以下说法中正确的是() 8.(2015?上海二模)下列选项中的各圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各圆环间 D 12 变化的关系图线如图所示,其中P点电势最低,且AP>BP,则() 以下各量大小判断正确的是()

11.(2015?丰台区模拟)如图所示,将一个电荷量为1.0×10C的点电荷从A点移到B点,电场力做功为2.4×10﹣6J.则下列说法中正确的是() 时速度恰好为零,不计空气阻力,则下列说法正确的是() 带电粒子经过A点飞向B点,径迹如图中虚线所示,以下判断正确的是() 实线所示),则下列说法正确的是()

导体和电介中的静电场

二、导体和电介质中的静电场 一、 选择题: 1、在一静电场中,作一闭合曲面S ,若有??=?0s d D ??,(式中D ?为电位移矢量),则S 面内必定: A :既无自由电荷,也无束缚电荷; B :没有自由电荷; C :自由电荷和束缚电荷的代数和为零; D :自由电荷代数和为零。 [ ] 2、一带正电荷的物体M ,靠近一不带电的金属导体N ,N 的左端感应出负电荷,右端感应出正电荷,若将N 的左端接地,如图所示,则 (A ) N 上的负电荷入地 (B ) N 上的正电荷入地 (C ) N 上的电荷不动 (D ) N 上所有电荷都入地 [ ] 3、在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面,则对此球形闭合面: (A)高斯定理成立,且可用它求出闭合面上各点的场强; (B)高斯定理成立,但不能用它求出闭合面上各点的场强; (C)由于电介质不对称分布,高斯定理不成立; (D)即使电介质对称分布,高斯定理也不成立。 [ ] 4、有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电量为q 的点电荷,则 (A)只有当q>0时,金属球才下移. (B)只有当q

静电场典型例题分析

例1 在边长为30cm的正三角形的两个顶点A,B上各放一个带电小球,其中Q1=4×10-6C,Q2=-4×10-6C,求它们在三角形另一顶点C处所产生的电场强度。 解:计算电场强度时,应先计算它的数值,电量的正负号不要代入公式中,然后根据电场源的电性判断场强的方向,用平行四边形法求得合矢量,就可以得出答案。 由场强公式得: C点的场强为E1,E2的矢量和,由图8-1可知,E,E1,E2组成一个等边三角形,大小相同,∴E2= 4×105(N/C)方向与AB边平行。 例2 如图8-2,光滑平面上固定金属小球A,用长L0的绝缘弹簧将A与另一个金属小球B连接,让它们带上等量同种电荷,弹簧伸长量为x1,若两球电量各漏掉一半,弹簧伸长量变为x2,则有:() 解:由题意画示意图,B球先后平衡,于是有 例3点电荷A和B,分别带正电和负电,电量分别为4Q和Q,在AB连线上,如图,电场强度为零的地方在() A.A和B之间B.A右侧 C.B左侧 D.A的右侧及B的左侧 解:因为A带正电,B带负电,所以只有A右侧和B左侧电场强度 方向相反,因为Q A>Q B,所以只有B左侧,才有可能E A与E B等量反向,因而才可能有E A和E B矢量和为零的情况。

例4 如图8-4所示,Q A=3×10-8C,Q B=-3×10-8C,A,B两球相距5cm,在水平方向外电场作用下,A,B保持静止,悬线竖直,求A,B连线中点场强。(两带电小球可看作质点) 解:以A为研究对象,B对A的库仑力和外电场对A的电场力平衡, E外方向与A受到的B的库仑力方向相反,方向向左。在AB的连线中点处E A,E B的方向均向右,设向右为正方向。则有E总=E A+E B-E外。 例5在电场中有一条电场线,其上两点a和b,如图8-5所示,比较a,b两点电势高低和电场强度的大小。如规定无穷远处电势为零,则a,b处电势是大于零还是小于零,为什么? 解:顺电场线方向电势降低,∴U A>U B,由于只有一条电力线,无法看出电场线疏密,也就无法判定场强大小。同样无法判定当无穷远处电势为零时,a,b的电势是大于零还是小于零。若是由正电荷形成的场,则E A>E B,U A>U B>0,若是由负电荷形成的场,则E A<E B,0>U A>U B。 例 6 将一电量为q =2×106C的点电荷从电场外一点移至电场中某点,电场力做功4×10-5J,求A点的电势。 解:解法一:设场外一点P电势为U p所以U p=0,从P→A,电场力的功W=qU PA,所以W=q (U p-U A), 即4×10-5=2×10-6(0-U A) U A=-20V 解法二:设A与场外一点的电势差为U,由W=qU, 因为电场力对正电荷做正功,必由高电势移向低电势,所以U A=-20V 例7 如图8-6所示,实线是一个电场中的电场线,虚线是一个负检验电荷在这个电场中的轨迹,若电荷是从a处运动到b处,以下判断正确的是: [ ]

高中物理静电场题经典例题

高中物理静电场题经典 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理静电场练习题 1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。那么,为了使小球能从B 板 的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离 2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、 B 、 C 三点的电势分别为1V 、6V 和9V 。则 D 、 E 、 F 三 点的电势分别为( ) A 、+7V 、+2V 和+1V B 、+7V 、+2V 和1V C 、-7V 、-2V 和+1V D 、+7V 、-2V 和1V 3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。 则(1)A 、B 两点间的电势差为( ) A 、q m U AB 232υ-= B 、q m U AB 232 υ= C 、q m U AB 22υ-= D 、q m U AB 22 υ= (2)匀强电场的场强大小和方向( ) B a b P · m 、q 。 。 U + - E · B ·

A 、qd m E 2 21υ= 方向水平向左 B 、qd m E 2 21υ= 方向水平向右 C 、qd m E 2212 υ= 方向水平向左 D 、qd m E 2212 υ= 方向水平向右 4、一个点电荷从竟电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势 面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运 动方向垂直 5、在静电场中( ) A.电场强度处处为零的区域内,电势也一定处处为零 B.电场强度处处相等的区域内,电势也一定处处相等 C.电场强度的方向总是跟等势面垂直 D.沿着电场线的方向电势是不断降低的 6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A 、4E K B 、4.25E K C 、5E K D 、8 E K 7、如图所示,实线为一簇电场线,虚线是间距相等的等势面,一带电粒子沿着电场线方向运动,当它位于等势面φ1上时,其动能为20eV ,当它运动 到等势面φ3上时,动能恰好等于零,设φ2=0,则,当粒子 的动能为8eV 时,其电势能为( ) A 、12eV B 、 2eV 4

(完整word版)高中物理静电场必做经典例题(带答案)

1 高中物理阶段性测试(一) 一、选择题(每题4分,共40分) 1.下列说法正确的是 ( ) A .元电荷就是质子 B .点电荷是很小的带电体 C .摩擦起电说明电荷可以创造 D .库仑定律适用于在真空中两个点电荷之间相互作用力的计算 2.在电场中某点用+q 测得场强E ,当撤去+q 而放入-q/2时,则该点的场强 ( ) A .大小为E / 2,方向和E 相同 B .大小为E /2,方向和E 相反 C .大小为E ,方向和E 相同 D .大小为 E ,方向和E 相反 3.绝缘细线的上端固定,下端悬挂一只轻质小球a ,a 表面镀有铝膜,在a 的近 端有一绝缘金属球b ,开始时,a 、b 均不带电,如图所示.现使b 球带电,则( ) A .a 、b 之间不发生静电相互作用 B .b 立即把a 排斥开 C .b 将吸引a ,吸住后不放开 D .b 将吸引a ,接触后又把a 排斥开 4.关于点电荷,正确的说法是 ( ) A .只有体积很小带电体才能看作点电荷 B .体积很大的带电体一定不能视为点电荷 C .当两个带电体的大小与形状对它们之间的相互静电力的影响可以忽略时,这两个带电体便可看作点电荷 D .一切带电体在任何情况下均可视为点电荷 5.两只相同的金属小球(可视为点电荷)所带的电量大小之比为1:7 ,将它们

相互接触后再放回到原来的位置,则它们之间库仑力的大小可能变为原来的() A.4/7 B.3/7 C.9/7 D.16/7 6.下列对公式 E =F/q的理解正确的是() A.公式中的 q 是场源电荷的电荷量 B.电场中某点的电场强度 E 与电场力F成正比,与电荷量q 成反比 C.电场中某点的电场强度 E 与q无关 D.电场中某点的电场强度 E 的方向与电荷在该点所受的电场力 F 的方向一致 7.下列关于电场线的说法正确的是() A.电场线是电荷运动的轨迹,因此两条电场线可能相交 B.电荷在电场线上会受到电场力,在两条电场线之间的某一点不受电场力C.电场线是为了描述电场而假想的线,不是电场中真实存在的线 D.电场线不是假想的东西,而是电场中真实存在的物质 8.关于把正电荷从静电场中电势较高的点移到电势较低的点,下列判断正确的是() A.电荷的电势能增加 B.电荷的电势能减少 C.电场力对电荷做正功 D.电荷克服电场力做功 9.一个带负电的粒子只在静电力作用下从一个固定的点电荷附近飞过,运动轨迹如图中的实线所示,箭头表示粒子运动的方向。图中虚线表示点电荷电场的两个等势面。下列说法正确的是() A.A、B两点的场强大小关系是E A

总例题分析

例 题 分 析 例1、无限长同轴电缆内导体半径为R 1,外导体半径为R 2,内外导体之间的电压为U 。现固定外导体半径 R 2,调整内导体半径R 1,问: (1)内外导体半径的比值R 1 /R 2为多少时内导体表面上的电场强度最小,和最小电场强度E min =?; (2)此时电缆的特性阻抗Z 0为多少?(设该同轴电缆中介质的参数为μ0和ε0). 分析:解:(1)由高斯定律可得,内外导体间的电场强度沿径向方向,且大小为 ρE ετ π2= )(21R ρR << 电介质中电场强度的最大值出现在内导体表面上, 1max 2R E πετ = (1) 内外导体间的电压 12 ln π221 R R d U R R ε τ ? = ?=ρE (2) 把式(1)代入式(2),可得2R 和max E 一定时,电压U 与内导体半径1R 之间的关系 12 1max ln R R R E U = (3) 为了求出1R 取什么数值时电压为最大值,令 0)1(ln d d 1 2max 1=-=R R E R U 由此得 e 1 2 =R R 即当内外导体半径的比值e 12=R R 时,内导体表面的电场强度最小。且最小电场强度 1min R U E = (2)此时电缆的特性阻抗 Ω == 60ln π211 2 000R R Z εμ

例2、双线平行传输线导线半径为a ,两轴线距离d ,如果此双线传输线周围的介质电导率为 .求 双线传输线漏电导。 分析:利用恒定电场和静电场之间的比拟关系求解,也可以利用漏电导的定义求解。 解:双线传输线的电容在第二章里例中已经计算过.结果为 ln d a C πε = ,根据恒定电场与恒定电场的 对应关系。 , ,把上述结果中的相应参量替换得到ln d a G πσ = 当然这里也可以利用例4的方法,求出双线传输线总的横向电流以及两线之间的电位差,再根据定义I G U = 求出双线传输线的漏电导,结果是一样的。 总结:掌握如何利用恒定电场和静电场之间的比拟关系求解典型传输设备的漏电导. 例3、一半径为a 的导体球,作为接地电极深埋于地下,土壤的电导率为 ,求此电极的接地电阻. 分析: 1、 假定不计导体球自身的电阻,那么导体球为等位体,导体球面为等位面. 2、 因为是深埋地下,可以不考虑地面的影响,所以电流是以球心对称的形式,沿着径向(和导体球表面垂直)在土壤中扩散。 解: 如图所示,导体球深埋于地下,可以忽略地面的影响,电流流入导体球后,垂直于导体球表面向土 壤扩散,土壤中距导体球球心处的电流密度为 ,相应土壤中电场强度为 则导体球电位: 所以土壤中导体球的接地电阻为 总结:此题也可利用静电比拟法,因为孤立导体球的电容为4C a πε=,所以由C G 的比拟关系,电导 4G a πσ=。掌握接地电阻的计算. 例4、均匀平面波从理想介质(μr =1,εr =16)垂直入射到理想导体表面上,测得理想介质中电场强度最大值为200V/m ,第一个最大电场强度值与理想导体表面的距离为1m ,求: (1)该平面波的频率和相位常数; (2)试写出介质中电场和磁场的瞬时表达式。 解:

第二章静电场题解

第二章 静电场 (注意:以下各题中凡是未标明电介质和导体的空间,按真空考虑) 2-1 在边长为a 的正方形四角顶点上放置电荷量为q 的点电荷,在正方形几何中 心处放置电荷量为Q 的点电荷。问Q 为何值时四个顶点上的电荷受力均为零。 解 如图建立坐标系,可得 x x x x a Q a a q E e e e 2/12242122142 0220??+???? ???+=πεπε y y y y a Q a a q E e e e 2/12242122142 0220??+??? ? ???+=πεπε 据题设条件,令 022421=??? ??+??? ? ??+Q q , 解得 () 2214 +-=q Q 2-2 有一长为2l ,电荷线密度为τ的直线电荷。 1)求直线延长线上到线电荷中心距离为2l 处的电场强度和电位; 2)求线电荷中垂线上到线电荷中心距离为2l 处的电场强度和电位。 解 1)如图(a )建立坐标系,题设线电荷位于x 轴上l ~l 3之间,则x 处的电荷微元在坐标原点产生的电场强度和电位分别为 ()x x x e E -=2 04d d πετ,x x 04d d πετ?= 由此可得线电荷在坐标原点产生的电场强度和电位 分别为 ()()()x l l x l l l x x e e E E -=-==??0320364d d 0πετ πετ ()3ln 44d d 0030 3l πετ πετ??===??l l l x x 2)如图(b )建立坐标系,题设线电荷位于y 轴 上l -~l 之间,则y 处的电荷微元在点()l 2,0处产生的电场强度和电位分别为 ()r r y e E -=2 04d d πετ,r y 04d d πετ?= 式中,θθ2cos d 2d l y =,θcos 2l r =,51 4sin 22=+=l l l α,分别代入上两式,并考虑对称性,可知电场强度仅为x 方向,因此可得所求的电场强度和电位分别为 ()l l l r y l x x x x 0000020 054sin 4d cos 4cos 4d 2d 20,2πεταπετθθπετθπεταααe e e e E E =====???

高中物理静电场题经典例题

高中物理静电场练习题 1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。那 么,为了使小球能从B 板 的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离 2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、B 、C 三点的电势 分别为1V 、6V 和9V 。则D 、E 、F 三 点的电势分别为( ) A 、+7V 、+2V 和+1V B 、+7V 、+2V 和1V ¥ C 、-7V 、-2V 和+1V D 、+7V 、-2V 和1V 3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。 则(1)A 、B 两点间的电势差为( ) A 、q m U AB 232υ-= B 、q m U AB 232 υ= C 、q m U AB 22υ-= D 、q m U AB 22 υ= (2)匀强电场的场强大小和方向( ) A 、qd m E 2 21υ= 方向水平向左 B 、qd m E 2 21υ= 方向水平向右 C 、qd m E 2212 υ= 方向水平向左 D 、qd m E 2212 υ= 方向水平向右 4、一个点电荷从竟电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运动方向垂直 5、在静电场中( ) A.电场强度处处为零的区域内,电势也一定处处为零 . B.电场强度处处相等的区域内,电势也一定处处相等 C.电场强度的方向总是跟等势面垂直 D.沿着电场线的方向电势是不断降低的 6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A B a P · m 、q 。 >U + - ~ A E B 。

第二章 静电场与导体

第二章 静电场与导体 一、判断题(正确划“∨”错误码划“?” ) 1、由公式 0εσ = E 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该 点场强仅由该点附近的导体上的面上的面电荷产生的。( )× 2、一导体处静电场中,静电平衡后导体上的感应电荷分布如图,根据电场线的性质,必有一部分电场线从导体上的正电荷发出,并终止在导体的负电荷上。( )× 3、一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。( )× 4、孤立带电导体圆盘上的电荷应均匀分布在圆盘的两个圆面上。( )√ 5、对于一个孤立带电导体,当达到静电平衡时,面电荷的相对分布与导体表面的曲率成正比。( )√ 6、一个接地的导体空腔,使外界电荷产生的场强不能进入腔内,也使内部电荷产生的场不进入腔外。( )×抵消 7、若电荷间的相互作用不满足平方反比律,导体的屏蔽效应仍然存在。( )× 8、用一个带电的导体小球与一个不带电的绝缘大导体球相接触,小球上的电荷会全部传到大球上去。( )× 9、带电体的固有能在数值上等于该带电体从不带电到带电过程中外力反抗电力作的功。( )√ 10、静电平衡时,某导体表面的电荷在该导体内部产生的场强处处必为零。( )× 11、两个带有同种电荷的金属球,一定相斥。( )× 12、真空中有一中性的导体球壳,在球中心处置一点电荷q ,则壳外距球心为r 处的场强为2 04r q E πε= ,当点电荷q 偏离中心时,则r 处的场强仍为2 04r q πε。( )√ 13、接地的导体腔,腔内、外导体的电荷分布,场强分布和电势分布都不影响。( )√ 14两个导体A 、B 构成的带电系的静电能为) (B B A A q q ?+?21,则式中的A A q ?21及 B B q ?21 分别表示A 和B 的自能。( )× 15、两个半径相同的金属球,其中一个是实心的,一个是空心的,通常空心球比实心球的电容大。( )× 二、选择题、

2020年高中物理静电场经典例题

精品 文档 一、选择题 1.下列公式中,既适用于点电荷产生的静电场,也适用于匀强电场的有①场强E=F/q ②场强E=U/d ③场强E=kQ/r 2 ④电场力做功W=Uq (A)①③ (B)②③ (C)②④ (D)①④ 2、已知A 为电场中一固定点,在A 点放一电量为q 的电荷,受电场力为F ,A 点的场强为E ,则 A .若在A 点换上-q ,A 点场强方向发生变化 B .若在A 点换上电量为2q 的电荷,A 点的场强将变为 2E C .若在A 点移去电荷q ,A 点的场强变为零 D .A 点场强的大小、方向与q 的大小、正负、有无均无关 3.如图所示,平行直线表示电场线,带没有标明方向,带电量为+1×10-2 C 的微粒在电场中只受电场力的作用,由A 点移到B 点,动量损失0.1J ,若点的电势为-10V ,则 A.B 点的电势为10V B.电场线的方向从右向左 C.微粒的运动轨迹可能是轨迹1 D.微粒的运动轨迹可能是轨迹2 4 、 两带电小球,电量分别为+q 和q -,固定在一长度为L 的绝缘细杆的两端,置于电场强度为E 的匀强电场中,杆与场强方向平行,其位 置如图10—48所示。若此杆绕过O 点垂直于杆的轴线转过?180,则在此转动过程中电场力做的功为( ) A. 零 B. qEL C. qEL 2 D. qEL π 5.两个相同的金属小球带正、负电荷,固定在一定得距离上,现把它们相碰后放置在原处, 则它们之间的库伦力与原来的相比将( ) A.变小 B.变大 C.不变 D.以上情况均有可能 6.如图所示,有一平行板电容器充电后带有等量异种电荷,然后与电源断开。下极板接地,两极板中央处固定有一个很小的负电荷,现保持两极板间距不变而使两极板左右水平错开一段很小的距离,则下列说法中正确的是( ) A .电容器两极板间电压值变大 B .电荷的电势能变大 C .负电荷所在处的电势升高 D .电容器两极板间的电场强度变小 7图10—55中实线是一簇未标明方向的由点电荷产生的电场线, 虚线是某一带电粒子通过该电场区域时的运动轨迹,a 、b 是轨迹上的两点。若带电粒子在运动中只受电场力作用,根据此图可作出正确判断的是( ) A. 带电粒子所带电荷的符号 B. 带电粒子在a 、b 两点的受力方向 C. 带电粒子在a 、b 两点的速度何处较大 D. 带电粒子在a 、b 两点的电势能何处较大 8、如图,带电粒子P 所带的电荷量是带电粒子Q 的3倍,它们以相等的速度v 0从同一点出 发,沿着跟电场强度垂直的方向射入匀强电场,分别打在M 、N 点,若OM=MN ,则P 和Q 的 a b

静电场与导体

第二章静电场与导体 教学目的要求: 1、深入理解并掌握导体的静电平衡条件及静电平衡时导体的基本性质,加深对高斯定理和环路定理的理解,结合应用电场线这一工具,会讨论静电平衡的若干现象,会结合静电平衡条件去理解静电感应、静电屏蔽等现象,并会利用前章的知识求解电场中有导体存在时的场强和电势分布。 2、确理解电容的概念,并能计算几种特殊形式的电容器的电容值。 3、进一步领会静电能的概念、会计算一些特殊带电导体的静电能。 4、深刻理解电场能量的概念,会计算电场能。 教学重点: 1、静电场中的导体 2、电容和电容器 教学难点: 1、静电场的唯一定理 §2.1 静电场中的导体 §2.2 电容和电容器 §2.3 静电场的能量 §2.1 静电场中的导体 1、导体的特征功函数 (1)金属导体的特征 金属可以看作固定在晶格点阵上的正离子(实际上在作微小振动)和不规则运动的自由电子的集合。 ①大量自由电子的运动与理想气体中分子的运动相同,服从经典的统计规律。 ②自由电子在电场作用下将作定向运动,从而形成金属中的电流。 ③自由电子的平均速率远大与定向运动速率。 (2)功函数 金属表面存在一种阻止自由电子从金属逸出的作用,电子欲从金属内部逸出到外部,就要克服阻力作功。 一个电子从金属内部跑到金属外部必须作的最小功称为逸出功,亦称功函数。 2、导体的静电平衡条件 (1)什么是静电感应? 当某种原因(带电或置于电场中)使导体内部存在电场时,自由电子受到电场力的作用而作定向运动,使导体一侧因电子的聚集而出现负电荷布另一侧因缺少电子而有正电荷分布,这就是静电感应,分布在导体上的电荷便是感应电荷。 (2)静电平衡状态 当感应电荷在导体内产生的场与外场完全抵消时,电子的定向运动终止,导体处于静电平衡状态。 (3)静电平衡条件 所有场源包括导体上的电荷共同产生的电场的合场强在导体内部处处为零。 静电平衡时: ①导体是等势体。 ②导体外表面附近的电场强度与导体表面垂直。 ③导体表面是一个等势面,且与导体内部的电势相等。 3、导体上的电荷分布

第二章 静电场

第二章 静电场 习题2.1 真空中有一密度为2πnC/m 的无限长电荷沿y 轴放置,另有密度分别为0.1nC/m 2和-0.1nC/m 2 的无限大带电平面分别位于z =3m 和z =-4m 处。求点 P (1,7,2)的电场强度E 。 z=-4 x y z z=3 τ O 图2.1 题意分析: 题目中给出了3 个不同类型电荷的位置与大小,计算空间中一点的电场强度E 。可 以先分别计算每个电荷在场点产生的电场强度,然后采用叠加原理得出总的场强。考虑平面电荷与直线电荷的电场共同产生电场,选用用直角坐标系进行计算比较合适,如图2.1所示,对圆柱坐标系中计算出的直线电荷电场,需要转换成直角坐标下的形式,再进行矢量叠加求总电场。 解: (1)计算无限大平板在P 点产生的电场强度 在计算无限大平板在P 点产生的电场强度时,建立图2.1所示的直角坐标系,则位 于z =3m 处的无穷大带电平板在P 点产生的电场强度1σE 为: Z e E 0 21.01εσ-= (1) 位于z =-4m 的无穷大带电平板在P 点产生的电场强度为: Z e E 0 21.02εσ-= (2)

因此,2个无穷大带电板在P 点产生的合成场强1E 为: Z e E 11.0ε-= (3) (2)计算无穷长直电荷产生的电场强度 对于圆柱坐标系中位于z 轴上的长直电荷产生的电场强度至于场点的ρ坐标有关,其电场强度的表达式为: ρ ρ πετ e E 02- = z=-4 x y z z=3 τ O z' ρ O' 图2.2 因此图2.2中所示在沿y 轴放置的无穷长线电荷产生的电场2E 为: ρ ρ πετ e E 022- = 式中 2 2 x z ρ= + z x e z x z e z x x e 2 2 2 2 ++ += ρ ∴ () z x z x e z e x z x e z x z e z x x z x E ++=???? ??++ ++= 2 2 02 22 2 220 21 1 122επεπ 所以,P 点(1,7,2)的电场强度E 为:

相关主题
文本预览
相关文档 最新文档