当前位置:文档之家› 2020年数学中考一模试题附答案

2020年数学中考一模试题附答案

2020年数学中考一模试题附答案

一、选择题

1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )

A .

B .

C .

D .

2.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .

110

B .

19

C .

16

D .

15

3.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )

2020年数学中考一模试题附答案

A .(,)a b --

B .(,1)a b ---

C .(,1)a b --+

D .(,2)a b --+

4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数 0 1 2 3 4 人数

4

12

16

17

1

关于这组数据,下列说法正确的是( ) A .中位数是2 B .众数是17 C .平均数是2 D .方差是2 5.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )

A .2

B .3

C .5

D .7

6.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元 A .8

B .16

C .24

D .32

7.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;

③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()

2020年数学中考一模试题附答案

A.①②④B.①②⑤C.②③④D.③④⑤

8.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )

2020年数学中考一模试题附答案

A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°

9.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()

2020年数学中考一模试题附答案

A.点M B.点N C.点P D.点Q

10.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()

2020年数学中考一模试题附答案

A.1B.2

3

C

2

D5

11.

51

是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值()

A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间12.已知实数a,b,若a>b,则下列结论错误的是

A .a-7>b-7

B .6+a >b+6

C .55

a b >

D .-3a >-3b

二、填空题

13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x

=

(0x >)及22k

y x =(0x >)

的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ?的面积为4,则

12k k =﹣________.

2020年数学中考一模试题附答案

14.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 50

100

200

400

500

800

1000

1200

1500

2000

色盲患者的频数m 3 7 13 29 37 55 69 85 105 138

色盲患者的频率m/n

0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069

根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 15.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.

2020年数学中考一模试题附答案

16.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C

落在该反比例函数图象上,则n 的值为___.

17.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 18.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.

19.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.

2020年数学中考一模试题附答案

20.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.

2020年数学中考一模试题附答案

三、解答题

21.垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整 (收集数据)

甲班15名学生测试成绩统计如下:(满分100分)

68,72,89,85,82,85,74,92,80,85,78,85,69,76,80 乙班15名学生测试成绩统计如下:(满分100分)

86,89,83,76,73,78,67,80,80,79,80,84,82,80,83 (整理数据)

按如下分数段整理、描述这两组样本数据

组别班级65.6~

70.5

70.5~

75.5

75.5~

80.5

80.5~

85.5

85.5~

90.5

90.5~

95.5

甲班224511

乙班11a b20

在表中,a=,b=.

(分析数据)

(1)两组样本数据的平均数、众数、中位数、方差如下表所示:

班级平均数众数中位数方差

甲班80x8047.6

乙班8080y26.2

在表中:x=,y=.

(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人

(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.

22.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)

(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)

(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.

(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?

2020年数学中考一模试题附答案

23.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.

2020年数学中考一模试题附答案

(1)求证:四边形BFDE是矩形;

(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.

24.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.

活动一

如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.

2020年数学中考一模试题附答案

数学思考

(1)设,点到的距离.

①用含的代数式表示:的长是_________,的长是________;

②与的函数关系式是_____________,自变量的取值范围是____________.

活动二

(2)①列表:根据(1)中所求函数关系式计算并补全表格.

654 3.53 2.5210.50

00.55 1.2 1.58 1.0 2.473 4.29 5.08

②描点:根据表中数值,描出①中剩余的两个点.

③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.

数学思考

(3)请你结合函数的图象,写出该函数的两条性质或结论.

2020年数学中考一模试题附答案

25.已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0

的解,tan∠BAO=1

2

(1)求点A的坐标;

(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,

S△DOE=16.若反比例函数y=k

x

的图象经过点C,求k的值;

(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

2020年数学中考一模试题附答案

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.B

解析:B

【解析】

【分析】

由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.

【详解】

A、正方体的左视图与主视图都是正方形,故A选项不合题意;

B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;

C、球的左视图与主视图都是圆,故C选项不合题意;

D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;

故选B.

【点睛】

本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.

2.A

解析:A

【解析】

∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),

∴当他忘记了末位数字时,要一次能打开的概率是

1 10

.

故选A.

3.D

解析:D 【解析】

试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则

0122

a x

b y

++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,

.故选D . 考点:坐标与图形变化-旋转.

4.A

解析:A 【解析】

试题解析:察表格,可知这组样本数据的平均数为: (0×4+1×12+2×16+3×17+4×1)÷50=

∵这组样本数据中,3出现了17次,出现的次数最多, ∴这组数据的众数是3;

∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2, ∴这组数据的中位数为2, 故选A .

考点:1.方差;2.加权平均数;3.中位数;4.众数.

5.C

解析:C 【解析】

试题解析:∵这组数据的众数为7, ∴x=7,

则这组数据按照从小到大的顺序排列为:2,3,5,7,7, 中位数为:5. 故选C .

考点:众数;中位数.

6.D

解析:D 【解析】 【分析】

设每块方形巧克力x 元,每块圆形巧克力y 元,根据小明身上的钱数不变得出方程3x +5y -8=5x +3y +8,化简整理得y -x =8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x +3y +8)-8x ,化简得3(y -x )+8,将y -x =8代入计算即可. 【详解】

解:设每块方形巧克力x 元,每块圆形巧克力y 元,则小明身上的钱有(3x +5y -8)元或(5x +3y +8)元.

由题意,可得3x +5y -8=5x +3y +8,, 化简整理,得y -x =8.

若小明最后购买8块方形巧克力,则他身上的钱会剩下: (5x +3y +8)-8x =3(y -x )+8 =3×8+8 =32(元). 故选D . 【点睛】

本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.

7.A

解析:A 【解析】 【分析】

由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0. 【详解】

①∵对称轴在y 轴右侧, ∴a 、b 异号, ∴ab <0,故正确; ②∵对称轴1,2b

x a

=-

= ∴2a+b=0;故正确; ③∵2a+b=0, ∴b=﹣2a ,

∵当x=﹣1时,y=a ﹣b+c <0, ∴a ﹣(﹣2a )+c=3a+c <0,故错误; ④根据图示知,当m=1时,有最大值; 当m≠1时,有am 2+bm+c≤a+b+c , 所以a+b≥m (am+b )(m 为实数). 故正确.

⑤如图,当﹣1<x <3时,y 不只是大于0. 故错误. 故选A . 【点睛】

本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定 抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项

系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴

左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛

物线与y轴交点,抛物线与y轴交于(0,c).

8.D

解析:D

【解析】

【分析】

根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.

【详解】

∵直线EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故选D.

【点睛】

本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.

9.C

解析:C

【解析】

试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.

2020年数学中考一模试题附答案

考点:有理数大小比较.

10.C

解析:C

【解析】

分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=1

2

PG,再利用

勾股定理求得PG=2,从而得出答案.

详解:如图,延长GH交AD于点P,

2020年数学中考一模试题附答案

∵四边形ABCD和四边形CEFG都是矩形,

∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,

∴∠GFH=∠PAH,

又∵H是AF的中点,

∴AH=FH,

在△APH和△FGH中,

PAH GFH AH FH

AHP FHG

∠=∠

?

?

=

?

?∠=∠

?

∴△APH≌△FGH(ASA),

∴AP=GF=1,GH=PH=1

2 PG,

∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,

则GH=1

2

PG=

1

2

2020年数学中考一模试题附答案

2020年数学中考一模试题附答案

2

故选:C.

点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.

11.B

解析:B

【解析】

【分析】

根据4.84<5<5.29,可得答案.

【详解】

∵4.84<5<5.29,

2020年数学中考一模试题附答案

2020年数学中考一模试题附答案

故选B.

【点睛】

2020年数学中考一模试题附答案

是解题关键.12.D

解析:D

【解析】

A.∵a>b,∴a-7>b-7,∴选项A正确;

B.∵a>b,∴6+a>b+6,∴选项B正确;

C.∵a >b ,∴55

a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.

二、填空题

13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比

解析:【解析】 【分析】

根据反比例函数k 的几何意义可知:AOP ?的面积为112k ,BOP ?的面积为21

2

k ,然后两个三角形面积作差即可求出结果. 【详解】

解:根据反比例函数k 的几何意义可知:AOP ?的面积为112k ,BOP ?的面积为21

2

k , ∴AOB ?的面积为121122

k k -,∴1211

422k k -=,∴128k k -=.

故答案为8. 【点睛】

本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.

14.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故

解析:07 【解析】 【分析】

随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率. 【详解】

解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07 故答案为:0.07. 【点睛】

本题考查利用频率估计概率.

15.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出

A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得

解析:2n-1

【解析】

【分析】

根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.

【详解】

2020年数学中考一模试题附答案

∵△A1B1A2是等边三角形,

∴A1B1=A2B1,∠3=∠4=∠12=60°,

∴∠2=120°,

∵∠MON=30°,

∴∠1=180°-120°-30°=30°,

又∵∠3=60°,

∴∠5=180°-60°-30°=90°,

∵∠MON=∠1=30°,

∴OA1=A1B1=1,

∴A2B1=1,

∵△A2B2A3、△A3B3A4是等边三角形,

∴∠11=∠10=60°,∠13=60°,

∵∠4=∠12=60°,

∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,

∴∠1=∠6=∠7=30°,∠5=∠8=90°,

∴A2B2=2B1A2,B3A3=2B2A3,

∴A3B3=4B1A2=4,

A4B4=8B1A2=8,

A5B5=16B1A2=16,

以此类推:△A n B n A n+1的边长为 2n-1.

故答案是:2n-1.

【点睛】

此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.

16.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出

答案∵四边形ABCO 是菱形∴CD=ADBC∥OA

解析:【解析】

试题分析根据菱形的性质得出CD=AD ,BC ∥OA ,根据D (8,4)和反比例函数的图

象经过点D 求出k=32,C 点的纵坐标是2×4=8,求出C 的坐标,即可得出答案. ∵四边形ABCO 是菱形,∴CD=AD ,BC ∥OA , ∵D (8,4),反比例函数

的图象经过点D ,

∴k=32,C 点的纵坐标是2×4=8,∴,

把y=8代入得:x=4,∴n=4﹣2=2,

∴向左平移2个单位长度,反比例函数能过C 点, 故答案为2.

17.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键

解析:13k <<. 【解析】 【分析】

根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,

30k -<,即可求解;

【详解】

()223y k x k =-+-经过第二、三、四象限,

∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】

本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.

18.2【解析】【分析】设这个圆锥的底面圆的半径为R 根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R 由题意:2πR=解得R=2故答案为2

解析:2 【解析】 【分析】

设这个圆锥的底面圆的半径为R ,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.

【详解】

设这个圆锥的底面圆的半径为R,由题意:

2πR=1804 180

π?

解得R=2.

故答案为2.

19.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到

解析:6

【解析】

分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到

2020年数学中考一模试题附答案

,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是

2020年数学中考一模试题附答案

等腰直角三角形,进而得到AM=6.

详解:∵BD=CD,AB=CD,

∴BD=BA,

又∵AM⊥BD,DN⊥AB,

2020年数学中考一模试题附答案

∴,

又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,

∴∠P=∠PAM,

∴△APM是等腰直角三角形,

2020年数学中考一模试题附答案

∴AM=6,

故答案为6.

点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.

20.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达

解析:20

【解析】

【分析】

根据图象横坐标的变化,问题可解.

【详解】

由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5

∴矩形MNPQ的面积是20.

【点睛】

本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.

三、解答题

21.【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.

【解析】

【分析】

由收集的数据即可得;

(1)根据众数和中位数的定义求解可得;

(2)用总人数乘以乙班样本中合格人数所占比例可得;

(3)甲、乙两班的方差判定即可.

【详解】

解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,

故a=7,b=4,

故答案为:7,4;

(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,

众数是x=85,

67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,

中位数是y=80,

故答案为:85,80;

(2)60×10

15

=40(人),

即合格的学生有40人,

故答案为:40;

(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,

∵甲班的方差>乙班的方差,

∴乙班的学生掌握垃圾分类相关知识的整体水平较好.

【点睛】

本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.

22.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.

【解析】

分析:(1)找出当x=6时,y1、y2的值,二者作差即可得出结论;

(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;

(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为

(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.

详解:(1)当x=6时,y1=3,y2=1,

∵y1﹣y2=3﹣1=2,

∴6月份出售这种蔬菜每千克的收益是2元. (2)设y 1=mx+n ,y 2=a (x ﹣6)2+1. 将(3,5)、(6,3)代入y 1=mx+n ,

3563m n m n +=??

+=?,解得:237

m n ?=-?

??=?, ∴y 1=﹣

2

3

x+7; 将(3,4)代入y 2=a (x ﹣6)2+1, 4=a (3﹣6)2+1,解得:a=13

, ∴y 2=

13(x ﹣6)2+1=1

3

x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13

(x ﹣5)2+7

3. ∵﹣

1

3

<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73

, 即5月份出售这种蔬菜,每千克的收益最大.

(3)当t=4时,y 1﹣y 2=﹣

13

x 2+10

3x ﹣6=2.

设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克, 根据题意得:2t+7

3

(t+2)=22, 解得:t=4, ∴t+2=6.

答:4月份的销售量为4万千克,5月份的销售量为6万千克.

点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.

23.(1)见解析(2)见解析 【解析】

试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;

(2)根据平行线的性质,可得∠DF A =∠F AB ,根据等腰三角形的判定与性质,可得∠DAF =∠DF A ,根据角平分线的判定,可得答案. 试题分析:(1)证明:∵四边形ABCD 是平行四边形,

∴AB∥CD.

∵BE∥DF,BE=DF,

∴四边形BFDE是平行四边形.

∵DE⊥AB,

∴∠DEB=90°,

∴四边形BFDE是矩形;

(2)∵四边形ABCD是平行四边形,

∴AB∥DC,

∴∠DF A=∠F AB.

在Rt△BCF中,由勾股定理,得

BC=22

+=22

FC FB

+=5,

34

∴AD=BC=DF=5,

∴∠DAF=∠DF A,

∴∠DAF=∠F AB,

即AF平分∠DAB.

【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.24.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.

【解析】

【分析】

(1)①利用线段的和差定义计算即可.

②利用平行线分线段成比例定理解决问题即可.

(2)①利用函数关系式计算即可.

②描出点,即可.

③由平滑的曲线画出该函数的图象即可.

(3)根据函数图象写出两个性质即可(答案不唯一).

【详解】

解:(1)①如图3中,由题意,

2020年数学中考一模试题附答案

,,

故答案为:,.

②作于.

,,

故答案为:,.

(2)①当时,,当时,,

故答案为2,6.

②点,点如图所示.

③函数图象如图所示.

2020年数学中考一模试题附答案

(3)性质1:函数值的取值范围为.

性质2:函数图象在第一象限,随的增大而减小.

【点睛】

本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.

25.(1)(-8,0)(2)k=-192

25

(3)(﹣1,3)或(0,2)或(0,6)或(2,6)

【解析】

【分析】

(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;

【详解】

解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,

∴OB=4,

下载文档原格式(Word原格式,共22页)
相关文档
  • 中考数学一模试题

  • 年中考数学一模试题

  • 数学中考模拟试题一

  • 中考数学模拟试题一

  • 中考数学模拟试题

  • 中考数学一模试卷

相关文档推荐: