当前位置:文档之家› PSH5D二层升降横移机型计算书

PSH5D二层升降横移机型计算书

PSH5D二层升降横移机型计算书
PSH5D二层升降横移机型计算书

PSH5D二层升降横移机型计算书

PSH5D机型为二层升降横移类停车设备。二层升降横移机型的工作原理为:一层车台可以直接存取车辆,并可以左右移动。二层车台使用升降马达工作,载车板及车辆可以升降,当某个二层车台的载车板下方一层车台横移留出空间后,该载车板下降至地面,车辆便可自由进出。

设备采用框架式结构,由立柱、前后横梁、上中纵梁以及左右纵梁构成金属框架,材料为Q235型钢。四根立柱为150×150mm,壁厚6mm方管;前、后横梁为H300×150×6.5×9规格H型钢;上中纵梁为H250×125×6×9规格H型钢;左右纵梁为H250×125×6×9规格H型钢。钢构部分简图见附件。

一、设计计算依据和主要参考资料

《机械式停车设备通用安全要求》GB 17907-2010;

《升降横移类机械停车设备》JB/T 8910-1999 ;

《机械式停车设备类别、形式与基本参数》JB/T 8713-1998

《机械设计手册》化学工业出版社2009.01北京第五版第29次印刷

《材料力学》王吉民主编,中国电力出版社,北京,2010年8月第一版

《钢结构设计规范》GB50017-2003

二、立柱的强度、稳定性计算

根据JB/T 8713-1998表2规定,大型轿车质量≤1700kg。根据GB 17907-2010第5.2.2.2条,将汽车质量按6:4分配到前轴和后轴,并以受力大的一

侧作集中载荷计算,由此根据PSH5D 钢结构受力特性需要对前左、前右2根前立柱作强度和稳定性计算。单根前立柱高度为2214mm ,材料为Q235型钢,截面为150×150mm ,壁厚6mm 方管。其底部通过地脚螺栓固定于地面。计算工况为PSH5D 停车设备的二层车位全部停入重量为1700kg 轿车的满载工况。载车板的重量454.5kg ;轿车重量1700kg ,一根前横梁的重量为295kg ;一根后横梁的重量为365kg ;两根上中纵梁总重为490kg ;两根左右纵梁总重为466kg 。

据此,两根前立柱承载的垂直载荷为

(454×50%+1700×60%)×3+295+490×50%+466×50%=4514kgf ,单根前立柱承载的垂直载荷为2257kgf 。

2.1前立柱的强度计算

根据《机械设计手册》第五版3-134页,规格150×150mm ,壁厚6mm 方管的截面积为33.63平方厘米。

垂直载荷作用下前立柱的正应力为

MPa 58.6Pa 657704410

33.639.82257A P 4-111≈=??==σ 6.57MPa 小于Q235钢材本身的屈服极限235MPa ,符合要求。

2.2前立柱的稳定性计算

立柱底端通过地脚螺栓与地面固定,可视为一端固定、一端自由的压杆。

根据《机械设计手册》第五版1-171页表1-1-124,取其长度系数μ=2,稳定系数η=2.467。

根据《机械设计手册》第五版3-134页,规格150×150mm ,壁厚6mm 方管的截面惯性矩为1145.94cm ;惯性半径5.837厘米。

已知立柱高度为l=2295mm=229.5cm ;根据《机械设计手册》第五版1-170页表1-1-123柔度计算公式,

其柔度λ=78.645.837

229.52i min =?=l

μ 属于中等柔度压杆。据同表中提供的直线经验公式,其临界应力

λσb a c -=

其中a 、b 值由《机械设计手册》第五版1-173页表1-1-127确定,对于Q235钢材a=30400 2·-cm N ,b=112 2·-cm N

因此λσb a c -==30400-112×78.64=21592.742·-cm N

临界载荷Kgf 40987726163.71N 63.3374.21592≈=?==A P c C σ

稳定安全系数32.832257/74098/===P P S c ,大于《机械设计手册》

第五版1-169页表1-1-120推荐参考值,符合稳定性要求。

三、横梁的强度、刚度、稳定性计算

本机型的钢结构中,前、后横梁两端由立柱支撑,左右纵梁和上中纵梁对称分布,两端通过螺栓固定在前后横梁上。因为左右纵梁对前、后横梁的压力于与立柱对前、后横梁的支反力方向重合,所以左右纵梁载荷直接由立柱承载,其对前、后横梁只有压力作用。搭在前、后横梁1/3与2/3长度位置上的上中纵梁,其载荷使得前、后横梁均承受弯矩和扭矩。根据GB 17907-2010第

5.2.2.2条,将汽车质量按6:4分配到前轴和后轴,受力大的一侧作集中载荷计算,因此需要对前横梁进行强度、刚度、稳定性计算。

3.1已知条件

六层升降横移计算书

六层升降横移机械停车设备校核 1电机的校核 (3) (1)2-5层提升电机的校核 (4) (2)6层提升电机的校核 (6) (3)2-5层横移电机的校核 (7) 2链条的设计计算和校核 (8) (1)地上横移链 (8) (2)2-5层电机传动链 (10) (3)6层电机传动链 (11) 3钢丝绳校核 (11) (1)2-5层提升轴的校核 (13) (2)6层提升轴的校核 (15) (3)地面横移主动轴的校核 (16) (4)地上横移主动轴校核 (17) 4轴承的校核 (18) (1)地面层横移驱动滚轮轴承的校核 (18) (2)横移驱动轴轴承的校核 (19) (3)提升轴轴承的校核 (20) (4)小滑轮轴承的校核 (21) (5)大滑轮轴承的校核 (22)

5框架的校核 (24) (1)顶层纵梁的校核 (24) (2)顶层后横梁的校核 (26) (3)校核后中立柱 (29) 已知参数

停车重量:1800kg(车头重量占车总重量的60%,车尾重量占40%); 提升车盘重量:380kg 横移框架总重为783kg 地面横移车盘总装重量:508kg 重力加速度g=9.8m/s2 1电机的校核 使用电机(康明斯电机)参数 电机输入转速(r/min)(与电机频率,极数有关) 频率50Hz 极数4P n=1400r/min 二---五层提升电机:LRCK50-22-100 2.2kw 1/100 输出轴径50mm 电机功率:2.2Kw 输出转速:13.5r/min 输出扭矩:138.78kgf·m 容许径向载荷:1530.6kgf 额定制动转矩:3.06kgf·m 六层提升电机:LRCK50-22-60 3.7kw 1/60 输出轴径50mm 电机功率:2.2Kw 输出转速23.6r/min 输出扭矩153.2kgf·m 容许径向载荷1530.6kgf 额定制动转矩:4.08kgf·m

升降横移式立体车库设计说明

摘要 随着我国经济的飞速发展,城市人口日益增多,特别是随着改革开放以来,我国进入了汽车拥有率迅速上升时候。以往那种单层平面停车场也越来越不能满足市场的需求。对多停车位、少占空间、使用操作简单、安全可靠的“立体停车库”的建设,是解决目前寸土寸金的大都市停车难的有效办法。 立体车库是一种以单层平面停车场为核心、多平面的空间停车车库,通过可编程控制器(Programming Logic Controller,简称PLC)控制车位空间位置的变动,使车位能够实现空间到平面的转化,实现多重单层平面停车的功能。升降横移式立体车库利用托盘移位产生垂直通道,实现多层车位的升降来存取车辆。 本文主要通过对升降横移式立体车库原理的研究,介绍了3×3立体车库模型实现情况。控制系统的监控采用基于WINDOWS平台的工控组态软件MCGS,通过对组态软件数据库的构建、动画的连接及控制流程编制、调试,实现了立体车库的监控系统,最后探讨了利用MCGS实现远程控制的网络功能。 本文的研究对PLC在计算机自动化控制系统中的应用,以及利用MCGS实现工业工程实时监控,提高工业的自动化水平,都具有很重要的实践意义。 关键词:立体车库;可编程控制器PLC ;MCGS工控软件组态;模拟仿真

Abstract Along with the our country economy rapid development, the urban populationincreases day by day, specially since along with the Reform and open policy, theautomobile total quantity is more and more. Formerly that kind of Single-Layer planeparking lot could not satisfy the demand of the market. To the multi- parking spots, little occupies of the space, the use operation is simple. "Three-Dimensional Garage",which is the effective solution of stops difficult in the present big city. The Three-Dimensional Garage, which takes the single-layer plane parking lot asthe core, is the multi-dimensional space parking garage. It uses the programmablecontroller (Programming Logic Controller, also called PLC) to realize multiplemonolayer plane stops by controlling the berth space position the change. Vertical-horizontal moving underground car parks, which realize multilayer berthfluctuation deposits and withdraws the vehicles by shifting the tray to produce thevertical channel. The article researches the theory of the Three-Dimensional Garage, introduce the realization situation of 3×3 three-dimensional garage. The system simulation uses controls configuration software MCGS, which is based onthe WINDOWS platform. Through establishing the database of configurationsoftware constructs, connecting the animation, preparing the control flow anddebugging the procedures, it has realized the three-dimensional garage monitoringsystem. The article research has the certain practice significance in the computer control system as well as using MCGS to achieve real-timemonitoring of industrial projects, which raises the level of industrial automation. Keyword:Three-Dimensional Garage, Programmable Controller, Monitor andControl Generated System(MCGS), Simulation

施工升降机基础承载力计算书

施工升降机基础承载力计算书计算依据: 1、《施工现场设施安全设计计算手册》谢建民编著 2、《建筑地基基础设计规范》GB50007-2011 3、《混凝土结构设计规范》GB50010-2010 4、《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 5、《木结构设计规范》GB50005-2003 6、《钢结构设计规范》GB50017-2003 7、《砌体结构设计规范》GB50003-2011 一、参数信息 1.施工升降机基本参数 2.楼板参数

3.荷载参数: 二、基础承载计算: 导轨架重(共需35节标准节,标准节重175kg):175kg×35=6125kg, 施工升降机自重标准值: P k=((1480×2+1480+1258×2+200+6125)+2000×2)×10/1000=172.81kN; 施工升降机自重: P=(1.2×(1480×2+1480+1258×2+200+6125)+1.4×2000×2)×10/1000=215.37kN; 考虑动载、自重误差及风载对基础的影响,取系数n=2.1 P=2.1×P=2.1×215.37=452.28kN 三、地下室顶板结构验算 验算时不考虑地下室顶板下的钢管的支承作用,施工升降机的全部荷载由混凝土板来承担。根据板的边界条件不同,选择最不利的板进行验算 楼板长宽比:Lx/Ly=3/4=0.75 1、荷载计算 楼板均布荷载:q=452.28/(3×1.3)=115.97kN/m2 2、混凝土顶板配筋验算 依据《建筑施工手册》(第四版): M xmax=0.039×115.97×32=40.71kN·m M ymax=0.0189×115.97×32=19.73kN·m M0x=-0.0938×115.97×32=-97.9kN·m M0y=-0.076×115.97×32=-79.32kN·m 混凝土的泊桑比为μ=1/6,修正后求出配筋。 板中底部长向配筋: M x=M xmax+μM ymax=40.71+19.73/6=43.99kN·m αs=|M|/(α1f c bh02)=43.99×106/(1.00×19.10×3.00×103×525.002)=0.003;

施工电梯基础地下室顶板加固计算书

施工升降机计算书 品茗软件大厦工程;工程建设地点:杭州市文二路教工路口;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m;总建筑面积:0平方米;总工期:0天。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书主要依据本工程施工图、施工升降机说明书、《施工升 降机》(GB/T10054-2005),《施工升降机安全规则》(GB10055-2007),《建筑地基基础设计规范》(GB50007-2002),《混凝土结 构设计规范》(GB50010-2002)等编制。 一、参数信息 1.施工升降机基本参数 施工升降机型号:SCD200/200J;吊笼形式:双吊笼; 架设总高度:100m;标准节长度:1.508m; 底笼长:42m;底笼宽:3m; 标准节重:167kg;对重重量:1300kg; 单个吊笼重:1600kg;吊笼载重:2000kg; 外笼重:1480kg;其他配件总重量: 200kg; 2.楼板参数 基础混凝土强度等级:C30;楼板长:4m; 楼板宽:4m;楼板厚:150mm;

梁宽:0.3m;梁高:0.7m; 板中底部短向配筋:10@150; 板边上部短向配筋:12@100; 板中底部长向配筋:10@150; 板边上部长向配筋:12@100; 梁截面底部纵筋:425; 梁中箍筋配置:8@150; 箍筋肢数:2; 3.荷载参数: 施工荷载:2.5kN/m2; 4.钢管参数: 钢管类型:Ф48×3.0;钢管横距:700mm; 钢管纵距:700mm;钢管步距:1200mm; 模板支架立杆伸出顶层横向水平杆中心线至模板支撑点的长度: 0.1m; 二、基础承载计算: 导轨架重(共需67节标准节,标准节重167kg): 167kg×67=11189kg, 施工升降机自重标准值: P k=(1600.00×2+1480.00+1300.00×2+2000.00×2+11189.00+200.00)×10/1000=226.69kN 考虑动载、自重误差及风载对基础的影响,取系数n=2.1 基础承载力设计值:P=2.1×226.69=476.05kN 三、地下室顶板结构验算

PSH2D3Z升降横移计算书

PSH2D/3Z升降横移类机械式停车设备计算书 2005-8-9

目录 1、计算模型描述 (1) 2、传动系统说明 (1) 2.1上车架升降系统 (1) 2.2下车架平移系统 (2) 3、运动速度计算 (2) 3.1提升速度计算 (2) 3.2提升力矩计算 (3) 3.3平移速度计算 (3) 4、电机功率计算 (4) 4.1升降电机功率计算 (4) 4.2横移电机功率计算 (4) 5、强度计算 (5) 5.1横梁计算 (5) 5.2纵梁计算 (6) 5.3立柱计算 (7) 5.4升降车板计算 (8) 5.5横移车板计算 (9) 5.6钢丝绳强度计算 (10) 6、参考文献 (11)

1.计算模型描述 地坑负一正一双层五车位立体停车装置的机械系统由机架组件、升降机构、升降载车板组件和横移载车板组件等组成(见图1)。 地面层每一组横移载车板组件都带有一个移动电机,通过链轮传动完成左右平移动作。地坑内升降载车板在地面层移出空位后通过提升电机、链轮组、卷筒和一组由十四个滑轮组成的滑轮组,在钢丝绳的牵引下完成上下动作。 图一PSH2D/3Z停车设备示意图 2.传动系统说明 2.1.升降载车板升降系统 2.1.1.升降用电机减速器功率为2.2 kw,四级电机,减速比为84.35。 输出轴转速17 rpm,输出力矩113.20 kgf·m。 2.1.2.升降用电机减速器用链轮齿数为13,链轮链号16A,节距 25.4mm;卷筒链轮齿数为19。传动比19/13。 2.1. 3.卷筒有效直径为D卷筒= 217mm。 2.1.4.系统采用动滑轮结构,升降载车板速度为卷筒线速度二分之一。 2.2.下车架平移系统

毕业设计(论文)升降横移式立体车库的设计(全套图纸)

摘要 在对国内外车库现状及发展趋势做了充分调研的基础上,以较为典型的升降横移式立体车库为研究对象,选择三层三列式车库结构作为研究模型。综合考虑立体车库制造成本和运行安全的双重因素。 简单介绍了车库的主体结构和特点,对车库的控制系统也作了简单的说明,依据升降横移式立体车库的运行原理,运用机械设计相关知识进行了一系列传动方案的设计,包括提升系统的传动设计,横移系统的传动设计,还运用力学理论对升降横移式立体车库的结构进行了力学分析,包括升降横移式立体车库的框架结构的强度、横移传动系统中轴的强度和升降传动系统中轴的强度等。为了使停车设备满足使用要求,根据国家关于机械式停车设备通用安全要求的标准、升降横移式立体车库的实际,在升降横移式立体车库中使用了一些必要的安全技术,这样保证了车辆的绝对安全,使得整个车库可以安全平稳的运行。 关键词:立体停车库;升降横移式立体车库;钢结构;安全措施 Abstract In the domestic and international current situation and trend of development for garage. Based on sufficient investigation, to choose a more typical of up-down and translation stereo garage as the research object, to choose the three layer three row type garage structure as research model. Considering the three-dimensional garage manufacturing cost and operation safety of the double factors. Briefly introduces the main structure and characteristics of the garage, the garage control system are briefly described, based on the up-down and translation stereo

施工升降机基础计算书资料

施工升降机基础计算书 (一)计算参数 1.施工升降机基本参数 施工升降机型号:SC200/200;吊笼形式:双吊笼; 架设总高度:98m;标准节长度:1.508m; 导轨架截面长:0.9m;导轨架截面宽:0.6m; 标准节重:140kg;对重重量:1300kg; 单个吊笼重: 1460kg;吊笼载重:2000kg; 外笼重:1480kg;其他配件总重量:200kg; 2、基础参数 基础混凝土强度等级:C30; 承台底部长向钢筋:8@250; 承台底部短向钢筋:8@250; 基础长度l:6.0 m;基础宽度b:4.0 m; 基础高度h:0.3 m; (二)基础承载计算: 导轨架重(共需65节标准节,标准节重140kg):140kg×65=9100kg,施工升降机自重标准值:P k=(1460.00×2+1480.00+1300.00×2+2000.00×2+9100.00+200.00)×10/1000=203.0kN 考虑动载、自重误差及风载对基础的影响,取系数n=2.1 基础承载力设计值:P=2.1×203.0=426.3kN (三)地基承载力验算 承台自重标准值:G k=25×6.00×4.00×0.30=180.00kN 承台自重设计值: G=180.00×1.2=216.00kN

作用在地基上的竖向力设计值:F=426.3+216.00=642.3kN 基础下地基承载力为:p= 220.00×6.0×4.0×0.30=1584.00kN > F=642.3kN 该基础符合施工升降机的要求。 (四)基础承台验算 1、承台底面积验算 轴心受压基础基底面积应满足 S=6.0×4.0=24.0m2≥(P k+G k)/f c=(203+180.00)/(14.3×103)=0.027m2。 承台底面积满足要求。 2、承台抗冲切验算 由于导轨架直接与基础相连,故只考虑导轨架对基础的冲切作用。 计算简图如下:

推荐-SC20XX施工升降机结构设计计算书 精品

SC200/200施工升降机 机械厂 结构设计计算书

一、受力分析: 根据该机的使用工况,出现的载荷有:工作载荷、风载荷以及自重载荷,最不利的载荷组合为:升降机超速运行且载荷的吊笼宽度外偏 1 6 放置,风载荷沿平行于建筑物方向吹来。 最不利工况为一个吊笼运行至上极限位置,另一个吊笼在底部的情况。(如图一所示) 二、立柱几何特性计算 1、立柱标准节构造 立柱标准节构造为:以四根Φ76×4mm 无缝钢管(材料为Q235)为主肢,成正方形截面□650×650mm 布置,以8根Φ26.8×2.75mm 钢管(材料Q235)及8根L75×50×5mm 角钢(上、下框架)和四根L75×50×5mm 角钢(中框架)为连缀件焊接而成。(如图二所示) 2、主肢截面积 Ao=π×(D 2 -d 2 )/4 式中 Ao ——主肢截面面积(mm 2 ) D ——主肢钢管外径(mm) d ——主肢钢管内径(mm) 已知:D=76mm d=68mm ∴Ao=π4(D 2-d 2 )= 3.14 4 ×(762-682)=904.78mm 2 3、立柱截面形心位置 因为立柱截面为对称结构,所以立柱截面形心位于立柱截面几

何中心位置,(x c 、y c )为形心坐标。 4、一根主肢截面惯性矩。 Io= π 64 ( D 4 -d 4) 式中Io ——为一根主肢对通过形心坐标轴的惯性矩(mm 4 ) D=76mm , d=68mm ∴Io= π 64( D 4-d 4)= 3.14 64(764-684)=588106.14mm 4 5、立柱标准节对形心轴X 轴、Y 轴的惯性矩 Ix=4Io+4Y c A=4×588106.14+3252 ×904.78×4 =384621974.6mm 4 Iy=Ix=384621974.6mm 4 6、立柱截面面积 A=4Ao=4×904.78=3619.12mm 2 7、立柱截面对形心轴的回转半径 r x =A Ix r x —对形心x 轴的回转半径。 r y =A Iy r y —对形心y 轴的回转半径。 I x =I y =3846=1974.6mm 4 A=3619.12mm 2 ∴r x =r y =326mm 8、连缀件截面面积。 Φ26.8×2.75mm 钢管截面面积 Ag= π 4(D 2-d 2)= 3.14 4 (26.82-21.32)=207.78mm 2

六层升降横移计算书

六层升降横移机械停车设备校核 (1)2-5层提升轴的校核........................................................................................ 已知参数 停车重量:1800kg(车头重量占车总重量的60%,车尾重量占40%); 提升车盘重量:380kg 横移框架总重为783kg 地面横移车盘总装重量:508kg 重力加速度g=9.8m/s2 1电机的校核 使用电机(康明斯电机)参数 电机输入转速(r/min)(与电机频率,极数有关) 频率50Hz 极数4P n=1400r/min 二---五层提升电机:LRCK50-22-100 2.2kw 1/100 输出轴径50mm 电机功率:2.2Kw 输出转速:13.5r/min 输出扭矩:138.78kgf·m 容许径向载荷:1530.6kgf 额定制动转矩:3.06kgf·m

六层提升电机: LRCK50-22-60 3.7kw 1/60 输出轴径50mm 电机功率:2.2Kw 输出转速23.6r/min 输出扭矩153.2kgf ·m 容许径向载荷1530.6kgf 额定制动转矩:4.08kgf ·m 横移电机: LRCK22-04-51 0.4kw 1/50 输出轴径22mm 电机功率:0.4Kw 输出转27.3r/min 输出扭矩11.63kgf ·m 容许径向载荷204.1kgf 额定制动转矩:0.41kgf ·m (1) 2-5层提升电机的校核 ①总重(Wt) Wt=1800+380=2180kg ②提升速度 =???=271.051 .29917.1221001400πv 4.86m/min=0.081m/s ③负载功率 kw kw v W S p t f 2.289.196 .095.01000081.0218005.18.910008.90<=?????==链ηη ----------------合格 式中 f S ——盈余系数,取值1.05 0η——电机减速器传动效率0.95 链η——链条传动效率0.96 结论:2.2KW 的电机有足够的功率以0.081m/s 的速度提升2180kg 重的车盘。 ④输出轴转矩 43.1365 .138.989.195508.99550=??=??=r p T kgf ·m<138.78kgf ·m ----------------------合格 ⑤制动转矩的校核 制动转矩 最大转矩的1.5倍值为: 06.305.21.5≤=f T -------------------------制动转矩合格。 (2) 6层提升电机的校核 ①总重(Wt) Wt=1800+380=2180kg ②提升最大速度 =???=271.051 .29917.122601400πv 8.10m/min=0.135m/s

双层升降横移立体车库的结构设计

济南大学泉城学院毕业设计 题目PSH-5D型停车设备的结构设计专业机械设计制造及其自动化 班级机设09Q3 学生 学号20093006067 指导教师蔡冬梅 二〇一三年五月二十八日

全套资料如下,本课题获得校优,全套资料不需要任何更改,图纸CAD全有,全是去年我刚刚做的,和网上任何一家出售的都不一样,网上卖的需要修改的太多,这个说明书也不是最终版,只是应付学校查重做的应对办法。 购买全套材料请联系QQ521086789

摘要 随着经济的高速发展,越来越多地家庭都拥有了私家车,这使得很多地区的停车问题越来越急剧。如果在住宅小区中再设置机动车位,恐怕已经很难了。因此,停车难的问题在以后将成为居民以及物业管理的难题了。 而机械式立体车库占地少、操作灵活、高效节能,可能成为目前解决停车难问题的主要途径,其中以升降横移式立体车库应用最为广泛。 本文介绍了现有的各类立体停车库的结构和特点,以及小区车库的发展概况,并重点地讲解了立体车库升降的结构设计和停车设备传动系统的设计。立体车库的结构设计主要包括车库的主体框架、横梁、纵梁、电动机、传动系统、载车板以及安全防坠落装置。 本次设计的主要内容包括升降机构的结构设计、材料选择、制造方法、升降链条的设计计算、链轮的设计计算、载车板的设计和升降部分的电机选择等等。 关键词:立体车库;升降横移式;结构设计

ABSTRACT With the high-speed development of economy, more and more families have private cars, and the parking problem is in the increasingly sharp in many parts. If set up a motor vehicle in the residential district is hard enough, I'm afraid. Therefore, the problem of parking difficulty will become a problem fo residents and property management in the future. But mechanical stereo garage covers an area of less, flexible operation, high efficiency and energy saving, and it may be the main way to solve the problem of parking difficulty at present. Lifting and moving solid carport is the most widely used for . This paper introduces the structure and characteristics of the existing each kind of parking equipment, as well as the development community garage of the general situation, and explained the structure design of three-dimensional garage lifting and the transmission system design of parking equipment . Stereoscopic garage structure design mainly includes the main body frame, beam, garage floors of longitudinal beam, motor, transmission system, load and safety falling prevention device. This design main content includes the structure design of lifting mechanism ,material selection ,manufacture method ,the design of the chain and sprocket design calculation ,plate design and lifting part of motor selection and so on . keywords: three-dimensional garage ;lifting and moving ;designed of structure

升降横移设计计算书图文稿

升降横移设计计算书集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

机械式停车设备 简易升降车库PJSLD型二层 设计计算书 目录 一、概况 二、钢结构要求 三、螺栓连接要求 四、立体车库钢结构分析校核 (GB/T3811) 1、支撑柱受力分析 2、立柱稳定性校核 3、导轨支撑梁强度校核 4、顶层横梁强度校核 五、链条受力计算分析及速度计算 简易升降车库PJSLD型设计计算书 一、概况 该停车设备为两层链条式简易升降式,总存车量为2个车位。其的运行原理是:设备的出入口在第一层,上层的停车板只可做升降动作。下层设有一个空位,停车板通过升降动作至下方空位,取出汽车。 依上图所示,简易升降车库主要有以下几个部分组成: ①结构框架

立体车库一般主要以钢结构和钢筋混凝土为主,在该简易升降车库中我们选用钢架结构。 ②上层载车板及其提升系统 顶层载车板都配有一套独立的电机减速机与链传动组合的传动系统。电机顺时针旋转时,载车板上升,电机逆时针旋转时,载车板下降。根据载车板及车重确定链条所需的传动力。根据传动力及载车板的移动速度确定电机功率。根据车身高度确定上下载车板间的距离,根据这个距离确定链条的长度,最后根据传动力确定链轮大小,链节形状及大小。 ④安全装置 上载车板上装有上下行程极限开关和防坠落安全装置。防坠落安全装置装在纵梁与上载车板上停位之间,在纵梁两测各装两只防坠器座,上载车板两侧相应位置处各装两只防坠器挂钩,当上载车板上升到位后,上载车板两侧的四只防坠器挂钩便自动套入四只坠器座内,防坠器插销锁止后,以防止升降电机常闭制动器慢释放后,上载车板在汽车和载车板本身的重力作用下慢慢下滑,压坏下层汽车。另外也防止制动器一旦失灵,上载车板从上停车位坠落,砸坏下层汽车。下载车板的安全装置主要是行程极限开关和防碰撞板。 ⑤控制系统 简易升降立体停车设备的控制系统采用PLC 可编程序控制器控制,主要有手动、自动、复位、急停四种控制方法。自动控制应用于平时的正常工作状态,手动控制应用于调试、维修状态,复位应用于排除故障场合,急停应用于发现异常的紧急场合。此外要控制上层车位上安全钩的电磁铁和系统报警显示装置等。

施工升降机计算书.

天然地基人货电梯计算书 施工升降机计算书 本计算书主要依据本工程施工图、施工升降机说明书、《货用施工升降机第1部分:运载装置可进人的升降机》(GB/T 10054.1-2014),《建筑施工升降机安装、使用、拆卸安全技术规程》(JGJ 215-2010),《吊笼有垂直导向的人货两用施工升降机》(GB 26557-2011),《建筑地基基础设计规范》(GB50007-2011),《混凝土结构设计规范》(GB 50010-2010)等编制。 一、参数信息 1.施工升降机基本参数 施工升降机型号:SCD200/200J;吊笼形式:双吊笼; 架设总高度:60m;标准节长度:1.508m; 导轨架截面长:0.9m;导轨架截面宽:0.6m; 标准节重:167kg;对重重量:1300kg; 单个吊笼重: 1460kg;吊笼载重:2000kg; 外笼重:1480kg;其他配件总重量:200kg; 2.地基参数 承台下地基土类型:3:7灰土夯实;地基土承载力设计值:150kPa; 地基承载力折减系数:0.4; 3.基础参数 基础混凝土强度等级:C35; 承台底部长向钢筋:Ф12@150; 承台底部短向钢筋:Ф12@150;

钢材型号:HRB400;基础高度h:0.3 m; 基础长度l:5 m;基础宽度b:3 m; 二、基础承载计算: 1、设备基本参数 施工升降机型号:SCD200/200J,架设高度:60m, 标准节高度:1.508m,外笼重:1480kg, 吊笼重:1460kg×2=2920kg,对重重量:1300kg×2=2600kg, 吊笼载重量:2000kg×2=4000kg, 导轨架重(共需40节标准节,标准节重167kg):167kg×40=6680kg, 其他配件总重量:200kg, 2、荷载计算 P k=(2920.00+1480.00+2600.00+4000.00+6680.00+200.00)×10/1000=178.80k N 考虑动载、自重误差及风载对基础的影响,取系数n=2.1 P=2.1×178.80=375.48kN 三、地基承载力验算 G k=25×5.00×3.00×0.30=112.50kN 承台自重设计值G=112.50×1.2=135.00kN 作用在地基上的竖向力设计值F=375.48+135.00=510.48kN 基础下地基土为3:7灰土夯实,地基承载力设计值为150kPa。地基承载力调整系数为k c=0.4。 基础下地基承载力为p= 150.00×5.00×3.00×0.40=900.00kN > F=510.48kN 该基础符合施工升降机的要求。

施工升降机设计计算书

SC200/200型施工升降机设计计算书 编制: 审核: 日期: 云南鹏腾机械设备制造有限公司

目录 1.设计原则和参数 (1) 1.1设计计算原则 (1) 1.2符号说明 (4) 1.3主要参考资料 (6) 1.4性能参数 (7) 2.导轨架校核计算 (9) 3.吊笼校核计算 (19) 4.吊杆计算 (25) 5.传动机构设计计算 (29) 6.导轨架连接用高强度螺栓校核计算 (35) 7.施工升降机稳定性计算 (36) 8.施工升降机附着架校核计算 (37)

1.设计原则和参数 1.1设计计算原则 1.1.1工作级别 1.1.1.1起重机的工作级别 1、利用等级 U5 总的工作循环次数错误!未找到引用源。 2、载荷状态 Q 2 Ι3、工作级别 A5 1.1.1.2 结构的工作级别 1、应力循环等级 U4 总的工作应力循环次数错误!未找到引用源。 2、应力状态 Q2 名义应力谱系数 K =0.25 P 3、结构的工作级 A4 1.1.1.3 结构的工作级别 1、利用等级 T5 总的设计寿命 h=6300 2、载荷状态 L2 3、工作级别 M5 1.1.2载荷及其组合 1.1. 2.1计算载荷 ----考虑起升冲击系数错误!未找到引用源。. 1、自重载荷:P C 2、起升载荷:P ----考虑起升载荷的动载系数错误!未找到引用源。:正常 Q 使用时错误!未找到引用源。防坠安全器动作时错误!未找到引用源。 3、风载荷:Fw (1)工作状态的风载荷按下式计算: P错误!未找到引用源。 (错误!未找到引用源。) (2)非工作状态的风载荷按下式计算: P错误!未找到引用源。 (错误!未找到引用源。) (3)安装状态风载荷按下式计算: P错误!未找到引用源。 (错误!未找到引用源。) 以上各式中: Cw------风力系数 A--------垂直于风向的迎风面积 q=150N/m2-------正常工作状态计算风压 错误!未找到引用源。----工作状态最大计算风压 q错误!未找到引用源。-----非工作状态计算风压,沿海地区 1.1.2.2载荷分类 1、基本载荷 基本载荷是始终和经常作用在升降机结构上的载荷。它们是自重载荷P ,起升 C

升降横移设计计算书

机械式停车设备 简易升降车库PJSLD型二层 设计计算书

目录 一、概况 二、钢结构要求 三、螺栓连接要求 四、立体车库钢结构分析校核 (GB/T3811) 1、支撑柱受力分析 2、立柱稳定性校核 3、导轨支撑梁强度校核 4、顶层横梁强度校核 五、链条受力计算分析及速度计算 简易升降车库PJSLD型设计计算书

一、概况 该停车设备为两层链条式简易升降式,总存车量为2个车位。其的运行原理是:设备的出入口在第一层,上层的停车板只可做升降动作。下层设有一个空位,停车板通过升降动作至下方空位,取出汽车。 依上图所示,简易升降车库主要有以下几个部分组成: ①结构框架 立体车库一般主要以钢结构和钢筋混凝土为主,在该简易升降车库中我们选用钢架结构。 ②上层载车板及其提升系统 顶层载车板都配有一套独立的电机减速机与链传动组合的传动系统。电机顺时针旋转时,载车板上升,电机逆时针旋转时,载车板下降。根据载车板及车重确定

链条所需的传动力。根据传动力及载车板的移动速度确定电机功率。根据车身高度确定上下载车板间的距离,根据这个距离确定链条的长度,最后根据传动力确定链轮大小,链节形状及大小。 ④安全装置 上载车板上装有上下行程极限开关和防坠落安全装置。防坠落安全装置装在纵梁与上载车板上停位之间,在纵梁两测各装两只防坠器座,上载车板两侧相应位置处各装两只防坠器挂钩,当上载车板上升到位后,上载车板两侧的四只防坠器挂钩便自动套入四只坠器座内,防坠器插销锁止后,以防止升降电机常闭制动器慢释放后,上载车板在汽车和载车板本身的重力作用下慢慢下滑,压坏下层汽车。另外也防止制动器一旦失灵,上载车板从上停车位坠落,砸坏下层汽车。下载车板的安全装置主要是行程极限开关和防碰撞板。 ⑤控制系统 简易升降立体停车设备的控制系统采用PLC 可编程序控制器控制,主要有手动、自动、复位、急停四种控制方法。自动控制应用于平时的正常工作状态,手动控制应用于调试、维修状态,复位应用于排除故障场合,急停应用于发现异常的紧急场合。此外要控制上层车位上安全钩的电磁铁和系统报警显示装置等。 本设计适停车辆尺寸及质量:5000×1850×1550 本设计所取的单车最大进出时间为:35~60s。 二、钢结构要求 立体车库钢结构受力主要包括:钢结构本身自重,结构架上各停车位的车辆及

三层三列式升降横移式立体车库的设计

任务书 学生姓名: 任务下达日期:20** 年12月19 日 设计开题日期:20** 年04月13 日 设计开始日期:20** 年04月16 日 中期检查日期:20** 年05月18 日 设计完成日期:20** 年06月04 日 一、设计题目:升降横移式立体车库的设计 二、设计的主要内容:随着汽车工业的快速发展,在我国一些大、中城市相继出现了停车难等问题。立体车库是当今社会的朝阳产业,是改善城市交通,缓解城市停车难的新途径。要求设计一款升降横移式立体车库,重点是进行提升部分和横移部分的机械装置设计,选择最优方案,使其结构紧凑、合理。设计合理的出入车库存取流程,在实际使用中,可以提供安全、快速、便捷的停车服务。主要包括:(1)总体方案设计;(2)提升机构的设计计算;(3)横移机构的设计计算。 三、设计目标:设计产品用于中小型轿车的停放,适用于商场、机关、单位、住宅小区等公共区域的汽车停放。三层七车位;限重M=2500kg;一层限高H=2m;二层及以上限高H=1.5m;限宽L=2m;对主要零部件进行设计、计算、校核,完成规定的图量。 指导教师: 院(系)主管领导: 20** 年12月19 日

摘要 在对国内外车库现状及发展趋势做了充分调研的基础上,以较为典型的升降横移式立体车库为研究对象,选择三层三列式车库结构作为研究模型。综合考虑立体车库制造成本和运行安全的双重因素。 简单介绍了车库的主体结构和特点,对车库的控制系统也作了简单的说明,依据升降横移式立体车库的运行原理,运用机械设计相关知识进行了一系列传动方案的设计,包括提升系统的传动设计,横移系统的传动设计,还运用力学理论对升降横移式立体车库的结构进行了力学分析,包括升降横移式立体车库的框架结构的强度、横移传动系统中轴的强度和升降传动系统中轴的强度等。为了使停车设备满足使用要求,根据国家关于机械式停车设备通用安全要求的标准、升降横移式立体车库的实际,在升降横移式立体车库中使用了一些必要的安全技术,这样保证了车辆的绝对安全,使得整个车库可以安全平稳的运行。 关键词:立体停车库;升降横移式立体车库;钢结构;安全措施

SC200200施工升降机结构设计计算书

SC200/200施工升降机 结 构 设 计 计 算 书

一、 受力分析: 根据该机的使用工况,出现的载荷有:工作载荷、风载荷以及自重载荷,最不利的载荷组合为:升降机超速运行且载荷的吊笼宽度外偏 1 放置,风载荷沿平行于建筑物方向吹来。 最不利工况为一个吊笼运行至上极限位置,另一个吊笼在底部的情况。(如图一所示) 二、立柱几何特性计算 1、立柱标准节构造 立柱标准节构造为:以四根Φ76×4mm 无缝钢管(材料为Q235)为主肢,成正方形截面□650×650mm 布置,以8根Φ26.8×2.75mm 钢管(材料Q235)及8根L75×50×5mm 角钢(上、下框架)和四根L75×50×5mm 角钢(中框架)为连缀件焊接而成。(如图二所示) 2、主肢截面积 Ao=π×(D 2-d 2)/4 式中 Ao ——主肢截面面积(mm 2) D ——主肢钢管外径(mm) d ——主肢钢管内径(mm) 已知:D=76mm d=68mm ∴Ao=π4(D 2-d 2)= 3.14 4 ×(762-682)=904.78mm 2 3、立柱截面形心位置

因为立柱截面为对称结构,所以立柱截面形心位于立柱截面几

何中心位置,(x c 、y c )为形心坐标。 4、一根主肢截面惯性矩。 Io= π ( D 4-d 4) 式中Io ——为一根主肢对通过形心坐标轴的惯性矩(mm 4) D=76mm , d=68mm ∴Io= π ( D 4-d 4)= 3.14 (764-684)=588106.14mm 4 5、立柱标准节对形心轴X 轴、Y 轴的惯性矩 Ix=4Io+4Y c A=4×588106.14+3252 ×904.78×4 =384621974.6mm 4 Iy=Ix=384621974.6mm 4 6、立柱截面面积 A=4Ao=4×904.78=3619.12mm 2 7、立柱截面对形心轴的回转半径 r x =A Ix r x —对形心x 轴的回转半径。 r y =A Iy r y —对形心y 轴的回转半径。 I x =I y =3846=1974.6mm 4 A=3619.12mm 2 ∴r x =r y =326mm 8、连缀件截面面积。 Φ26.8×2.75mm 钢管截面面积

施工升降机设计计算书

SC200/200型 施工升降机 设 计 计 算 书 1 导轨架(标准节)的设计与校核 主要性能参数及几何参数 标准节重量:140 kg ; 吊笼重:=0Q 1500kg ; 最大吊杆起重量:q = 200kg ; 每个吊笼的额定载重量为:==21Q Q 2000kg ; 提升高度:='H 144m; 最大附着间距:L = 6m ; 标准节高:h = ; 起升速度:v = 33m/min 导轨架最大架设高度:H = 150m ; 标准节主弦杆尺寸:φ76mm ×; 标准节主弦杆中心距:a ×b = 650×650mm ; 吊笼空间尺寸:××; 工作吊笼数:N=2; 主电机额定功率:P = 3×11kW 。 计算载荷 1.2.1 结构自重载荷 图1-1 标准节结构图 650±0.1 650± 0.1 1508 +0.1 13 11 10912 345 678 12

表1-1 标准节自重明细表 序号 材料规格 名称 数量 材料 单重 (k g ) 总重 (k g ) 1 φ76× 主弦杆 4 20 2 ∠75×50×5 前(后)角钢 4 Q235A 11 3 φ× 斜腹杆Ⅰ 4 Q235A 4 短角钢 4 Q235A 5 ∠63×40×5 前后角钢 2 Q235A 6 齿条 2 Q235A 7 齿条连接块 6 Q235A 8 连接弯板 8 Q235A 9 ∠75×50×5 角钢 4 Q235A 10 φ× 斜腹杆Ⅱ 2 Q235A 11 ∠63×40×5 角钢 2 Q235A 12 φ× 斜腹杆Ⅲ 2 Q235A 13 接头 4 Q235A 14 M16×70 螺钉 6 Q235A 15 M16 螺母 6 Q235A 总计 1.2.2 结构(自重)线载荷 140 92.841.508 x q kg q l m === 1.2.3 风载荷 由实际结构计算得出(一个标准节)实际迎风面积为: 2 1.50820.0760.07520.5870.06820.58720.7750.02680.438s A m =??+??+??+??=(应为As=2×+×+×+×+×=0.486m 2) 桁架轮廓面积l A : 21.5080.650.98l A m =?= 结构迎风面充实率0.438/0.450.98 S l A A ?===;(需改) 型钢桁架结构充实系数 φ=~,取 0.5φ=;(φ与φ应一致) 根据安装高度与结构形式确定风载体形系数C ; 型钢构成平面桁架风力系数C = ~,取C = ; 标准节为两桁架并列的等高结构,则总迎风面积为: A = 1122A A μμ+

相关主题
文本预览
相关文档 最新文档