当前位置:文档之家› 微分中值定理有关证明

微分中值定理有关证明

微分中值定理有关证明
微分中值定理有关证明

☆例1 设)(x f 在[0,3]上连续,在(0,3)内可导,且3)2()1()0(=++f f f ,1)3(=f .

试证:必存在)3,0(∈ξ,使()0f ξ'=

证:∵ )(x f 在[0,3]上连续,∴ )(x f 在[0,2]上连续,且有最大值和最小值.于是

M f m ≤≤)0(;M f m ≤≤)1(;M f m ≤≤)2(,故M f f f m ≤++≤)]2()1()0([3

1. 由

连续函数介值定理可知,至少存在一点[0,2]c ∈使得1)]2()1()0([3

1

)(=++=

f f f c f ,因此)3()(f c f =,且)(x f 在[,3]上连续,(,3)内可导,由罗尔定理得出必存在

)3,0()3,(?∈c ξ使得()0f ξ'=。

☆例2 设)(x f 在[0,1]上连续,(0,1)内可导,且?=1

3

2)0()(3f dx x f

求证:存在)1,0(∈ξ使0)('

=ξf

证:由积分中值定理可知,存在2

[,1]3

c ∈,使得

?

-=13

2)3

2

1)(()(c f dx x f

得到 ?

==13

2)0()(3

)(f dx x f c f

对)(x f 在[0,c]上用罗尔定理,(三个条件都满足) 故存在)1,0(),0(?∈c ξ,使()0f ξ'=

☆例3 设)(x f 在[0,1]上连续,(0,1)内可导,对任意1>k ,有?-=k x dx x f xe k f 1

1)()1(,

求证存在)1,0(∈ξ使1

()(1)()f f ξξξ-'=-

证:由积分中值定理可知存在1[0,]c k ∈使得)01)(()(11

01-=--?k

c f ce dx x f xe c

k x

令)()(1x f xe

x F x

-=,可知)1()1(f F =

这样1110

(1)(1)()()()x c k F f k

xe f x dx ce f c F c --====?

,对)(x F 在]1,[c 上用罗尔定理

(三个条件都满足)存在)1,0()1,(?∈c ξ,使()0F ξ'= 而111()()()()x

x x F x e

f x xe f x xe f x ---''=-+

∴ 11

()[()(1)()]0F e

f f ξ

ξξξξξ

-''=--=

又01≠-ξ

ξe

,则1

()(1)()f f ξξξ

'=-

在例3的条件和结论中可以看出不可能对)(x f 用罗尔定理,否则结论只是()0f ξ'=,而且条件也不满足。因此如何构造一个函数)(x F ,它与)(x f 有关,而且满足区间上罗尔定理的三个条件,从()0F ξ'=就能得到结论成立,于是用罗尔定理的有关证明命题中,如何根据条件和结论构造一个合适的)(x F 是非常关键,下面的模型Ⅰ,就在这方面提供一些选择。

模型Ⅰ:设)(x f 在],[b a 上连续,(b a ,)内可导,0)()(==b f a f 则下列各结论皆成立。

(1)存在),(1b a ∈ξ使11()()0f lf ξξ'+=(为实常数)

(2)存在),(2b a ∈ξ使1

222()()0k f k f ξξξ-'+=(为非零常数)

(3)存在),(3b a ∈ξ使333()()()0f g f ξξξ'+=()(x g 为连续函数) 证:(1)令)()(x f e x F lx

=,在],[b a 上用罗尔定理 ∵ ()()()lx lx

F x le f x e f x ''=+ ∴ 存在),(1b a ∈ξ使()()()011111

='+='ξξξξξf e f le F l l

消去因子,即证.

(2)令()()k

x F x e f x =,在],[b a 上用罗尔定理 1()()()

k

k

k x x F x kx e f x e f x -''=+ 存在),(2b a ∈ξ使2212222()()()0k

k

k F k e f e f ξξξξξξ-''=+=

消去因子,即证。

(3)令)()()

(x f e

x F x G =,其中()()G x g x '=

()

()

()()()

()G x G x F x g x e f x e f x ''=+ 由3()0F ξ'=

清去因子)

(3ξG e

,即证。

例4 设)(x f 在]1,0[上连续,在(0,1)内可导,0)1()0(==f f ,1)2

1

(=f ,试证:

(1)存在)1,2

1(∈η,使ηη=)(f 。

(2)对任意实数,存在),0(ηξ∈,使得()[()]1f f ξλξξ'--=

证明:(1)令x x f x -=Φ)()(,显然它在[0, 1]上连续,又

02

1

)21(,01)1(>=Φ<-=Φ,根据介值定理,存在)1,21(∈η使0)(=Φη即ηη=)(f

(2)令])([)()(x x f e x e

x F x x

-=Φ=--λλ,它在],0[η上满足罗尔定理的条件,故存

在),0(ηξ∈,使()0F ξ'=,即

(){()[]}01=---'-ξξλξλξf f e 从而 ()[

()]1f f ξλξξ'--= (注:在例4(2)的证明中,相当于模型Ⅰ中(1)的情形,其中取为,)(x f 取为

x x f x -=Φ)()()

模型Ⅱ:设)(x f ,)(x g 在],[b a 上皆连续,(b a ,)内皆可导,且0)(=a f ,0)(=b g ,则存在),(b a ∈ξ,使

()()()()0f g f g ξξξξ''+=

证:令)()()(x g x f x F =,则0)()(==b F a F ,显然)(x F 在[b a ,]上满足罗尔定理的条

件,则存在),(b a ∈ξ,使()0F ξ'=,即证.

例5 设)(x f 在[0, 1]上连续,(0, 1)内可导,0)0(=f ,为正整数。 求证:存在)1,0(∈ξ使得()()()f kf f ξξξξ''+=

证:令k

x x g )1()(-=,1,0==b a ,则0)0(=f ,0)1(=g ,用模型Ⅱ,存在

)1,0(∈ξ使得

1()(1)(1)()0k k f k f ξξξξ-'-+-=

故()(1)()0f kf ξξξ'-+= 则()()()f kf f ξξξξ''+=

例6 设)(),(x g x f 在),(b a 内可导,且()()()()f x g x f x g x ''≠,求证)(x f 在),(b a 内任

意两个零点之间至少有一个)(x g 的零点

证:反证法:设b x x a <<<21,0)(1=x f ,0)(2=x f 而在)(2,1x x 内0)(≠x g ,

则令)

()

()(x g x f x F =

在],[21x x 上用罗尔定理 [

12121212()()

()()0,()0,()0()()

f x f x f x f x F x F x

g x g x ==∴=

===] (不妨假设0)(,0)(21≠≠x g x g 否则结论已经成立)

则存在),(21x x ∈ξ使()0F ξ'=,得出()()()()0f g f g ξξξξ''-=与假设条件矛盾。所以在),(21x x 内)(x g 至少有一个零点

例7 设)(),(x g x f 在[b a ,]二阶可导,且()0g x ''≠,又0)()()()(====b g a g b f a f 求证:(1)在(b a ,)内0)(≠x g ; (2)存在),(b a ∈ξ,使

()()()()

f f

g g ξξξξ''='' 证:(1)用反证法,如果存在),(b a c ∈使0)(=c g ,则对)(x g 分别在[c a ,]和[b c ,]

上用罗尔定理,存在),(1c a x ∈使1()0g x '=,存在),(2b c x ∈使2()0g x '=,再对()g x '在[21,x x ]上用罗尔定理存在),(213x x x ∈使3()0g x ''=与假设条件()0g x ''≠矛盾。所以在),(b a 内0)(≠x g (2)由结论可知即()()()()0f g f g ξξξξ''''-=,因此

令)()(')(')()(x f x g x f x g x F -=,可以验证)(x F 在[b a ,]上连续,在),(b a 内可导,0)()(==b F a F 满足罗尔定理的三个条件 故存在),(b a ∈ξ,使()0F ξ'= 于是()()()()0f g f g ξξξξ''''-=成立

例8 设()f x 在[]0,3上连续,(0,3)内二阶可导,且

2

2(0)()(2)(3)f f x dx f f ==+?

(I )

证明 存在[]0,2η∈ 使()()0f f η=

(II ) 证明 存在()0,3ξ∈ 使()''0f ξ= 证:(I )由积分中值定理,存在[]0,2η∈, 使

()()()2

20f x dx f η=-?

故存在[]0,2η∈使()()202f f η=

即()()0f

f η=

(Ⅱ)由()()()2023f f f =+,可知

()()

()2302

f f f +=,

∵()f x 在[]2,3上连续由价值定理可知存在[]2,3c ∈,使()()0f c f =, 由于()f x 在[]0,η上连续,()0,η内可导,且()()0f f η=

根据罗尔定理存在()10,ξη∈,使()1'0f ξ= 又()f x 在[],c η上连续,(),c η内可导,且()()f

f c η=根据罗尔定理存在

()2,c ξη∈(可知21ξξ>)使()2'0f ξ=,最后对()'f x 在1,2ξξ????上用罗尔

定理可知存在()

()1,20,3,ξξξ∈?使()"0f ξ

=

第3章 微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便 于直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞ ∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim () x x f x → 那么就在0x 附近展开。如果极限是

(完整版)利用微分中值定理证明不等式

微分中值定理证明不等式 微分中值定理主要有下面几种: 1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有 0()0f x '=. 2、罗尔中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 3、拉格朗日中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b a ξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠; 则在开区间(),a b 内存在一点ξ,使得 ()()()()()() f f b f a g g b g a ξξ'-='-. 微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例1、 设 ⑴(),()f x f x '在[,]a b 上连续; ⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b == ⑷在(,)a b 内存在点c ,使得()0;f c > 求证在(,)a b 内存在ξ,使()0f ξ''<. 证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以 1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2! f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<. 例2 、设0b a <≤,证明ln a b a a b a b b --≤≤.

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

微分中值定理例题

理工大学 微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理

()()1.()0,(0)0,f x f f f ?ξξξξζξξξ'' <=>><≤[][]''''''[]<<≤121212 121212122111211121 1221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζ?''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。 12n 12n 12n 11221122n 001 1 000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n n n i i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >???∈<<1++?+=++?+≤?=<=>α. '''=+-+ ∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 00 1 1 1 1 0000111() ()()()().x 2! ()()()()()(()()().) n n n i i i i i i i n n i n n i i i i i i i i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======?? ''-'-≥+-<<'≥+-===- ??? ∑∑∑∑∑∑∑注:x ()3.)tan . 2 F ,F 2 (0)0,(0)0,((cos 2 F f x f F F f ππξ ξπξξπππ πππξ [0]0'∈=[0]0=∴===[0]∈Q 设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续, 在(,)内可导, 且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222 cos 0)tan 2 2 x x x f f f πξξξ ξξξξ ξ ξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

最新3[1]1微分中值定理及其应用汇总

3[1]1微分中值定理 及其应用

3.2 微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:2学时 一、微分中值定理: 1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则?Skip Record If...?,使得?Skip Record If...?.

https://www.doczj.com/doc/a04646646.html,grange中值定理: 设函数在区间上连续,在内可导, 则?Skip Record If...?,使得?Skip Record If...?. 推论1 函数在区间I上可导且为I上的常值函 数. 推论2 函数和在区间I上可导且 推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有 (证) 但是, 不存在时, 却未必有不存在. 例如对函数 虽然不存在,但却在点可导(可用定义求得). Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在 内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函 数的连续点,要么是的第二类间断点.这就是说,当函数在区间I 上点点可导时,导函数在区间I上不可能有第二类间断点.

最新数学分析教案-(华东师大版)第六章-微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。 一、引入新课:

通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.doczj.com/doc/a04646646.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证)

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理习题课

第三 微分中值定理习题课 教学目的 通过对所学知识的归纳总结及典型题的分析讲解,使学生对所学的知识有一个更深刻的理解和认识. 教学重点 对知识的归纳总结. 教学难点 典型题的剖析. 教学过程 一、知识要点回顾 1.费马引理. 2.微分中值定理:罗尔定理,拉格朗日中值定理,柯西中值定理. 3.微分中值定理的本质是:如果连续曲线弧AB 上除端点外处处具有不垂直于横轴的切线,则这段弧上至少有一点C ,使曲线在点C 处的切线平行于弦AB . 4.罗尔定理、拉格朗日中值定理、柯西中值的条件是充分的,但不是必要的.即当条件满足时,结论一定成立;而当条件不满足时,结论有可能成立,有可能不成立. 如,函数 (){ 2 ,01,0 , 1 x x f x x ≤<== 在[]1,0上不满足罗尔定理的第一个条件,并且定理的结论对其也是不成立的.而函数 (){ 2 1,11,1, 1 x x f x x --≤<= = 在[]1,1-上不满足罗尔定理的第一和第三个条件,但是定理的结论对其却是成立的. 5.泰勒中值定理和麦克劳林公式. 6.常用函数x e 、x sin 、x cos 、)1ln(x +、α )1(x +的麦克劳林公式. 7.罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理间的关系. 8.00、∞∞ 、∞?0、∞-∞、00、∞1、0 ∞型未定式. 9.洛必达法则. 10.∞?0、00、∞1、0 ∞型未定式向00或∞∞ 型未定式的转化. 二、练习 1. 下面的柯西中值定理的证明方法对吗?错在什么地方?

由于()x f 、()x F 在[]b a ,上都满足拉格朗日中值定理的条件,故存在点()b a ,∈ξ,使得 ()()()()a b f a f b f -=-ξ', ()1 ()()()()a b F a F b F -'=-ξ. ()2 又对任一 (),,()0 x a b F x '∈≠,所以上述两式相除即得 ()()()()()()ξξF f a F b F a f b f ''= --. 答 上述证明方法是错误的.因为对于两个不同的函数()x f 和()x F ,拉格朗日中值定理公式中的ξ未必相同.也就是说在()b a ,内不一定存在同一个ξ,使得()1式和()2式同时成立. 例如,对于()2 x x f =,在[]1,0上使拉格朗日中值定理成立的 21 = ξ;对()3 x x F =, 在[]1,0上使拉格朗日中值定理成立的 33 = ξ,两者不等. 2. 设函数()x f y =在区间[]1,0上存在二阶导数,且 ()()()()x f x x F f f 2 ,010===.试证明在()1,0内至少存在一点ξ,使()0='ξF .还至少存在一点η,使()0F η''= 分析 单纯从所要证明的结果来看,首先应想到用罗尔定理.由题设知, ()()010==F F ,且()x F 在[]1,0上满足罗尔定理的前两个条件,故在()1,0内至少存在一 点ξ,使()0='ξF .至于后一问,首先得求出()x F ',然后再考虑问题. ()()()x f x x xf x F '+='22,且()00='F .这样根据题设,我们只要在[]ξ,0上对函数 ()x F '再应用一次罗尔定理,即可得到所要的结论. 证 由于()y f x =在[]1,0上存在二阶导数,且()()10F F =,()x F 在[]1,0上满足罗尔定理的条件,故在()1,0内至少存在一点ξ,使()0='ξF . 由于 ()()()x f x x xf x F '+='2 2, 且()00='F ,()x F '在[]ξ,0上满足罗尔定理的条件,故在 ()ξ,0内至少存在一点η,使

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

微分中值定理推广及其应用

微分中值定理推广及其应用 目录 一、引言 (2) 二、微分中值定理及其证明 (2) 2.1罗尔定理 (3) 2.2拉格朗日中值定理 (3) 三、微分中值定理的应用 (4) 3.1证明方程根的存在性 (4) 3.2证明不等式 (5) 3.3 利用微分中值定理求极限及证明相关问题 (6) 3.4求极限 (7) 3.5用来证明函数恒为常数 (7) 3.6中值点存在性的应用 (8) 3.6.1一个中值点的情形 (8) 3.6.2.2 泰勒公式法 (10) 四小结: (11) 致谢 (12) 参考文献: (12)

微分中值定理推广及其应用 【摘要】微分中值定理是数学分析中非常重要的基本定理, 它是沟通函数与其导数之间关系的桥梁. 本文主要对罗尔中值定理的条件做一些适当的改变,能得出如下一些结论,从而扩大罗尔定理的应用范围。从拉格朗日中值定理的几何意义出发,通过几何直观,把数学分析空间解析几何知识有机的结合起来,改变传统的构造函数差的方法,通过构造行列式函数得出定理的新方法。通过对这两个定理进行分析,并加以推广,结合几个常见的实例论述了罗尔中值定理、拉格朗日中值定理。在证明不等式,求函数极限等方面的应用,从而加深对两个定理的理解。 【关键词】罗尔定理拉格朗日中值定理推广应用 一、引言 微分中值定理是微分学的基本定理,在数学分析中占有重要的地位,是研究函数在某个区间的整体性质的有力工具。其中,拉格朗日定理是核心,罗尔定理是其特殊情况,柯西定理是其推广。通过查阅大量资料文献和网上查阅,我找到了很多相关资料。 本文以案例形式介绍了微分中值定理在数学分析中的应用,论述了微分中值定理在求极限、证明不等式以及泰勒公式和中值点存在性等几个方面的应用研究比较细致和深入。其中证明某区间上满足一定条件的中值点的存在性是微分中值定理非常重要的应用,也是在历年考研试题中经常出现的题型之一。利用中值定理证明中值点的存在性,要兼顾条件与结论,综合分析,寻求证明思路。充分理解微分学的相关知识,掌握微分中值定理的内容,并会熟练的应用。 使用微分中值定理证题,方法多种多样,技巧性强。本文对这一部分的典型例题进行整理归纳总结,总结出一套符合初学者认知规律的解题方法是非常必要的,这也是进一步学习数学分析的基础。 二、微分中值定理及其证明 为了应用导数的概念和运算来研究函数与实际问题,需要一个联系局部与整体的工具,这就是微分中值定理.微分学是数学分析的重要组成部分, 微分中值定理作为微分学的核心, 是沟通导数和函数值之间的桥梁.罗尔中值定理、拉格朗

微分中值定理与导数的应用练习题

题型 1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题 2.根据极限,利用洛比达法则,进行计算 3.根据函数,计算导数,求函数的单调性以及极值、最值 4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点 5.根据函数,利用极限的性质,求渐近线的方程 内容 一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则 一些类型(00、∞ ∞、∞?0、∞-∞、0 ∞、0 0、∞ 1等) 三.函数的单调性与极值 1.单调性 2.极值 四.函数的凹凸性与拐点 1.凹凸性 2.拐点 五.函数的渐近线

水平渐近线、垂直渐近线 典型例题 题型I 方程根的证明 题型II 不等式(或等式)的证明 题型III 利用导数确定函数的单调区间与极值 题型IV 求函数的凹凸区间及拐点 自测题三 一.填空题 二.选择题 三.解答题 4月13日微分中值定理与导数应用练习题 基础题: 一.填空题 1.函数12 -=x y 在[]1,1-上满足罗尔定理条件的=ξ 。 3.1)(2 -+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。 4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。 5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 . 6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中. 7. =→ x x x 3cos 5cos lim 2 π35- 8.=++∞→x x x arctan ) 1 1ln(lim

微分中值定理及导数应用的教学思考

微分中值定理及导数应用的教学思考 摘要:微分中值定理和导数应用是微积分课程的重要组成部分和微分学的核心内容之一,同时它也是微积分课程教学的重点和难点问题.本文就如何做好这部分的教学做了研究与探讨. 关键词:微分中值定理导数应用微积分课程教学 微分中值定理和导数应用在微积分课程中具有重要的地位与作用.微分中值定理是联系函数和导数的桥梁,它是导数应用的理论基础和前提.导数应用是导数作用的具体体现,是利用导数解决实际问题和最优化理论应用的基础.下面我就微分中值定理和导数应用的相关教学问题谈谈思考. 一、微分中值定理的教学思考 微分中值定理是这章的开头部分,其作用和地位显而易见.这部分教学主要讲清以下两个问题,第一个问题是要讲清为什么要讲这部分内容,也就是其重要性.从教材内容上看,前面我们已经讲解了导数及微分,让学生明白了导数及微分的重要性,但没有讲解究竟如何应用导数的问题,因此有必要进一步加强研究导数的应用,而微分中值定理是导数应用的理论支撑,它是后面研究函数的极限、单调性、凹凸性、最值等的基础.从微积分产生的历史来看,微积分的

产生可以归结为四大问题,其中之一为函数的最值问题,而解决函数最值问题的理论前提和基础就是微分中值定理.第二个问题就是要讲清罗尔定理、拉格朗日定理和柯西中值定理这三个定理内容及相互间的联系.这三个定理在条件和结论上都有很大的相似性,它们之间有很密切的内在联系.为了方便叙述,我们简单地罗列一下内容.罗尔定理:如果函数f(x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)在区间端点处函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ∈(a,b),使得f′(ξ)=0.拉格朗日定理:如果函数f(x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导,那么在(a,b)内至少有一点ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).柯西中值定理:如果函数f(x)和F(x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)对任一x∈(a,b),F′(x)≠0,那么在(a,b)内至少有一点ξ∈(a,b),使得[f(b)-f(a)]/[F(b)-F(a)]=f′(ξ)/F′(ξ).从条件上看,三个定理都有闭区间[a,b]上连续和开区间(a,b)内可导的共性条件.从结论上来看,它们都是通过导数联系函数增量与自变量的关系.那么条件和结论如何联系的呢?我们可以按照如下方式进行分析.罗尔定理条件(1)表明f(x)对应的曲线在闭区间[a,b]上是不间断的,条件(2)表明曲线在开区间(a,b)内

微分中值定理及其应用

二、内容与要求 1.理解并会用罗尔定理、拉格朗日中值定理,知道泰勒定理,了解并会用柯西中值定理. 2.掌握用洛必达法则求未定式极限的方法. 3. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用. 4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 重点罗尔定理、拉格朗日中值定理、用洛必达法则求未定式极限. 难点罗尔定理、拉格朗日中值定理、泰勒定理 三、概念、定理的理解与典型错误分析 定义若存在x0的某邻域,使得对一切,都有 则称为极大值(极小值),称x0为极大(小)值点。极大值、极小值统称为极值,极大值点、极小值点统称为极值点。 定理(费马(Femat)定理)(取到极值的必要条件)

设f(x)在点x0处取到极值,且存在,则 反之不真,例如但f(0)不是极值。 费马定理常用于证明f(x)=0有一个根,找一个F(x),使证明F(x)在某点x0处取到极值且存在,由费马定理知即 定理( 罗尔(Rolle)定理) 设f(x)在闭区间[a,b]上满足下列三个条件: (1)f(x)在闭区间[a,b]上连续;(2)f(x)在开区间(a,b)内可导;(3)则至少存在一点使 推论在罗尔定理中,若f(a)=f(b)=0,则在(a,b)内必有一点,使即方程f(x)=0的两个不同实根之间,必存在方程f'(x)=0的一个根。 罗尔定理的应用:1 证明f(x)=0有一个根,找到一个F(x),使,验证F(x)在某闭区间[a,b]上满足罗尔定理条件, 则至少存在一点。2 证明适合某种条件的存在性:把待证含有的等式,通过分析转化为形式,对F(x)应用罗尔定理即可。 定理(拉格朗日(Lanrange)定理) 若f(x)在闭区间[a,b]上满足下列二个条件: (1)f(x)在闭区间[a,b]上连续 ; (2)f(x)在开区间(a,b)内可导,则至少存在一点 拉格朗日定理的结论常写成下列形式: 上式中当a>b时公式仍然成立,即不论a,b之间关系如何,总介于a,b之间,由 所以 拉格朗日定理是连结函数值与导函数值之间的一座桥梁,特别适合给出导数条件,要证明函数值关系的有关结论,就需要用到拉格朗日定理,拉格朗日定理主要应用是证明不等式. 定理(单调性定理 ) 设f(x)在区间X(X可以是开区间,可以是闭区间,也可以是半闭半开区间,也可以无穷区间)上连续,在X内部可导(不需要在端点可导), (1)若内部,则f(x)在区间X上递增。 (2)若内部,则f(x)在区间X上递减。

相关主题
文本预览
相关文档 最新文档