当前位置:文档之家› 微分中值定理及其应用

微分中值定理及其应用

微分中值定理及其应用
微分中值定理及其应用

分类号UDC 单位代码

密级公开学号 2006040223

四川文理学院

学士学位论文

论文题目:微分中值定理及其应用

论文作者:XXX

指导教师:XXX

学科专业:数学与应用数学

提交论文日期:2010年4月20日

论文答辩日期:2010年4月28日

学位授予单位:四川文理学院

中国 达州

2010年4月

目 录

摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言

第一章 微分中值定理历史 (1)

1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4)

2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7)

3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1

型不定式极限 .................................................... 10 3.3.2

型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

微分中值定理及其应用

学生:XXX 指导老师:XXX

摘要微分中值定理是微分学的基本定理之一,在微分学有着重要的地位,其发展经历了几百年.费马作为微积分的创立者,提出了费马定理,罗尔在《方程的解法》中又有了罗尔定理的前身,拉格朗日在《解析函数论》一书中首次提出拉格朗日中值定理,柯西在《微分计算教程》中给出最初的柯西定理.在本论文第二章分别详细的介绍了微分中值定理的三大派别.微分中值定理的应用很广,在很多领域都可以看到其理论知识.在第三章微分中值定理的应用中分别从证明根的存在性问题、证明一些不等式、不定式极限三个方向简要说明其应用,并用一些经典的例题来诠释.

关键词:罗尔定理;拉格朗日中值定理;柯西中值定理;根的存在性;不定式极限

DIFFERENTIAL MEAN V ALUE THEOREM AND ITS

APPLICATION

student: Hu Zhanhong Supervisor: Hu Rong

ABSTRACT Mean Value Theorem is one of the fundamental theorem of differential calculus, the differential calculus plays an important role. Its development through the centuries, Fermat as the founder of calculus proposed Fermat's theorem, Rolle in "Equation Solution" in the former, there has been Rolle's theorem, Lagrange in the "theory of analytic functions" the first time a book Lagrange mean value theorem, Cauchy in the "differential Computer Course" given in the initial Cauchy's theorem. In the second chapter presented a detailed description of the Mean Value Theorem of the three major factions. Mean Value Theorem is very broad, can be seen in many areas of their theoretical knowledge. Chapter III Application of Mean Value Theorem to prove the root, respectively, from the existence of the problem, that some of inequality, a brief description of the infinitive limit its application in three directions, and with some classic examples to explain.

Key words:Rolle's theorem,Lagrange theorem,Cauchy mean value theorem,Root of,Infinitive Limit

第一章 微分中值定理历史[1]

1.1 引言

微分中值定理是微分学的基本定理之一,是研究函数的有力工具. 微分中值定理有着明显的几何意义和运动学意义.以拉格朗日(Lagrange)中值定理为例,它的几何意义:一个定义在区间[,]a b 上的可微(注:连续且除端点外处处具有不垂直于x 轴的切线)的曲线弧()f x ,其上至少有一点C , 使曲线在这一点的切线平行于连接点(,())a f a 与(,())b f b 的割线.它的运动学意义:设f 是质点的运动规律,质点在时间区间[,]a b 上走过的路程()()f b f a - ,

()()f b f a b a

--代表质点在(,)a b 上的平均速度, 在(,)a b 上至少存在某一时刻ξ,使得质点在ξ的瞬时速度恰好是它的平均速度.

人们对微分中值定理的认识可以追溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes)正是巧妙地利用这一结论,求出抛物弓形的面积.

意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理.

人们对微分中值定理的研究,从微积分建立之时就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马引理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究的是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年)以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证

明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理.

1.2 微分中值定理产生的历史

费马作为微积分的创立者,他在研究极大和极小问题的解法时,得到统一的解法“虚拟等式法”,从而得出原始形式的费马定理.所谓的虚拟等式法,费马的“虚拟等式法”基于一种非常直观的想法,如果0()f x 为()f x 的极大值,那么从直观上来看,()f x 在0x 附近值变化很小,当e 很小时0x x =,)(x f 和()f x e +相差很小.用现代语言来说,对于函数()f x ,让自变量从x 变化到e x +,当()f x 为极值时,()f x 和()f x e +的差近似为0,用e 除虚拟等式,

()()

0f x e f x e +-≈ ,然后让0→e ,就得到函数极值点的导数值为0,这就是费马定

理: 函数 ()f x 在0x x =处取极值,并且可导,则()0f x '=. 应该指出: 费马给出以上结论,微积分还处于初创阶段,并没有明确导数,极限连续的概念,用现代眼光来看,其论断也是不严格的.现在看到的费马定理是后人根据微积分理论和费马发现的实质重新给出的. 罗尔在论著《方程的解法》给出了“在多项式1

01100n

n n a x a x a x a --+++= 的两个相

邻根中,方程1

2011(1)0n n n na x

n a x a ---+-+= 至少有一个实根.”这是定理:“()f x 在

[,]a b 上连续,在(,)a b 上可导,并且()()f a f b =,则必存在一点(,)a b ξ∈,使()0f ξ'=”

的特例.也就是以上定理被称为罗尔定理的原因.最初罗尔定理和现代罗尔定理不仅内容有所不同,而且证明也大相径庭,它是罗尔利用纯代数方法加以证明的,和微积分并没有什么联系.现在看到的罗尔定理,是后人根据微积分理论重新证明,并把它推广为一般函数,“罗尔定理”这一名称是由德罗比什在1834年给出,并由意大利数学家贝拉维蒂斯在1846年发表的论文中正式使用的.

拉格朗日定理是微分中值定理中最主要的定理.它是指:“()f x 在[,]a b 上连续,在

(,)a b 上可导,则存在一点(,)a b ξ∈,,使

()()

()f b f a f b a

ξ-'=-.”这一定理是拉格朗日在

《解析函数论》一书中首先给出的,它最初形式为:“函数()f x 在0x 和x 之间连续, ()

f x '

的最大值为A ,最小值为B ,则

0)

()(x x x f x f --必取],[A B 中一个值.”

历史上拉格朗日定理证明有三个,最初的证明是拉格朗日在《解析函数论》中给出的.这个证明很大程度建立在直观基础上,所以并不是严格的. 它依赖于这样一个事实: 当

()0f z '>, ()f z 在[,]a b 上单调增加.所用的条件也比现在强,现代中值定理只须()f x 在[,]a b 上可导,而拉格朗日最初的中值定理,却需()f x 在[,]a b 上可导,并存在连续导数.并

且所用连续概念,也是直观的,“假设变量连续地变化,那么函数将会产生相应变化,但是如果不经过一切中间值,它就不会从一个值过渡到另一个值.” 十九世纪初,在以柯西等为代表的微积分严格化运动中,人们给出了极限、连续、导数的严格定义,也给拉格朗日中值定理以新的严格证明,柯西在《无穷小计算概论》中证明了:如果()f x '在[,]a b 为连续,则 必有一个[,]a b ξ∈,使

00

()()

()f x f x f x x ξ-'=-现代形式的拉格朗日定理,是由法国数学家博

(O.Bonnet) 在其著作《Cours de Calcul Differentiel et integral 》中给出的,他不是利用()f x '的连续性,而是罗尔定理对拉格朗日定理加以重新证明.

柯西定理被认为是拉格朗日定理的推广.它是指: 设()f x 和()F x 在[,]a b 上连续,在

(,)a b 上可导,并且()0F x '≠,则必有一个值(,)a b ξ∈,使

()()()()f b f a F b F a --=()

()

f F ξξ'' 柯西在《微分计算教程》中给出最初的柯西定理: ()f x 和()F x 在[,]a b 上有连续的导数,并且()F x '在[,]a b 上不为零,这时对于某一点[,]a b ξ∈,有

()()()()f b f a F b F a --=()

()

f F ξξ'' 柯西的证明与拉格朗日对拉格朗日中值定理很相似.

微分中值定理在柯西的微积分理论系统中占有重要的地位.例如他利用微分中值定理给洛必达法则以严格的证明,并研究泰勒公式的余项.从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分.

第二章 微分中值定理介绍

[2]

2.1 罗尔定理

定理1(罗尔定理) 若函数f 满足下列条件:

(1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =,

则在开区间(,)a b 内至少存在一点ξ, 使得

()0f ξ'=

(注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.)

罗尔定理的几何意义是说:在除端点外处处可导的一段连续曲线上,如果曲线的两端高度相等,则至少存在一条水平切线.

证明:因为f 在[,]a b 上连续,所以有最大值和最小值,分别用M 和m 表示,现分两种情况来讨论:

(1) 若m M =,则f 在[,]a b 上必为常数,从而结论显然成立.

(2) 若m M <,则因()()f a f b =,使得最大值M 和最小值m 至少有一个在(,)

a b 内某点ξ处取得,从而ξ是f 的极值点.由条件(2),f 在点ξ处可导,故由费马定理推知

()0f ξ'=

2.2 拉格朗日中值定理

定理2(拉格朗日中值定理)若函数f 满足如下条件:

(1)在闭区间[,]a b 连续;

(2)在开区间(,)a b 可导,

则在开区间(,)a b 内至少存在一点ξ,使得

()()

()f b f a f b a

ξ-'=-

显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形.

证明:作辅助函数

()()

()()()()f b f a F x f x f a x a b a

-=--

--

显然,()()0F a F b ==,且F 在[,]a b 上满足罗尔中值定理的另两个条件. 故存在(,)a b ξ∈,使

()()

()()0f b f a F f b a

ξξ-''=-

=-

移项后既得到所要证明的式子.

拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点

(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB .我们在证明中引入的

辅助函数()F x ,正是曲线()y f x =与直线AB (()()

()()f b f a y f a x a b a

-=+

--)之差.

此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

()()()()f b f a f b a ξ'-=-, a b ξ<<;

()()(())()f b f a f a b a b a θ'-=+--, 01θ<<; ()()()f a h f a f a h h θ'+-=+, 01θ<<.

值得注意的是:拉格朗日公式无论对于a b <,还是a b >都成立,而ξ则是介于a 与b 之间的某一定数.而后两式的特点,在于把中值点ξ表示成了()a b a θ+-,使得不论,a b 为何值,θ总可为小于1的某一正数.

2.3 柯西中值定理

定理3(柯西中值定理)设函数f 和g 满足

(1)在闭区间[,]a b 上都连续; (2)在开区间(,)a b 内都可导; (3)()f x '和()g x '不同时为0; (4)()()g a g b ≠,

则在开区间(,)a b 内至少存在一点ξ,使得

()()()()f b f a g b g a --=

()

()

f g ξξ'' 证明:作辅助函数

()()

()()()(()())f b f a F x f x f a g b g a b a

-=--

--

易见F 在[,]a b 上满足罗尔中值定理条件,故存在(,)a b ξ∈,使得

()()

()()()0()()

f b f a F f

g g b g a ξξξ-'''=-

=-

因为()0g ξ'≠(否则由上式()f ξ'也不为零),所以可把上式改写成结论. 柯西中值定理的几何意义:把f ,g 这两个函数写作以x 为参量方程

()

()

u g x v f x =??

=? 在UOV 平面上表示一段曲线,由于

()()

()()

f b f a

g b g a --表示连接该曲线两端的弦AB 的斜率,

而()()x f dv

g du ξ

ξξ='='则表示该曲线上x ξ= 相对应的一点((),())C g f ξξ处的切线的斜率.因此上述切线与弦AB 互相平行.

第三章 微分中值定理应用

3.1 根的存在性的证明[3]

引理 若实函数()y f x =在开区间(,)a b 内可导,且12()()()n f x f x f x === ,其中

12,,n x x x 是(,)a b 内n 个互不相同的实数,则方程()0f x '=在(,)a b 内至少有1n -个不

同的实根.

设12,,n x x x 已按从小到大的顺序排列,以其作为分点可得1n -个小区间

12231[,],[,],,[,]n n x x x x x x - ,在每个区间上应用罗尔定理即可得到上述结论.

定理1 若实函数()y f x =在开区间(,)a b 内有m 阶导数,且12()()()n f x f x f x === ,其中12,,n x x x 是(,)a b 内n 个互不相同的实数,则方程()0m

f x =在(,)a b 内至少有n m -个不同的实根.

证明:由引理知方程()0f x '=在(,)a b 内至少有1n -个根,不妨设这1n -个根为

121,,n ξξξ- .则121()()()0n f f f ξξξ-'''==== ,由引理可得方程()0f x ''=在(,)

a b 内至少有 2n -个根.以此类推,()0m

f x =在(,)a b 内至少有n m -个根.

推论 若实函数()y f x =在开区间(,)a b 内有m 阶导数,且方程()0m

f x =在(,)a b 内只有

n 个不同的实根,则方程()0f x =在(,)a b 内至多有n m + 个不同的实根.

例1:设,,a b c 为实数,求证方程3

2

432ax bx cx a b c ++=++在(0,1)内至少有一个根. 证明:令

432()()f x ax bx cx a b c x =++-++

则 (0)(1)0f f ==.

易验证()f x 在[0,1]上满足罗尔定理的三个条件,从而 存在(0,1)ξ∈,使得()0f ξ'=.

即 3

2

432ax bx cx a b c ++=++.

例2:设()f x 在[0,1]上可导,且0()1f x <<,又对于(0,1)内的所有点x 有1)(-≠'x f 证明方程()10f x x +-=在(0,1)内有唯一的实根. 证明:先证存在性

()()1p x f x x =+-

则()p x 在[0,1]上可导.

因为0()1f x <<,所以(0)(0)10p f =-<, (1)(1)0p f => 由中值定理知()p x 在(0,1)内至少有一个零点 即方程()10f x x +-=在(0,1)内至少有一个实根. 再证唯一性

用反证法,设方程()10f x x +-=在(0,1)内有两个实根12,x x ,

不妨设0()1f x <<,有11()1f x x =-,22()1f x x =-.对()f x 在12[,]x x 上由拉格朗日中值定理,有

12(,)x x ξ∈使21212121

()()1(1)

()1f x f x x x f x x x x ξ----'=

==---

这与假设1)(-≠'x f 矛盾,唯一性得证.

3.2 一些不等式的证明

应用微分中值定理(含Taylor 公式)及其导出的结论证明不等式内容十分丰富, 在此仅举几例.

例1[5]

:设12,,n a a a

12n

a a a n

+++

其中等号成立12n a a a ?===

证明:取函数()ln x

f x =,它的定义域是区间(0,+∞)故1()f x x '=

,21)(x

x f -='' 不妨设1a ≤2a ≤ ≤n a

120...n

a a a a n

+++=

或120...0n a a a na +++-=

有1a ≤0a ≤n a

将函数()ln x f x =在0a 展开泰勒公式(到二阶导数)

?0x >有020020111

ln ln ()()()2!a x x a x a a ξ

=+

-+-- 其中ξ于0a 与x 之间,显然

20211

()()2!x a ξ--≤0 于是,? 0x >有000

1

ln ln ()a

x x a a =+

- 当12,,(0,)n x a a a =∈+∞ 时,分别有

1ln a ≤0100

1

ln ()a a a a +

- 2ln a ≤0200

1

ln ()a a a a +

- ……………………………………

ln n a

≤000

1

ln ()a

n a a a +

- 将上述n 个不等式两端分别相加,有:

12ln ln ln n a a a +++ ≤()01200

1

ln ...a n n a a a na a +

+++- 0ln a n =

即: (

)12...1ln n a a a n

?≤12()ln n a a a n +++??

?

?

?

≤12n

a a a n

+++

因为

211

()02!ξ

-≠

所以,不等式中等号成立12n a a a ?=== 例4[4]

. 设2

e a b e <<<,证明()2224

ln ln b a b a e

->

-. 证明:对函数2

ln x 在[,]a b 上应用拉格朗日中值定理,得

()22

2ln ln ln b a b a ξ

ξ

-=

-,a b ξ<<.

设 ()ln t t t

?=,则()21ln t

t t ?-'=

当t e >时,()0t ?'<,所以()t ?单调减少,从而()2

()e ?ξ?>,即

2

22ln ln 2

e e e

ξξ>= ()2

2

2ln ln ln b a b a ξ

ξ

-=-

()2224

ln ln b a b a e

->

- 3.3 求不定式极限

我们把两个无穷小量或无穷大量之比的极限统称为不定式极限,分别记为

00型或∞

型的不定式极限.现在我们将以导数为工具研究不定式极限,这个方法通常称为洛必达法则.其中柯西中值定理是建立洛必达法则的理论依据.

3.3.1

型不定式极限 定理1 若函数f 和g 满足:

(1)00

lim ()lim ()0f x g x x x x x →→==;

(2)在点0x 的某空心邻域00()u x 内两者都可导,且()0g x '≠;

(3)0

()

lim

()

x x f x A g x →'='(A 可为实数,也可为±∞或∞), 则

00()()

lim lim ()()

x x x x f x f x A g x g x →→'==' 例1[6]

.求3

0(1)2(1)

lim x x x x e e x →+--

解:这是

型不定式, 故 30(1)2(1)

lim x x x x e e x →+-- 20(1)2lim

3x x x x e xe e x →++-= 201lim 3x x

x xe e x →+-= 0lim

6x x x x e xe e x →+-= =16

3.3.2

型不定式极限 定理2 若函数f 和g 满足:

(1)00

lim ()lim ()f x g x x x x x ++→→==∞;

(2)在点0x 的某右邻域0

0()u x +

内两者都可导,且()0g x '≠; (3)0

()

lim

()

x x f x A g x →'='(A 可为实数,也可为±∞或∞), 则

0()()

lim lim ()()

x x x x f x f x A g x g x +

+

→→'=='

例2.求0

ln(sin 3)

lim ln(sin )

x x x +

解:这是

型不定式,故 0

ln(sin 3)

lim ln(sin )

x x x +

03cos3sin lim sin 3cos x x x

x x

+

→=

03cos cos39sin 3sin lim

3cos cos3sin 3sin x x x x x

x x x x

+→-=- =1

3.4 利用拉格朗日定理讨论函数的单调性

利用拉格朗日中值定理能够很方便地判别出函数的单调性

定理1:若函数()f x 在[,]a b 连续,在(,)a b 内可导,则有:如果在(,)a b 内()f x '≥0则()f x 在[,]a b 上单调递增;如果在[,]a b 内()f x ' ≤0则()f x 在[,]a b 单凋递减.

另外()f x 在(,)a b 内除有限个点外,仍有()f x '≥0(或≤0),则()f x 在[,]a b 仍然是单调递增(或单调递减的),即连续函数在个别点处无导数并不影响函数的单调性. 证明: 若f 为增函数,则对每一0[,]x a b ∈,当0x x ≠时,有

00

()()

f x f x x x -- ≥0

令0x x →,即得()f x ' ≥0.

反之,若()f x 在区间[,]a b 上恒有()f x '≥0,则对任意12,[,]x x a b ∈(设12x x <),应用拉格朗日定理,存在12(,)[,]x x a b ξ∈?,使得

2121()()()()f x f x f x x ξ'-=-≥0

由此征得f 在[,]a b 上为增函数.

例6.求证当0x >时,2

ln(1)2

x x x +>-

证明:令

2

()ln(1)()2

x f x x x =+--

因()f x 在[0,+∞)上连续,在(0,+∞)内可导,且

2

1()111

x f x x x x '=-+=

++ 当0x >时,有2

()01

x f x x '=>+,所以当0x >时,()f x 是单调增加的,

当0x >时,()(0)0f x f >=,因此()0f x >,从而

2

ln(1)2

x x x +>-

第四章结论

微分中值定理作为大学课程里的一个重要内容,是研究函数的有力工具.其地位是不容忽视的,微分中值定理的发展历史是非常悠久的,通过近三、四百年的发展数学科学家们得到了罗尔定理;拉格朗日中值定理;柯西中值定理.这三大定理可以说是其发展的一个里程碑,对以后的发展有着非常大的帮助.近些年来人们又开始着重去挖掘微分中值定理的一系列应用,并且得到了很多有用的定理.体现微分中值定理的一部分价值.本论文在详细的介绍了微分中值定理的来源之后,又系统性的整理了微分中值定理的三种不同的形式,同时分别证明了这三种定理,并总结了它们之间的联系.从接下来的内容中我们可以充分了解微分中值定理的应用,通过四个大方向来诠释其应用,其实这是微不足道的,因为微分中值定理的应用还有很多,这里只是总结了它的经典应用及其例题.希望能够帮助大家对微分中值定理的学习.

参考文献

[1] 卢玉峰. 微分中值定理历史与发展. 高等数学研究, 2008;11(5):59-61

[2] 华东师范大学. 数学分析[M]. 北京:高等教育出版社,2001:119-128

[3] 王宝艳. 微分中值定理的应用. 雁北师范学院学报, 2005;21(2):59-60

[4] 张娅莉、吴炜. 微分中值定理的应用. 信阳农业高等专科学校学报, 2007;17(1):

135

[5] 霍玉珍. 高数中微分中值定理的应用. 河北建筑工程学院学报,2004;22(1):153

[6] 薛秋. 微分中值定理的应用. 无锡商业职业技术学院学报,2007;7(6):68

致谢

衷心感谢我的指导老师胡蓉讲师,她渊博的专业知识,严谨科学的治学态度,精益求精的工作作风,一丝不苟、锲而不舍的精神,和对数学研究的独到见解,对我产生了深远的影响,使我终身受益.

感谢他指引我进入一个崭新的研究方向,感谢他时刻关心着我的论文进度并认真耐心地指导毕业论文,使得本文能够顺利完成.在胡蓉老师的指引下,我对微分中值定理有了初步的了解,具有了一定的独立科研能力.能够成为胡蓉老师的学生,乃人生一大幸事.在此成文之际,谨向导师胡蓉讲师致以我最崇高的敬意和衷心的感谢,并祝胡蓉老师及家人身体健康,生活幸福.感谢四川文理学院的老师和领导,感谢他们在我读书期间所给予的关心和帮助.

感谢同窗以及其他师兄妹,非常高兴能与他们一起学习讨论.

最后,感谢我的家人,感谢他们对我永远的支持与鼓励!

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

高等数学第三章微分中值定理与导数的应用的习题库

第三章 微分中值定理与导数的应用 一、判断题 1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。( ) 2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。 ( ) 3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→- =,则必存在(a,b)ξ∈使'()0f ξ=。( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使 '()0f ξ=。 ( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。 ( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。 ( ) 8. arcsin arccos ,[1,1]2 x x x π +=∈-。 ( ) 9. arctan arctan ,(,)2 x x x π += ∈-∞+∞。 ( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。 ( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。 ( ) 12. ' ' 222(2)lim lim 21(21)x x x x x x →→=-- ( ) 13. 22' 0011lim lim()sin sin x x x x e e x x →→--= ( ) 14. 若'()0f x >则()0f x >。 ( ) 15. 若在(,)a b 内()f x ,()g x 都可导,且''()()f x g x >,则在(,)a b 内必有()()f x g x >。( ) 16. 函数()arctan f x x x =-在R 上是严格单调递减函数。 ( ) 17. 因为函数()f x x =在0x =处不可导,所以0x =不是()f x 的极值点。 ( ) 18. 函数()f x x =在0x =的领域内有()(0)f x f ≥,所以()f x 在0x =处取得极小值。( ) 19. 函数sin y x x =-在[0,2]π严格单调增加。 ( ) 20. 函数1x y e x =+-在(,0]-∞严格单调增加。 ( ) 21. 方程32210x x x ++-=在()0,1内只有一个实数根。 ( ) 22. 函数y [0,)+∞严格单调增加。 ( ) 23. 函数y (,0]-∞严格单调减少。 ( ) 24. 若'0()0f x =则0x 必为'0()f x 的极值点。 ( ) 25. 若0x 为()f x 极值点则必有'(0)0f =。 ( )

第五章微分中值定理及其应用答案

139 第五章 微分中值定理及其应用 上册P 178—180 习题解答 1. 设0)(0>'+x f ,0)(0<'-x f .证明0x 是函数)(x f 的极小值点 . 证 0)()(lim )(0000 <--='- →-x x x f x f x f x x ,?在点0x 的某左去心邻域内有 0) ()(0 0<--x x x f x f , 此时00<-x x ,?在点0x 的该左去心邻域内有 0)()(0>-x f x f , 即)()(0x f x f >; 0)()(lim )(0000 >--='+ →+x x x f x f x f x x ,?在点0x 的某右去心邻域内有0) ()(0 0>--x x x f x f , 此时00>-x x ,?在点0x 的该左去心邻域内有 0)()(0>-x f x f , 即)()(0x f x f >. 综上 , 在点0x 的某去心邻域内有)()(0x f x f >. 即0x 是函数)(x f 的极小值点 . 2. 举例说明 , Rolle 定理的三个条件都不满足 , 函数仍然可以存在水平的切线 . 解答: 例如函数 . 21 , 1, 12 , )(2? ??≤<-≤≤-=x x x x x f )(x f 定义在区间] 2 , 2 [-上 , )(x f 在 点1=x 间断 ,因此不满足在闭区间上连续和在开区间内可导的条件 , 并且4) 2(=-f , 而 1) 2 (=f , ≠-) 2(f ) 2 (f . 对区间] 2 , 2 [-上的这个函数)(x f , Rolle 定理的三个条件都 不满足 . 但是 , 0) 0 (='f , 该曲线上点) 0 , 0 (处的切线仍然是水平的 . 3. 设函数)(x f 在闭区间] , [b a 上连续 , 在开区间) , (b a 内可微 . ⑴ 利用辅助函数 1 )(1)(1)( )(b f b a f a x f x x =ψ. 证明Lagrange 中值定理 .

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

微分中值定理例题

理工大学 微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理

()()1.()0,(0)0,f x f f f ?ξξξξζξξξ'' <=>><≤[][]''''''[]<<≤121212 121212122111211121 1221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζ?''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。 12n 12n 12n 11221122n 001 1 000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n n n i i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >???∈<<1++?+=++?+≤?=<=>α. '''=+-+ ∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 00 1 1 1 1 0000111() ()()()().x 2! ()()()()()(()()().) n n n i i i i i i i n n i n n i i i i i i i i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======?? ''-'-≥+-<<'≥+-===- ??? ∑∑∑∑∑∑∑注:x ()3.)tan . 2 F ,F 2 (0)0,(0)0,((cos 2 F f x f F F f ππξ ξπξξπππ πππξ [0]0'∈=[0]0=∴===[0]∈Q 设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续, 在(,)内可导, 且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222 cos 0)tan 2 2 x x x f f f πξξξ ξξξξ ξ ξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

数学分析之微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。 一、引入新课:

通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.doczj.com/doc/2616380676.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证) 推论2 函数和在区间I上可导且

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

微分中值定理及其应用习题解析2

第六节 定积分的近似计算 1. 分别用梯形法和抛物线法近似计算 ?21x dx (将积分区间十等份) 解 (1)梯形法 ?21x dx ≈412.111.1121(1012+??+++-)6938.0≈ (2)抛物线法 ?21x dx =???++-(42 113012])8.116.114.112.11(2)9.117.115.113.111.11++++++++6932.0≈ 2. 用抛物线法近似计算dx x x ?π0sin 解 当n=2时,dx x x ?π 0sin ≈12π?? ?????+++πππ22)32222(41≈1.8524. 当n=4时,dx x x ?π 0sin ≈ 24π ??? ????????? ??+++??? ??++++πππππππππππ322222287sin 7885sin 5883sin 388sin 841 ≈1.8520. 当n=6时,dx x x ?π 0sin ≈ ??? ? ??+++++???? ??+?+++++πππππππππππππππ54332233321211sin 11122234127sin 712125sin 5122212sin 124136≈1.8517. 3..图10-27所示为河道某一截面图。试由测得数据用抛物线法求截面面积。 解 由图可知n=5,b-a=8. ? b a x f )(dx ≈()()[]864297531100245*68y y y y y y y y y y y ++++++++++ =()()[]85.075.165.185.0255.02.10.230.15.0400154++++++++++ =()2.102.2215 4+=8.64(m 2) (1)按积分平均 ?-b a t d t f a b )(求这一天的平均气温,其中定积分值由三种近视法分别计算;

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

数学分析简明教程答案数分5_微分中值定理及其应用

第五章 微分中值定理及其应用 第一节 微分中值定理 331231.(1)30()[0,1]; (2)0(,,),;(1)[0,1]30[0,1]()3n x x c c x px q n p q n n x x c x x f x x x c -+=++=-+=<∈=-+证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。 证明:设在区间内方程有两个实根,即有使得函数 值为零012023(,)[0,1],'()0. '()33(0,1)(3,0)30()[0,1] (2)2220n x x x f x f x x x x c c n n k x px q x ∈?==---+=≤=>++=。那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。因此有:方程为常数在区间内不可能有两个不同的实根。当时,方程至多只可能有两个实根,满足所证。 当时,设方程有三个实根,即存在实数1230112022301021 01011 0202()0 (,),(,),'()'()0,'()0 (*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p --<<=++=∈∈==?=+=??=+=?? 使得函数 成立。那么由罗尔定理可知存在使得即 001022 0000102), (,),''(0)0,''()(1)0, 0,0,0. 2(*).212n n x x x f f x n n x x x x n k p n n k x px q -∈==-==<>==+>++ 再次利用罗尔定理可以知道,存在使得即 显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。 当时,设方程12341112122313341112131 11110()0(,),(,),(,)'()0,'()0,'()0,'()0'(n n x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x -=<<<=++=∈∈∈====+=有三个实根,即存在实数使得函数成立。那么利用罗尔定理可知存在 使得即有 1 12121 131321111222121321222 21212 2222212)0, '()0 (,),(,)''()''()0,''()(1)0 .''()(1)0 212,n n n n nx p f x nx p x x x x x x f x f x f x n n x f x n n x n k x x ----??=+=??=+=?∈∈==?=-=??=-=??=+>= 于是就存在使得即 由于于是此时必有221111222121321220;(,),(,),,0(,,)n x x x x x x x x n x px q n p q =∈∈<++=但是由于可知必有 出现了矛盾。 因此当为奇数时,方程为正整数为实数至多有三个实根。

微分中值定理习题课

第三 微分中值定理习题课 教学目的 通过对所学知识的归纳总结及典型题的分析讲解,使学生对所学的知识有一个更深刻的理解和认识. 教学重点 对知识的归纳总结. 教学难点 典型题的剖析. 教学过程 一、知识要点回顾 1.费马引理. 2.微分中值定理:罗尔定理,拉格朗日中值定理,柯西中值定理. 3.微分中值定理的本质是:如果连续曲线弧AB 上除端点外处处具有不垂直于横轴的切线,则这段弧上至少有一点C ,使曲线在点C 处的切线平行于弦AB . 4.罗尔定理、拉格朗日中值定理、柯西中值的条件是充分的,但不是必要的.即当条件满足时,结论一定成立;而当条件不满足时,结论有可能成立,有可能不成立. 如,函数 (){ 2 ,01,0 , 1 x x f x x ≤<== 在[]1,0上不满足罗尔定理的第一个条件,并且定理的结论对其也是不成立的.而函数 (){ 2 1,11,1, 1 x x f x x --≤<= = 在[]1,1-上不满足罗尔定理的第一和第三个条件,但是定理的结论对其却是成立的. 5.泰勒中值定理和麦克劳林公式. 6.常用函数x e 、x sin 、x cos 、)1ln(x +、α )1(x +的麦克劳林公式. 7.罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理间的关系. 8.00、∞∞ 、∞?0、∞-∞、00、∞1、0 ∞型未定式. 9.洛必达法则. 10.∞?0、00、∞1、0 ∞型未定式向00或∞∞ 型未定式的转化. 二、练习 1. 下面的柯西中值定理的证明方法对吗?错在什么地方?

由于()x f 、()x F 在[]b a ,上都满足拉格朗日中值定理的条件,故存在点()b a ,∈ξ,使得 ()()()()a b f a f b f -=-ξ', ()1 ()()()()a b F a F b F -'=-ξ. ()2 又对任一 (),,()0 x a b F x '∈≠,所以上述两式相除即得 ()()()()()()ξξF f a F b F a f b f ''= --. 答 上述证明方法是错误的.因为对于两个不同的函数()x f 和()x F ,拉格朗日中值定理公式中的ξ未必相同.也就是说在()b a ,内不一定存在同一个ξ,使得()1式和()2式同时成立. 例如,对于()2 x x f =,在[]1,0上使拉格朗日中值定理成立的 21 = ξ;对()3 x x F =, 在[]1,0上使拉格朗日中值定理成立的 33 = ξ,两者不等. 2. 设函数()x f y =在区间[]1,0上存在二阶导数,且 ()()()()x f x x F f f 2 ,010===.试证明在()1,0内至少存在一点ξ,使()0='ξF .还至少存在一点η,使()0F η''= 分析 单纯从所要证明的结果来看,首先应想到用罗尔定理.由题设知, ()()010==F F ,且()x F 在[]1,0上满足罗尔定理的前两个条件,故在()1,0内至少存在一 点ξ,使()0='ξF .至于后一问,首先得求出()x F ',然后再考虑问题. ()()()x f x x xf x F '+='22,且()00='F .这样根据题设,我们只要在[]ξ,0上对函数 ()x F '再应用一次罗尔定理,即可得到所要的结论. 证 由于()y f x =在[]1,0上存在二阶导数,且()()10F F =,()x F 在[]1,0上满足罗尔定理的条件,故在()1,0内至少存在一点ξ,使()0='ξF . 由于 ()()()x f x x xf x F '+='2 2, 且()00='F ,()x F '在[]ξ,0上满足罗尔定理的条件,故在 ()ξ,0内至少存在一点η,使

最新3[1]1微分中值定理及其应用汇总

3[1]1微分中值定理 及其应用

3.2 微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:2学时 一、微分中值定理: 1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则?Skip Record If...?,使得?Skip Record If...?.

https://www.doczj.com/doc/2616380676.html,grange中值定理: 设函数在区间上连续,在内可导, 则?Skip Record If...?,使得?Skip Record If...?. 推论1 函数在区间I上可导且为I上的常值函 数. 推论2 函数和在区间I上可导且 推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有 (证) 但是, 不存在时, 却未必有不存在. 例如对函数 虽然不存在,但却在点可导(可用定义求得). Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在 内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函 数的连续点,要么是的第二类间断点.这就是说,当函数在区间I 上点点可导时,导函数在区间I上不可能有第二类间断点.

相关主题
文本预览
相关文档 最新文档