当前位置:文档之家› 微分中值定理及定积分极限题型

微分中值定理及定积分极限题型

微分中值定理及定积分极限题型
微分中值定理及定积分极限题型

第十二专题讲座-----积分中值定理及定积分极限题型2009

智 轩

一、完整的积分中值定理包含下列全部内容

1.函数平均值 [

]()1

b a

M f

f

x dx b a

=

-?

2.第一中值定理

()1如果函数在积分区间[],a b 上连续,则()()()b a

a b f x dx f b a ξξ?≤≤?=-?

。(教材上的描述)

()2如果函数()(), f x x ?在积分区间

[],a b 上连续,且当a x b <<时,()x ?不变号,则

则()()()()b b

a

a

a b f x x dx f x dx ξ?ξ??≤≤?

=?

?。

3. 第二中值定理(★超纲内容,仅仅作为理解用)

()1若函数()(), f x x ?在积分区间[],a b 上有界并可积,当且当a x b

<

<时,()x ?单调,则

()()()()()()00b b

a

a

f x x dx a a f x dx b f d b x x ξ

ξ

?ξ???≤-≤=++?

?

??。

()2若函数()(), f x x ?在积分区间[],a b 上有界并可积,

当且当a x b

<<时,()x ?单调递减(广义上),

且为非负数,则

()()()()0b a

a

a b f x x dx a f x dx ξ

ξ???≤≤?

=+?

?。

()3若函数()(), f x x ?在积分区间[],a b 上有界并可积,

当且当a x b

<<时,()x ?单调递增(广义上),

且为非负数,则

()()()()0b b

a

a b f x x dx b f x dx ξ

ξ???≤≤?

=-?

?。

二、与积分有关的求极限问题 【例1】求极限1

10

lim 1n

n x

I dx x

→∞=+?

解:

110

110

10100111

lim

1n

n

n

n

n

n x

x

x x dx x dx x

x

n x

I dx x

→∞

≤≤?≤

≤?≤

=

+++?==+?

?

?

【例2】求极限220

lim sin n

n I xdx π

→∞

=?

解:

对任意给定的0ε>,且设2

π

ε<

,则

220

20

220

0sin sin

sin 22sin 1lim sin 0

2220, sin 220sin

2lim

sin

n

n

n n n n n

n

n xdx xdx N n N xdx I xdx π

π

ε

π

π

ππ

εεεε

πππ

εεεππεεε

ε-→∞

→∞

????≤

+≤--+ ? ?????

??????->--< ? ?????

?≤

≤?==?

?

?

?

当时, 有

【例3】求极限()3sin lim 0n p n

n x I dx p x

+→∞

=>?

解:当n x n p ≤≤+,有

3sin 1sin sin lim

0n p n p n

n

n x

x p x dx I dx x

n

x

n

x

++→∞

?

?==?

?

【例4】求极限142

lim 1

dx

I x εε→+=+?

解:

(

)

()

(

)

1142

2

10

1

lim

lim

1

1

1

arctan

lim

arctan

|lim

1

d

x

dx

I x x

x εεεεεεε

εε

εε

ε

→+→+→+→+==++===?

?

【例5】求极限()5

lim

b

a

f x I dx x

εε

ε→+=?,已知()[]0,1, 0, 0f

x C a b ∈>>。

解:应用第一中值定理

()

()()()

()()50

ln

lim

lim ln

0ln

b

b

a

a

b

a

f

x dx b a b dx f f x

x

a f

x b b I dx f f

x

a

a

εεε

εεε

εεεξεξ

ξξ→+→+?≤≤?=====???

【例6】宽型罗毕达法则 已知()[)0, f

x ∈+∞和()lim x f x A →+∞

=,求证 ()0

1

lim

x x f

x dx

A x

→+∞

=?。

证 明:分三种情况

()1 0A >

()()()()()()()()

()()()

lim 0, 2

2

2

lim 1

lim

lim

1

x x R

x

R

x

R R R

x x x x x A f

x A R x R f

x A A f

x dx f

x dx f x dx f

x dx dx f

x dx x R f

x dx f

x f

x dx A

x

→∞

→+∞

→+∞

→+∞

=??>>>

?

=+>+=

+

-?=+∞

?=

=?

?????

?

?当时,

()2 0A <

()()()()()()()()

()()()

lim 0, 2

2

2

lim 1

lim

lim

1

x x R

x

R

x

R R R

x x x x x A f

x A R x R f

x A A f

x dx f

x dx f x dx f

x dx dx f

x dx x R f

x dx f

x f

x dx A

x

→+∞

→+∞

→+∞

→+∞

=??>>>

?

=+>+=

+

-?=-∞

?=

=?

?????

?

?当时,

()3 0A =

()()()()()()()()00

00

0,lim lim 01

lim 11

1lim

lim 0x x x x x x

x x x B g x f x B g x f x B B g x dx B x

f x dx

g x dx Bdx B B A

x

x →+∞→∞→+∞

→+∞

→+∞>=+?=+=>?????=???????=-=-==???

?

????

任选并设 的结论

所以 ()()0

1

lim lim x x x f

x dx

f

x A x

→+∞

→+∞

==

?

【例7】宽型罗毕达法则举例 求60

1

lim arctan x x I xdx x

→+∞

=?

解:

60

1

lim

arctan lim arctan 2x x x I xdx x x

π

→+∞

→+∞

===

?

第3章 微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便 于直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞ ∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim () x x f x → 那么就在0x 附近展开。如果极限是

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =?? ?0 1(x 2-x )d x B .S =?? ?0 1 (x -x 2)d x C .S =?? ?0 1 (y 2-y )d y D .S =??? 1 (y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图 形的面积S =?? ?0 1 (x -x 2)d x . 2.如图,阴影部分面积等于( ) A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??? -3 1 (3-x 2 -2x )d x =(3x -1 3x 3-x 2)|1 -3=32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积

微分中值定理例题

理工大学 微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理

()()1.()0,(0)0,f x f f f ?ξξξξζξξξ'' <=>><≤[][]''''''[]<<≤121212 121212122111211121 1221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζ?''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。 12n 12n 12n 11221122n 001 1 000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n n n i i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >???∈<<1++?+=++?+≤?=<=>α. '''=+-+ ∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 00 1 1 1 1 0000111() ()()()().x 2! ()()()()()(()()().) n n n i i i i i i i n n i n n i i i i i i i i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======?? ''-'-≥+-<<'≥+-===- ??? ∑∑∑∑∑∑∑注:x ()3.)tan . 2 F ,F 2 (0)0,(0)0,((cos 2 F f x f F F f ππξ ξπξξπππ πππξ [0]0'∈=[0]0=∴===[0]∈Q 设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续, 在(,)内可导, 且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222 cos 0)tan 2 2 x x x f f f πξξξ ξξξξ ξ ξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

(完整版)利用微分中值定理证明不等式

微分中值定理证明不等式 微分中值定理主要有下面几种: 1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有 0()0f x '=. 2、罗尔中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 3、拉格朗日中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b a ξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠; 则在开区间(),a b 内存在一点ξ,使得 ()()()()()() f f b f a g g b g a ξξ'-='-. 微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例1、 设 ⑴(),()f x f x '在[,]a b 上连续; ⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b == ⑷在(,)a b 内存在点c ,使得()0;f c > 求证在(,)a b 内存在ξ,使()0f ξ''<. 证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以 1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2! f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<. 例2 、设0b a <≤,证明ln a b a a b a b b --≤≤.

高等数学第三章微分中值定理与导数的应用的习题库

第三章 微分中值定理与导数的应用 一、判断题 1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。( ) 2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。 ( ) 3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→- =,则必存在(a,b)ξ∈使'()0f ξ=。( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使 '()0f ξ=。 ( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。 ( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。 ( ) 8. arcsin arccos ,[1,1]2 x x x π +=∈-。 ( ) 9. arctan arctan ,(,)2 x x x π += ∈-∞+∞。 ( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。 ( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。 ( ) 12. ' ' 222(2)lim lim 21(21)x x x x x x →→=-- ( ) 13. 22' 0011lim lim()sin sin x x x x e e x x →→--= ( ) 14. 若'()0f x >则()0f x >。 ( ) 15. 若在(,)a b 内()f x ,()g x 都可导,且''()()f x g x >,则在(,)a b 内必有()()f x g x >。( ) 16. 函数()arctan f x x x =-在R 上是严格单调递减函数。 ( ) 17. 因为函数()f x x =在0x =处不可导,所以0x =不是()f x 的极值点。 ( ) 18. 函数()f x x =在0x =的领域内有()(0)f x f ≥,所以()f x 在0x =处取得极小值。( ) 19. 函数sin y x x =-在[0,2]π严格单调增加。 ( ) 20. 函数1x y e x =+-在(,0]-∞严格单调增加。 ( ) 21. 方程32210x x x ++-=在()0,1内只有一个实数根。 ( ) 22. 函数y [0,)+∞严格单调增加。 ( ) 23. 函数y (,0]-∞严格单调减少。 ( ) 24. 若'0()0f x =则0x 必为'0()f x 的极值点。 ( ) 25. 若0x 为()f x 极值点则必有'(0)0f =。 ( )

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

最新微分中值定理习题五

微分中值定理习题五

微分中值定理习题五 1、?Skip Record If...? ?Skip Record If...? 2、?Skip Record If...? 3、?Skip Record If...? 4、?Skip Record If...? 5、?Skip Record If...? 6、?Skip Record If...? 7、?Skip Record If...? ?Skip Record If...? 8、?Skip Record If...? 9、?Skip Record If...? ?Skip Record If...? 10、?Skip Record If...? ?Skip Record If...? 11、?Skip Record If...? ?Skip Record If...??Skip Record If...? 12、?Skip Record If...? ?Skip Record If...??Skip Record If...? 13、?Skip Record If...? ?Skip Record If...? ?Skip Record If...? 14、?Skip Record If...? 15、?Skip Record If...? 16、?Skip Record If...?

17、?Skip Record If...? 18、?Skip Record If...? 19、?Skip Record If...? 20、?Skip Record If...? 21、?Skip Record If...? 22、?Skip Record If...? ?Skip Record If...? ?Skip Record If...?. 23、?Skip Record If...? 24、?Skip Record If...? ?Skip Record If...? 25、?Skip Record If...? ?Skip Record If...?,?Skip Record If...? 26、?Skip Record If...? 27、?Skip Record If...? 28、?Skip Record If...? 29、?Skip Record If...? 30、?Skip Record If...? 31、?Skip Record If...? 32、?Skip Record If...? 33、?Skip Record If...? 34、?Skip Record If...? 35?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...?. 36、 ?Skip Record If...?

一元微分中值定理练习题

一元微分中值定理练习题 一、证明ff (nn )(ξξ)=00成立 1.若函数f(x)在(a,b)内有二阶导数,且f (x 1)=f (x 2)=f (x 3),其中 a 0, 证明存在ξ∈(a,b),使得f ′′(ξ)=0。 4.设曲线y=f(x)在[a,b]上二阶可导,连接点A(a,f(a)),B(b,f(b))的直线交曲线于点C(c,f(c))(a

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理及其应用习题解析2

第六节 定积分的近似计算 1. 分别用梯形法和抛物线法近似计算 ?21x dx (将积分区间十等份) 解 (1)梯形法 ?21x dx ≈412.111.1121(1012+??+++-)6938.0≈ (2)抛物线法 ?21x dx =???++-(42 113012])8.116.114.112.11(2)9.117.115.113.111.11++++++++6932.0≈ 2. 用抛物线法近似计算dx x x ?π0sin 解 当n=2时,dx x x ?π 0sin ≈12π?? ?????+++πππ22)32222(41≈1.8524. 当n=4时,dx x x ?π 0sin ≈ 24π ??? ????????? ??+++??? ??++++πππππππππππ322222287sin 7885sin 5883sin 388sin 841 ≈1.8520. 当n=6时,dx x x ?π 0sin ≈ ??? ? ??+++++???? ??+?+++++πππππππππππππππ54332233321211sin 11122234127sin 712125sin 5122212sin 124136≈1.8517. 3..图10-27所示为河道某一截面图。试由测得数据用抛物线法求截面面积。 解 由图可知n=5,b-a=8. ? b a x f )(dx ≈()()[]864297531100245*68y y y y y y y y y y y ++++++++++ =()()[]85.075.165.185.0255.02.10.230.15.0400154++++++++++ =()2.102.2215 4+=8.64(m 2) (1)按积分平均 ?-b a t d t f a b )(求这一天的平均气温,其中定积分值由三种近视法分别计算;

定积分与微积分基本定理

教学过程

一、课堂导入 问题:什么是定积分?定积分与微积分基本定理是什么? 二、复习预习 1.被积函数若含有绝对值号,应先去绝对值号,再分段积分.

2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3.定积分式子中隐含的条件是积分上限大于积分下限. 4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 5.将要求面积的图形进行科学而准确的划分,可使面积的求解变得简捷. 三、知识讲解 考点1 定积分的概念 设函数y=f(x)定义在区间[a,b]上用分点a=x0

在每个小区间内任取一点ξi,作和式I n=∑n-1 i=0 f(ξi)Δx i.当λ→0时,如果和式的极限存在,把和式I n的极限叫做函数f(x) 在区间[a,b]上的定积分,记作?b a f(x)d x,即?b a f(x)d x=lim λ→0∑n-1 i=0 f(ξi)Δx i,其中f(x)叫做被积函数,f(x)d x叫做被积式,a 为积分下限,b为积分上限.

(1)?b a kf(x)d x=k?b a f(x)d x (k为常数). (2)?b a[f(x)±g(x)]d x=?b a f(x)d x±?b a g(x)d x. (3)?b a f(x)d x=?c a f(x)d x+?b c f(x)d x (a

定积分与微分基本定理

定积分与微积分基本定理 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念、几何意义. ● 直观了解微积分基本定理的含义,并能用定理计算简单的定积分. ● 应用定积分解决平面图形的面积、变速直线运动的路程和变力作功等问题,在解决问题的过程中体验定积分的价值. 重点难点: ● 重点:正确计算定积分,利用定积分求面积. ● 难点:定积分的概念,将实际问题化归为定积分问题. 学习策略: ● 运用“以直代曲”、“以不变代变”的思想方法,理解定积分的概念. ● 求定积分主要是要找到被积函数的原函数,也就是说,要找到一个函数,它的导函数等于被积函数. ● 求导运算与求原函数运算互为逆运算. 二、学习与应用 常见基本函数的导数公式 (1)()f x C =(C 为常数),则'()f x = (2)()n f x x =(n 为有理数),则'()f x = (3)()sin f x x =,则'()f x = (4)()cos f x x =,则'()f x = (5)()x f x e =,则'()f x = (6)()x f x a =,则'()f x = “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(7)()ln f x x =,则'()f x = (8)()log a f x x =,则'()f x = 函数四则运算求导法则 设 ()f x ,()g x 均可导 (1)和差的导数:[()()]'f x g x ±= (2)积的导数:[()()]'f x g x ?= (3)商的导数:()[]'() f x g x = (()0g x ≠) 知识点一:定积分的概念 如果函数)(x f 在区间[,]a b 上连续,用分点b x x x x x a n n =<

微分中值定理习题课

第三 微分中值定理习题课 教学目的 通过对所学知识的归纳总结及典型题的分析讲解,使学生对所学的知识有一个更深刻的理解和认识. 教学重点 对知识的归纳总结. 教学难点 典型题的剖析. 教学过程 一、知识要点回顾 1.费马引理. 2.微分中值定理:罗尔定理,拉格朗日中值定理,柯西中值定理. 3.微分中值定理的本质是:如果连续曲线弧AB 上除端点外处处具有不垂直于横轴的切线,则这段弧上至少有一点C ,使曲线在点C 处的切线平行于弦AB . 4.罗尔定理、拉格朗日中值定理、柯西中值的条件是充分的,但不是必要的.即当条件满足时,结论一定成立;而当条件不满足时,结论有可能成立,有可能不成立. 如,函数 (){ 2 ,01,0 , 1 x x f x x ≤<== 在[]1,0上不满足罗尔定理的第一个条件,并且定理的结论对其也是不成立的.而函数 (){ 2 1,11,1, 1 x x f x x --≤<= = 在[]1,1-上不满足罗尔定理的第一和第三个条件,但是定理的结论对其却是成立的. 5.泰勒中值定理和麦克劳林公式. 6.常用函数x e 、x sin 、x cos 、)1ln(x +、α )1(x +的麦克劳林公式. 7.罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理间的关系. 8.00、∞∞ 、∞?0、∞-∞、00、∞1、0 ∞型未定式. 9.洛必达法则. 10.∞?0、00、∞1、0 ∞型未定式向00或∞∞ 型未定式的转化. 二、练习 1. 下面的柯西中值定理的证明方法对吗?错在什么地方?

由于()x f 、()x F 在[]b a ,上都满足拉格朗日中值定理的条件,故存在点()b a ,∈ξ,使得 ()()()()a b f a f b f -=-ξ', ()1 ()()()()a b F a F b F -'=-ξ. ()2 又对任一 (),,()0 x a b F x '∈≠,所以上述两式相除即得 ()()()()()()ξξF f a F b F a f b f ''= --. 答 上述证明方法是错误的.因为对于两个不同的函数()x f 和()x F ,拉格朗日中值定理公式中的ξ未必相同.也就是说在()b a ,内不一定存在同一个ξ,使得()1式和()2式同时成立. 例如,对于()2 x x f =,在[]1,0上使拉格朗日中值定理成立的 21 = ξ;对()3 x x F =, 在[]1,0上使拉格朗日中值定理成立的 33 = ξ,两者不等. 2. 设函数()x f y =在区间[]1,0上存在二阶导数,且 ()()()()x f x x F f f 2 ,010===.试证明在()1,0内至少存在一点ξ,使()0='ξF .还至少存在一点η,使()0F η''= 分析 单纯从所要证明的结果来看,首先应想到用罗尔定理.由题设知, ()()010==F F ,且()x F 在[]1,0上满足罗尔定理的前两个条件,故在()1,0内至少存在一 点ξ,使()0='ξF .至于后一问,首先得求出()x F ',然后再考虑问题. ()()()x f x x xf x F '+='22,且()00='F .这样根据题设,我们只要在[]ξ,0上对函数 ()x F '再应用一次罗尔定理,即可得到所要的结论. 证 由于()y f x =在[]1,0上存在二阶导数,且()()10F F =,()x F 在[]1,0上满足罗尔定理的条件,故在()1,0内至少存在一点ξ,使()0='ξF . 由于 ()()()x f x x xf x F '+='2 2, 且()00='F ,()x F '在[]ξ,0上满足罗尔定理的条件,故在 ()ξ,0内至少存在一点η,使

定积分与微积分基本定理

定积分与微积分基本定理 [考纲传真] 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义. 【知识通关】 1.定积分的有关概念与几何意义 (1)定积分的定义 如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在 每个小区间上任取一点ξi (i =1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1 b -a n f (ξi ),当n →∞ 时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定 积分,记作??a b f (x )d x ,即??a b f (x )d x =lim n →∞∑n i =1 b -a n f (ξi ). 在??a b f (x )d x 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式. (2)定积分的几何意义 图形 阴影部分面积 S =??a b f (x )d x S =-??a b f (x )d x S =??a c f (x )d x -??c b f (x )d x S =??a b f (x )d x -??a b g(x )d x =??a b [f (x )-g(x )]d x 2.(1)??a b kf (x )d x =k ??a b f (x )d x (k 为常数);

(2)??a b [f 1(x )±f 2(x )]d x =??a b f 1(x )d x ±??a b f 2(x )d x ; (3)??a b f (x )d x =??a c f (x ) d x +??c b f (x )d x (其中a

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理与导数的应用练习题

题型 1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题 2.根据极限,利用洛比达法则,进行计算 3.根据函数,计算导数,求函数的单调性以及极值、最值 4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点 5.根据函数,利用极限的性质,求渐近线的方程 内容 一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则 一些类型(00、∞ ∞、∞?0、∞-∞、0 ∞、0 0、∞ 1等) 三.函数的单调性与极值 1.单调性 2.极值 四.函数的凹凸性与拐点 1.凹凸性 2.拐点 五.函数的渐近线

水平渐近线、垂直渐近线 典型例题 题型I 方程根的证明 题型II 不等式(或等式)的证明 题型III 利用导数确定函数的单调区间与极值 题型IV 求函数的凹凸区间及拐点 自测题三 一.填空题 二.选择题 三.解答题 4月13日微分中值定理与导数应用练习题 基础题: 一.填空题 1.函数12 -=x y 在[]1,1-上满足罗尔定理条件的=ξ 。 3.1)(2 -+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。 4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。 5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 . 6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中. 7. =→ x x x 3cos 5cos lim 2 π35- 8.=++∞→x x x arctan ) 1 1ln(lim

最新微分中值定理的证明题74625

微分中值定理的证明 题74625

微分中值定理的证明题 1.若?Skip Record If...?在?Skip Record If...?上连续,在?Skip Record If...?上可 导,?Skip Record If...?,证明:?Skip Record If...?,?Skip Record If...?使 得:?Skip Record If...?。 证:构造函数?Skip Record If...?,则?Skip Record If...?在?Skip Record If...?上连续,在?Skip Record If...?内可导, 且?Skip Record If...?,由罗尔中值定理知:?Skip Record If...?,使?Skip Record If...? 即:?Skip Record If...?,而?Skip Record If...?,故?Skip Record If...?。 2.设?Skip Record If...?,证明:?Skip Record If...?,使得?Skip Record If...?。 证:将上等式变形得:?Skip Record If...? 作辅助函数?Skip Record If...?,则?Skip Record If...?在?Skip Record If...?上连续,在?Skip Record If...?内可导, 由拉格朗日定理得: ?Skip Record If...? ?Skip Record If...??Skip Record If...?, 即 ?Skip Record If...? ?Skip Record If...??Skip Record If...?, 即:?Skip Record If...? ?Skip Record If...?。 3.设?Skip Record If...?在?Skip Record If...?内有二阶导数,且?Skip Record If...?,有?Skip Record If...?证明:在?Skip Record If...?内至少存在一点?Skip Record If...?,使得:?Skip Record If...?。

相关主题
文本预览
相关文档 最新文档