当前位置:文档之家› 张量习题参考解4

张量习题参考解4

张量习题参考解4

参考解答4

4.1 利用运算法则将下式写成实体形式

①j jk k c A b ② ijk ij A B ③ ij jikl C B ④ ij jk kl A A A ⑤ ijk ijk A B

① b A c ?? ② ()3B A : ③ ()4??C B ④ A A A ?? ⑤ ()()A B 33

4.2 利用运算法则将下式写成指标形式(小写粗体为一阶张量,大写粗体为二阶张量)

① ()ρ?a uu ? ② 2tr A A A -=?

① j i i u u a ρ= i i j a u u ρ ② ()ii jj ij ji ii ij ji A A A A A A A =2

-- 4.3 证明:坐标变换不改变张量的对称性和反对称性

证:

以二阶为例

① 设 A 为张量 则 A T 亦为张量,所以有

'''=e e e e ij i j kl k l A A '''=e e e e T T ij i j kl k l A A

由对称性 =T i j i j A A 故 ''=T kl kl A A 毕。

证2: ββββ''===kl ki lj ij lj ki

ji lk A A A A ② 设 A 为张量 则-A 、 A T 亦为张量,所以有

'''-=-e e e e i j i j k l k l A A '''=e e e e

T T ij i j kl k l A A 由反对称性=-T ij ij A A 故 ''=-T kl kl A A 毕。

证2: ββββ''==-=-kl ki lj ij lj ki

ji lk A A A A

4.4 证明二阶反对称张量对角线分量(i =j )为零

证:

200=-?=?=ii ii ii ii T T T T

4.5若 A 二阶对称张量, B 二阶反对称张量,则

0=A B :

证:

200=-=-?=?=i j i j j i j i i j i j

i j i j i j i j A B A B A B A B A B

张量分析与材料应力张量习题解答

练习题Ⅱ(金属所) 1. 用下标符号证明:C B A B C A C B A )()()(?-?=??。 2. 证明 nk nj ni mk mj mi lk lj li lmn ijk δδδδδδδδδ=∈∈ 3. 证明∈ijk ∈klm =(δil δjm -δim δjl ) 4. 证明∈ijk ∈ikj =-6。 5. 证明∈ijk ∈mik =-2δjm 。 6. 证明具有中心对称的晶体不具有由奇阶张量描述的物理性质,但由偶阶张量描述的物理性质也具有中心对称的特性。 7. B 为矢量,M 为二阶张量,证明: (div M )?B =div(M ?B )-{ (B ?)∶M } 8. 设在P 点的应力张量 σ如下:求法线方向为]221[的面上的正应力。 ???? ? ??----=211121112)(ij σ 9. 设在P 点的应力张量 σ如下:求该处的主应力及主方向。并验证主方向是相互正交 的。 ???? ? ??=740473037)(ij σ 10. 位移场u 在给定坐标系下的分量分别是:u 1= -ax 2+bx 3,u 2=ax 1-cx 3,u 3= -bx 2+cx 3;其中 a 、 b 、 c 皆为常数。求这个位移场的应变张量Γ。 11. 弹性体的的应变张量场如下所示,这个应变张量场合理吗? ???? ??????++--=3222 2111 216112226226)(x x x x x x x ij ε 12. 在立方晶体中承受一均匀应力场,以]101[、]211[和[111]为x 1、x 2和x 3坐标轴的应力分量只有σ13和σ23两项,求以三个晶轴作坐标系的各应力分量σ’ij 。

应力张量的认识(一)

应力张量的认识(一)
本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到 后来逐渐认识的过程。相关还有:Levy-Mises 理论的思考
从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。初始,以一个基本定义记住 了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。曾经就有记录下对其理解的想法,但因思路尚未完 善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。 我将这部分思考分为以下三部分: 应力张量的认识(一) 应力张量的认识(二) 应力张量的认识(三) 本文介绍第一部分应力的基本知识和常规认识。
应力
初中物理就已知道,因外力作用而在物体内部产生的力成为内力。单位面积上的内力即是应力,表征内力的强 度。 为了研究某一点 P 处的应力,用某个截面在 P 点处切开物体,如下图所示。根据定义可以得到 P 点的正应力 σ、切应力 τ,他们的合成即为全应力 T。
需要注意的是,一个确定的截面对应了一组正应力和切应力。但是过 P 点有无数的截面,那么如何才能真正 描述 P 点的应力状态呢?
应力状态
点的应力状态是受力物体内某一点各个截面上应力的变化情况。上面已经意识到过一点点有无数的截面,只有 任意截面上的应力分量都可以确定,才可以说应力状态是确定的。 通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。也即在 P 点截 取一个无限小的平行六面体,称为单元体。

单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同 的。这样就只用三个互相垂直的截面上的应力来分析问题。 由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。 问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相 反的? 单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分的平面,截开前他 们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。所以,从各自的方向上来看,应 力方向还是相同的。
应力张量
根据上面的微单元体上的应力分量,是否可以求出任意截面的应力分量?
答案是肯定的。根据三个方向的静力平衡就可以列式计算得到上图的任意的法向为(n1,n2,n3)的截面上的应力 分量。 三个互相垂直的截面上的 9 个应力分量可以确定任意截面的应力,也就是说可以确定一点的应力状态了。同 时从这三个截面的选取上来看,他们和坐标系无关。 于是我们把用上面九个应力分量作为一个整体来描述一点应力状态的物理量叫作应力张量,记作
主应力 如果作用在某一截面上的全应力和这一截面垂直,即该截面上只有正应力,则这一截面称为主平面,其法线方 向称为应力主方向,其上的应力称为主应力。如果三个坐标轴方向都是主方向,则称这一坐标系为主坐标系。 求解方法依然是根据静力平衡条件。

部分习题及其解答

本教材习题和参考答案及部分习题解答 第四章 已知物体内一点的六个应力分量为: 50x a σ=,0y σ=,30z a σ=-,75yz a τ=-,80zx a τ=,50xy a τ= 试求法线方向余弦为112n =,122 n = ,3n 的微分面上的总应力T 、正应力n σ和 剪应力n τ。 解:应力矢量T 的三个分量为 11106.57i i T n a σ==,228.033T a =-,318.71T a =- 总应力111.8T a 。 正应力26.04n i i T n a σ==。 剪应力108.7n a τ。 过某点有两个面,它们的法向单位矢量分别为n 和m ,在这两个面上的应力矢量分别为1T 和2T ,试证12?=?T m T n 。 证:利用应力张量的对称性,可得 12()()ij i j ji i j n m n m σσ?=??===??=?T m n σm m σn T n 。证毕。 某点的应力张量为 01211210x xy xz yx y yz y zx zy z στττστσττσ=???????????????? 且已知经过该点的某一平面上的应力矢量为零,求y σ及该平面的单位法向矢量。 解:设要求的单位法向矢量为i n ,则按题意有 0ij j n σ= 即 2320n n +=,1230y n n n σ++=,1220n n += (a) 上面第二式的两倍减去第一式和第三式,得 2(22)0y n σ-= 上式有两个解:20n =或1y σ=。若20n =,则代入式(a)中的三个式子,可得 1n =30n =,这是不可能的。所以必有1y σ=。将1y σ=代入式(a),利用1i i n n =,

张量分析习题答案

第一章 习题7: 若c a m b =+,则 2322(12)(2)(32)a c m b i j k i j k i j k m m m m m m =-=++--+=-+-+- 注意 0a b ?=,则 2(12)(2)2(32)0m m m -+--+= 29 m =- 132023999a i j k = + + 习题10: (1.2.17)式为: )1 23g g g = ? )2 31g g g = ? )3 12g g g = ? ()123g g g g =??()()2i j k i j =+-?+= 2 = ()12011101i j k g g i j k ?= =+- 则 ()1 12 g i j k =+- ()231011 10i j k g g i j k ?= =-++ ()2 12 g i j k = -++ ()311 100 11 i j k g g i j k ?==-+ ()312 g i j k =-+ 11112g g g =?= 222g = 332g =

()()12211j k i k g g = ++== ()( )1331 1j k i j g g =++ == ()()32231g i k i j g =++== 习题24: T =N N T =ΩΩ T ?=?=?u N N u N u T ?=?=-?u u u ΩΩΩ 习题34: :()():ij ji ij i j i j j i T a b T a b T a b ====N ab ba N :()():ij ji ij i j i j j i a b a b a b =Ω=-Ω=-Ω=-ab ba ΩΩ 习题36: ??=??a T b a S b 推出 ()0?-?= a T S b 对a ,b 为任意张量都成立,,则0-=T S ,即=T S 习题48: 设 s r s r u u ==u g g ()pq r pq p q r q p u u ?=Ω ?=Ωu g g g g Ω 1 :2?? ?- ? ?? ? u =u ∈Ωω ()()11:221122 11 22 12 i j k pq s pq j k i s ijk p q s ijk p q s jk i s jk ist ijk s ijk s t ist jk s s t s t jk ijk s j k k j s t st ts st pq s t s t u u u u u u u u δδδδδδδ??-∈Ω?=-∈Ω? ? ?? =-∈Ω ?= ∈Ω ∈ =-Ω=- -Ω= Ω-Ω =Ω=Ω =g g g g g g g g g g g g g g g q p u g

力学中的数学方法-张量-2

2. Kronecker δ 符号
一、 Kronecker 符号定义为:
?1, i = j δ ij = ? ?0, i ≠ j
δ ij 可确 其中 i,j 为自由指标,取遍1,2,3;因此, 定一单位矩阵:
?δ 11 δ 12 δ 13 ? ?1 0 0? ?δ ? = ?0 1 0 ? δ δ 22 23 ? ? ? ? 21 ? ?0 0 1 ? ? ?δ 31 δ 32 δ 33 ? ? ?
1

二、
δ ij 的性质
2

三、例题
例题1: 若
e1 , e 2 , e 3
是相互垂直的单位矢量,则
ei ? e j = δ i j
e i ? e i = e1 ? e1 + e 2 ? e 2 + e 3 ? e 3 = 3
δ i i = δ 11 + δ 22 + δ 33 = 3
ei ? ei = δ i i
3

注意:
δ i j与δ ii不同
是一个数值,即
δ ii δi j
例题2:
δ ii = 3
的作用:1)换指标;2)选择求和。
Ai → Ak
δ k i Ai = δ k k Ak = Ak
思路:把要被替换的指标 i 变成哑标,哑标能用任意字 母,因此可用变换后的字母 k 表示
4

例题3:
Tk j → Ti j
δ i kTk j = δ i iTij = Tij
特别地,
δ i kδ k j = δ ij , δ i kδ k jδ jm = δ i m
5

张量的基本概念(我觉得说的比较好-关键是通俗)

向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算机水平,不只对数值计算有极深的造诣,对一个程序如何编译成汇编代码,如何在CPU 中执行,操作系统如何对内存处理,那些程序又如何在内存中调度,反正听得多了,我也能

应用弹塑性力学习题解答

应用弹塑性力学习题解答 目录 第二章习题答案 设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系

可求得。 最终的结果为 已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记 已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得 对,,代入得 对,,代入得 对,,代入得 当时,证明成立。 解 由,移项之得 证得 第三章习题答案 取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得, 由,得 物体内部的位移场由坐标的函数给出,为, ,,求点处微单元的应变张量、转动张量和转动矢量。 解:首先求出点的位移梯度张量 将它分解成对称张量和反对称张量之和 转动矢量的分量为 ,, 该点处微单元体的转动角度为 电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。 解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其 中,可得 则主应变有 解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为 于是有,同理,可解得与轴的夹角为。 物体内部一点的应变张量为 试求:在方向上的正应变。

张量概念的形成与张量分析的建立

张量概念的形成与张量分析的建立 【摘要】:张量分析在数学物理学中占据重要地位。由于广义相对论的成功,张量分析逐渐被人们所重视。更重要的是规范场论和弦理论的建立,张量分析被应用到了更加广泛的领域。而如此重要的数学分支的历史却极少被研究,这不能不说是一个很大的缺憾。在发掘、搜集、整理、分析张量数学的原始文献的基础上,运用概念分析的方法,梳理、研究、探讨了张量数学的发展史,得到了若干新的发现。首先,找到了向量的代数定义的原始文献,这是张量数学发展史研究的中间链条。如果没有向量的代数定义,这种扩张量是无法超出三维情形的。而张量是一种高维的数学量,因此向量的代数定义是通向张量概念的非常重要的概念。在关于张量数学史的研究中,这是一个被忽略的内容。其次,解读了张量概念的电磁学起源。从电磁学角度揭示了张量概念的物理学源头。而在过去,则一直把弹性力学作为张量概念起点,事实上,应用力学与张量概念的起源关系不大。论文最重要的发现是考证了第一个在现代意义上使用tensor的学者。论文系统论述了张量分析的建立过程。从非欧空间观念、高斯的内蕴思想、黎曼的n维流形、格拉斯曼的高维空间观念、凯莱的n维向量空间开始,逐一陈述了张量数学的历史。张量分析作为解决曲线坐标系中微分运算的数学方法,是从高斯的内蕴几何开始孕育的。而第一个真正提出这个问题的是黎曼,他的n维流形的构想,具体地提出了弯曲空间中二次微分形式的变换问题,这是通向张量分析的起点。随后,经过贝尔特拉米、克

里斯托夫、里奇等人的发展,这种方法终于得以建立。作为补充,简述了张量分析的应用史。包括爱因斯坦、希尔伯特的引力场方程,以及外尔、列维-齐维塔的黎曼几何学。这里的新发现是考证了“黎曼几何学”这个名词的最早出处。张量分析的产生,依赖19世纪的代数和几何的解放。正是非欧几何和抽象代数的出现,使得张量分析得以产生。而张量分析与黎曼几何的深入发展,极大地促进了现代数学的进步。这使得对张量数学史的研究具有深刻的意义。【关键词】:张量分析曲线坐标系向量的代数定义黎曼流形协变系统 【学位授予单位】:山西大学 【学位级别】:博士 【学位授予年份】:2008 【分类号】:O183.2 【目录】:中文摘要4-5Abstract5-11导论11-33一论文选题的意义11-12二关于张量数学的几个重要问题12-15三论文的基本内容15-22四国内外研究现状22-29五思路、研究方法、创新点与不足之处29-33第一章流形理论:张量概念形成的几何学进路33-60第二节弯曲空间观念的形成:黎曼流形的渊源之一34-481、非欧空间观念形成:张量数学的萌芽34-372、弯曲空间的首次探索:张量分析的几何学基础37-48第二节高维空间观念的形成:黎曼流形的渊源之二48-531、格拉斯曼

2-3章作业题

作业题: (第2章~ 第3章) 1. 试据下标记号法,展开用张量符号表示的方程。其中,G 、λ 为常数。 ,,,,()0i j j i j ij k kj i G u u u f δλ+++= 2. 已知一点的应力状态为002ij a a a a a a a σ-????=-????-?? ,试求过此点的平 面 31x z ++=上的正应力和剪应力。 3. 已知受力物体内一点处应力状态为:????? ???????=220 22000x ij σσ(MPa ),且已知该点的一个主应力的值为2MPa 。 试求:① 应力分量x σ的大小 ;②主应力1σ、2σ和 3σ 。 4. 已知一点的应力状态为5005008005000750800750300ij a a a a a a a a σ????=-????--?? ,试求法线 为 11(,,22斜截面上的正应力和剪应力。 5.已知受力物体内一点处应力状态为: 5,0,11,3,3,8x y z xy yz xz a a a a a σσστττ=====-=-,试求与各坐标轴有相当 倾角的斜平面上的全应力、正应力和切应力。如果y σ=,别的应力不变,则该斜平面上的应力如何改变? 6. 一点的应力张量不变量12315,60,54I a I a I a ==-=,试求主应力的大小和主轴。

7.已知受力物体内一点处应力状态为: 100,200,300,500,0x y z xy yz xz a a a a σσστττ====-==,试求主应力大小及其方向、最大切应力、正八面体剪应力、全应力的大小及方向。 8. 试证明用主应力表示的任意斜平面上的剪应力为: ()()()12222 222222122331l m m n n l τσσσσσσ??=-+-+-?? 式中,,l m n 是斜平面外法线对应力主轴的方向余弦。

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计

广义相对论习题

名词解释:——1)惯性系疑难 ——由于引力作用的普遍存在,任一物质的参考系总有加速度,因而总不会是真正的惯性系。在表述物理规律时惯性系占有特殊的优越地位,但自然界却不存在一个真正的惯性系。 2)广义相对性原理——所有参考系都是等价的(一切参考系都是平权的)。 3)史瓦西半径 ——史瓦西半径是任何具重力的质量之临界半径。在物理学和天文学中,尤其在万有引力理论、广义相对论中它是一个非常重要的概念。1916年卡尔·史瓦西首次发现了史瓦西半径的存在,他发现这个半径是一个球状对称、不自转的物体的重力场的精确解。 一个物体的史瓦西半径与其质量成正比。太阳的史瓦西半径约为3千米,地球的史瓦西半径只有约9毫米。 小于其史瓦西半径的物体被称为黑洞。在不自转的黑洞上,史瓦西半径所形成的球面组成一个视界。(自转的黑洞的情况稍许不同。)光和粒子均无法逃离这个球面。银河中心的超大质量黑洞的史瓦西半径约为780万千米。一个平均密度等于临界密度的球体的史瓦西半径等于我们的可观察宇宙的半径 公式2 2Gm r c = 4)爱因斯坦约定——对重复指标自动求和。 5)一阶逆(协)变张量—— 'x T T T T x α μμ μαμ?''→?=? (n 1 个分量) 6)二阶逆(协)变张量——''x x T T T T x x αβ μνμν μναβμν??''→?=?? (n 2个分量)

1)广义相对论为什么要使用张量方程?—— 将物理规律表达为张量方程,使它在任何参考系下具有相同的形式,从而满足广义相对性原理。 2)反称张量的性质?——(a)当任意两个指标取同样值时,张量的该分量为零。 (b)n 维空间中最高阶的反称张量是n 阶的,这张量只有一个独立分量。 (c)n 维空间中的n-1阶反称张量只有1n 个独立分量。 3)仿射联络的坐标变换公式?它是张量吗? 4)仿射联络的性质? 5)一阶逆(协)变张量协变微商的公式?;,T T T μμααλλμλ=+Γ ;,T T T λμνμνμνλ=-Γ

电力系统分块计算的意义和策略

电力系统分块计算的意义和策略何小庆11031009 摘要:本文阐述了电力系统分块可行性和电力系统分块意义,介绍了了两种重要的分块方法:节点撕裂法和支路切割法。通过这几种方法做了比较,最后对电力系统分块做了展望。 关键字:电力系统分块,节点撕裂法,支路切割法 Abstract:This paper presents a reliability of a section algorithm of power system and the importance of this algorithm,and introduces two vital methods of a section algorithm of power system,node tearing and branch cutting .Through comparing those methods,we can conclude the future of a section algorithm of power system. Key word: a section algorithm of power system,node tearing,branch cutting 0 前言 网络分块计算最早有Kron[1]于20世纪50年代初提出,他利用张量分析的概念发展了网络分裂算法(piecewise diakoptics),其基本思想是吧电网分解成若干规模较小的子网,对每一个子网在分割的边界处分别进行等值计算,然后再求出分割边界处的协调变量,最后求出各个子网的内部电量,得到却系统的解。 1 电力系统分块可行性分析 电力系统能够分块计算具有以下几个原因: 一,现代电力系统规模庞大,节点众多,分块处理可将大系统拆分为大量小系统,最终简化分析计算过程。 二,目前的计算工具无法满足计算速度的要求。分块处理应用于某一台计算机上,通过串行处理而有效地求解交大系统的分析结果,虽然对于缩短计算时间成效不大,但对于减少内存占用意义明显。分块处理应用于多台计算机上,通过并行处理可提供比单台计算机更快的计算速度,从而缩短计算时间。 三,电力系统本身所具有的分层分区结构特别适合分块计算的应用。就信息的传送而言,每一个地区电网只能收集到本地区系统内的信息,其中重要的信息将被传送到更高一级的调度中心。调度中心根据各地区传送来德尔信息进行加工处理,将协调信息传送给各地区电力系统的调度中心。分块计算正好可以适应这一分层调度的要求。近年来,随着计算机的发展,各种并行计算机和多处理机组成的列阵机相继出现。这样的应用背景促进了人们对并行计算的兴趣,并开展了大量的研究工作,提出了各种基于网络分块的并行计算。 根据协调变量的不同,网络分块计算主要分为两类:一类是支路切割法(branch cutting),通过切割原网络中的某些支路把原网络分解;另一类是节点撕裂法(node tearing),即将原网络的部分节点“撕裂”开,把网络分解。前者的协调变量是切割电流,后者的协调变量是分裂点点位。两种方法有各自的特点,将两种方法统一起来,就产生了统一的网络分裂算法。 2 电力系统分块意义 现代电力系统规模庞大,使进行各种分析的计算量很大,以致现有计算工具无法满足计算速度的要求。分块处理可以达到利用现有计算工具,大大缩短计算时间的要求。 对于电力系统,通常情况下,是在各电力公司的边界线对系统进行分割。分割理论的应用至少有二:第一种应用是,把分割法应用于某一台计算机上,通过串行处理而有效地求解较大系统的分析结果,这中方法的

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

流体力学习题

流体力学习题 习题一 场论和张量代数 1.证明 ()n n n n ??=?rot ,其中n 为单位向量。 2.证明n a n a n a ??-?=[()()]grad rot div ,其中a 是变矢量,n 是单位常矢量。

3.用两种方法证明()()???=-??-??+a b a b a b a b a b rot +rot div 。 4.将其分解为对称的和反对称的两部分,并以w 表示相当于反对称部分的矢量,12 i ijk jk w p ε=。试证 ()()2()P P ??-??=??u v v u w u v , 其中u 及v 为任意矢量。 5.张量P 为反对称张量的充分必要条件是:对任意矢量a 有下述恒等式成立: a a ??=()P 0 习题二 流体运动描述 1. 流体质点绕oz 轴以等角速度ω 旋转, (1)试以欧拉变量写出流体运动的速度场; (2)试以拉哥朗日变量写出流体质点的运动规律; (3)试分析流场的流线和轨迹; (4)试求流体质点的加速度; (5)用极坐标解此题。 2. 一维收缩管内的不可压缩流动,其速度分布为:)/1(1L x V V +=,试决定: (1)流场内任一质点的加速度 (2)给出 t=0时刻位于0x x =点的质点的运动规律,并比较用两种方法得到的加速度。 3. 流体质点在定常流场内运动,流体质点是否具有加速度,为什么? 4. 设流场为:2Xt u =,2 Yt v =,0=w 。试求流场的流线,流体质点的轨迹和加速度, 并以拉哥朗日变数表示质点的速度和加速度。 5. 设流场为:ky u =,)(t x k v λ-=,0=w ,其中k 和λ 均为常数。试求:t=0 时经 过点M(a ,b ,c)的流线及t=0时经过M(a ,b ,c)处的流体质点的轨迹,最后考虑0=λ时的情形。 6. 考虑下述速度分量定义的二维流动: C v Bt A u =+= 其中A 、B 、C 为常数。试证流线为直线,质点的轨迹为抛物线。 7. 二维流场kyt v a u ==,,试决定其流线与轨迹。 8. 设流场的速度分布为: ,,,02 222=+=+-=w y x kx v y x ky u 其中 k 为常数,试求流线、轨迹和流体质点的加速度,并用极坐标解上题。 9. 试证明由直角坐标系到极坐标系和由极坐标系到直角坐标系速度的变换公式如下:

实用类文本阅读试题及答案

实用类文本阅读 一、阅读下面的文字,完成1--3小题。 不平凡的求学生涯 1931年9月,清华大学招入了一批新学生,其中有一个瘦小的戴眼镜的无锡人。这位新生作文和历史拿了满分,理科却几乎是零分,他就是后来成为中国近代力学之父的钱伟长。清华当年招生的作文题目是《梦游清华园》,钱伟长写了一篇四百五十字的赋,出题目的老师想改改不了,只能给了满分。历史考题更奇怪,要求写出二十四史的作者、注者和卷数,许多考生望“题”兴叹,而钱伟长却答得分毫不差。钱伟长的文科好,一点也不奇怪。他的父亲和祖父都是教书先生,四叔是著名的文科学者钱穆。他中学的文史老师,则是语文学家吕叔湘。钱伟长自小看古书长大,十岁的时候就可以把《三国演义》倒背如流。可是,19岁的钱伟长在数理上一塌糊涂,物理只考了5分,数学、化学共考了20分,英文因没学过是0分。 但正是这样一个在文史上极具天赋、数理上极度“瘸腿”的学生,却在一夜之间做出了一个大胆的决定——弃文从理。这个决定缘于1931年9月18日,日本发动了震惊中外的“九·一八事变”。听到了这个消息后,钱伟长拍案而起,他说:我不读历史系了,我要学造飞机大炮。他决定转学物理以振兴中国的军力。于是钱伟长几次跑去找物理系主任吴有训,吴先生被这位青年的爱国热情打动了,答应他试读一年。为了能尽早赶上课程,钱伟长来往于宿舍、教室和图书馆之间,早起晚归,极度用功。他克服了用英语听课和阅读的困难,一年后数理课程超过了70分,四年后,成了一名出类拔萃的优秀生。正如他后来常说的:“我从来不相信有什么‘天才’,而只是相信人的才能是用艰苦的劳动培植出来的。奋发才有为,勤学才有识。” 1940年1月钱伟长考取中英庚款会的公费留学生,赴加拿大多伦多大学学习。钱伟长与自己的导师辛吉教授第一次面谈时,发现两人都在研究板壳理论,于是师生俩开始共同啃这块硬骨头。的确,板壳内禀理论是一大难题,但是很有实用价值。在航空航海工程、武器装备、仪器仪表和各项工程设施中,到处可见到平板和壳体。多年来对于各种各样的板壳,各学派学者用不同的方程式来描述,钱伟长认为它们应该有内在的联系,有必要加以统一。于是他开始废寝忘食地寻求这种联系。经过半年多努力,用掉了几尺厚的草稿纸,他终于以严谨简约的张量分析为基本工具,建立了板壳的基本理论,对原有的各种论述进行分类,提炼出本质的核心内容,找到了一组统一的方程式。 与此同时,辛吉教授通过另一途径得到了类似的结果。1941年,他们合写成了一再为人们称道、引用的著名论文《弹性板壳的内禀理论》。这篇论文发表于世界导弹之父冯·卡门的60岁祝寿文集。该文集的作者多数是当时世界上第一流的科学家,28岁的钱伟长,是文集作者中最年轻的学者、唯一的中国人。爱因斯坦看后也由衷感叹,这位中国青年解决了困扰我多年的问题。此文奠定了钱伟长在美国科学界的地位。 1942年取得博士学位后,经过辛吉教授特地推荐,钱伟长到了冯·卡门所在的美国加州理工学院做博士后研究。由于反法西斯战争的需要,美国当时正在加紧研究火箭、导弹,精确地计算火箭导弹的弹道成了当务之急。钱伟长担起了这个重任,他经常到喷气推进研究所在地墨西哥州的白沙基地参加火箭试验,对各种型号的导弹的弹道及空气动力学性能进行了细致的分析,写出了许多保密的内部报告,并提出了有关火箭、导弹落点的理论。在第二次世界大战中,伦敦遭到德国导弹的袭击,英国首相邱吉尔很着急,向美国求援,问题转达到冯·卡门那里,钱伟长提出了一个对运行的导弹加以干扰迫使其射程减小的方案,立即得到采纳。因此战争中尽管伦敦东码头区遭到德国导弹破坏,市中心却安然无恙。邱吉尔在回忆录中提起此事,说美国青年人很厉害,但实际上应该说:中国青年人很厉害! (摘编自戴世强《钱伟长小传》) 1.下列对传记有关内容的分析和概括,最恰当的两项是(5分) A.钱伟长在清华大学入学考试中,文史成绩优异,作文和历史都拿了满分,是因为钱伟长受到良好的家庭环境的熏陶和影响,自小是看古书长大的。 B.钱伟长基于爱国的崇高理想,弃文从理,转系后读书极为用功,最终成为一名优秀的理科毕业生,这充分说明了奋发才能有为、勤学才能有识的道理。 C.多年来各学派学者对平板和壳体进行了广泛研究,但没有找到内在联系,钱伟长在前人研究的基础上建立起板壳的基本理论,与导师辛吉的研究结果相似。 D.由于反法西斯战争的需要,钱伟长在美国加州理工学院时主要从事有关火箭、导弹的研究,他提出的方案曾帮助伦敦在二战中免遭德国导弹的破坏。 E.本文用形象生动的语言,记叙了钱伟长青年时期刻苦求学的过程,展现了一代科学大师的成长历程,塑造了一个成就卓著、令人尊敬的科学家的形象。 2.本文反映了钱伟长哪些优秀的品格?请简要概括。(6分) 3.文史上极具天赋的钱伟长上大学时却弃文从理,最终在科学领域还取得了杰出的成就;而人们平时却常说扬长避短更容易取得成功。对此,你有何看法?请结合选文探究。(8分)二、阅读下面的文字,完成4--6小题 寂静钱钟书 周劼人 12月19日,寂寥的寒夜,清华园日晷旁,烛光隐隐。小提琴哀婉的曲调飘散在清冷的夜空,人们伫立无语,鞠躬,献上白菊。 偶有路人好奇:“这是在祭奠谁?” 有人低声答语:“今天是钱钟书先生辞世10周年。” 10年前,钱钟书先生安详离世。遵钱先生遗嘱,“一切从简”,连在八宝山的告别仪式也只有短短的20分钟。“如此寂静。”钱先生的一位生前好友说。那日,清华的南北主干道上飘起了一千只纸鹤,学生们用这种方式,静静地送别他们的老学长。 他的人生,本不寂静。 无论是人们熟稔的《围城》,还是近乎天书的《管锥编》,都惊讶了世人,折服了学界。《管锥编》单是书证就数万条,引述涉及四千位作家上万种著作。世人惊叹“大师风华绝代,天才卓尔不群”。 然而他却又静静地坐在书斋里,照例埋头读他的书,做他的学问。图书馆内很多冷僻线装书的借书单上,只有他一人的名字。即使是身处困境,他也只是默默地埋头书本。“文革”时他被送去干校劳动改造,能看的只有寥寥几本书,但只要抱起书本来,就能兴致盎然。第一批“大赦”回京的名单中,没有钱钟书,也没有杨绛。他们夫妻二人平静地走回窝棚,杨先生说:“给咱们这样一个棚,咱们就住下,行吗?”钱先生歪着脑袋认真的想了一下,说:“没有书。” “文革”后,对钱钟书先生的称颂日渐声高,然而钱家的书斋内一如既往地平静。他谢绝了一切记者和学者的拜访,有人将此误读为“清高孤傲,自以为是”。 他人的不解,钱先生并未在意过。杨绛先生说:“他从不侧身大师之列……他只想安安心心做学问。” “钱先生做学问是‘心在焉’,”清华大学一位老师说:“而我们今天这个社会上,今天这个校园里,有多少人则是‘心不在焉’。” 清华大学一位博士生说,他多次读《围城》,读第三遍时忽然明白,“围城不是别人给的,

第二章-应力分析-例题-东北大学课件

2019年固体力学与岩石力学基础例题 第二章 应力分析 例题2.1 设某点的应力张量为 012120201?? ?= ? ??? σ 试求过该点平面12331x x x ++=上的应力矢量,并求正应力矢量和切应力矢量。 解: 设该平面的法线矢量为: , , 由几何关系知: 联立方程: 于是解得: , , 所以,该平面上的应力矢量的三个分量分别为: 该平面的法向应力和切向应力为: 解答完毕。

例题2.2 设有图2.1示三角形水坝,试列出OP 面(光滑面)的应力边界条件。 图2.1 解: 在OP 面上有应力边界条件: 式中, 为水的比重。 解答完毕。 例题2.3 已知一点的应力张量为 2201 211210σ?? ? ? ??? 过该点的一个作用面,作用面上的应力矢量=N 0,求: 1)22σ; 2)作用面法线与坐标系的夹角余弦(,,)l m n 。 解: 由于具有一个平面,使得在过改点的一个平面上,应力矢量为0,即: 又根据几何关系: 解得: 2

解答完毕。 例题2.4 已知坐标系123x x x o 中一点的应力张量为 111213212223313233σσσσσσσσσ?? ?= ? ??? σ 如图 2.2(1)所示坐标系123x x x o 绕3x 轴逆时针旋转90°得到如图2.2(2)所示坐标系 123x x x '''o ,如图2.2(2)所示坐标系123x x x '''o 绕2x '轴逆时针旋转90°得到如图2.2(3) 所示坐标系123x x x ''''''o ,求此点在123x x x ''''''o 坐标系中的应力张量。 (1) (2) (3) 图2.2 解: 当坐标由图1变至图2时,新坐标相对于老坐标的方向余弦为: 根据现性代数坐标转换关系,可以得到: 1x '' 2x '' 3'' o 3x ' 2x '1x '90? o 1 x 3 x 2 x 90? o

相关主题
文本预览
相关文档 最新文档