当前位置:文档之家› 应用弹塑性力学习题解答

应用弹塑性力学习题解答

应用弹塑性力学习题解答
应用弹塑性力学习题解答

应用弹塑性力学习题解答

目录

第二章习题答案

设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。

解该平面的法线方向的方向余弦为

而应力矢量的三个分量满足关系

而法向分量满足关系最后结果为

利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。

解求出后,可求出及,再利用关系

可求得。

最终的结果为

已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。

解求主方向的应力特征方程为

式中:是三个应力不变量,并有公式

代入已知量得

为了使方程变为形式,可令代入,正好项被抵消,并可得关系

代入数据得,,

已知应力分量中,求三个主应力。

解在时容易求得三个应力不变量为,

,特征方程变为

求出三个根,如记,则三个主应力为

已知应力分量

,是材料的屈服极限,求及主应力。

解先求平均应力,再求应力偏张量,,

,,,。由此求得

然后求得,,解出

然后按大小次序排列得到

,,

已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。

解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系

(a)

(b)

(c)

由(a),(b)式,得,,代入(c)式,得

,由此求得

对,,代入得

对,,代入得

对,,代入得

当时,证明成立。

由,移项之得

证得

第三章习题答案

取为弹性常数,,是用应变不变量表示应力不变量。

解:由,可得,

由,得

物体内部的位移场由坐标的函数给出,为,

,,求点处微单元的应变张量、转动张量和转动矢量。

解:首先求出点的位移梯度张量

将它分解成对称张量和反对称张量之和

转动矢量的分量为

,,

该点处微单元体的转动角度为

电阻应变计是一种量测物体表面一点沿一定方向相对伸长的装置,同常利用它可以量测得到一点的平面应变状态。如图所示,在一点的3个方向分别粘贴应变片,若测得这3个应变片的相对伸长为,,,,求该点的主应变和主方向。

解:根据式先求出剪应变。考察方向线元的线应变,将,,,,,代入其

中,可得

则主应变有

解得主应变,,。由最大主应变可得上式只有1个方程式独立的,可解得与轴的夹角为

于是有,同理,可解得与轴的夹角为。

物体内部一点的应变张量为

试求:在方向上的正应变。

根据式,则方向的正应变为

已知某轴对称问题的应变分量具有的形式,又设材料是不可压缩的,求应具有什么形式

解:对轴对称情况应有,这时应变和位移之间的关系为

,,。应变协调方程简化为,由不可压缩条件,可得

可积分求得,是任意函数,再代回

,可得。

已知应变分量有如下形式,,,

,,,由应变协调方程,试导出应满足什么方程。

解:由方程,得出必须满足双调和方程。

由,得出

由,得出

由此得,其它三个协调方程自动满足,故对没有限制。

第四章习题答案

有一块宽为,高为的矩形薄板,其左边及下边受链杆支承,在右边及上边分别受均布压力和作用,见题图,如不计体力,试求薄板的位移。

题图4-1

解:1.设置位移函数为

(1)

因为边界上没有不等于零的已知位移,所以式

中的、都取为零,显然,不论式(1)中

各系数取何值,它都满足左边及下边的位移边界条件,但不一定能满足应力边界条件,故只能采用瑞兹法求解。

2.计算形变势能。为简便起见,只取、两个系数。

(2)

(3)

3.确定系数和,求出位移解答。因为不计体力,且注意到,式4-14简化为

(4)

(5)

对式(4)右端积分时,在薄板的上下边和左边,不是,就是,故积分值为零。在右边界上有

(6)

同理,式(5)右端的积分只需在薄板的上边界进行,

(7)

将式(3)、式(6)、式(7)分别代入式(4)、式(5)可解出和:

,(8)

(9)

4.分析:把式(8)代入几何和物理方程可求出应力分量,不难验证这些应力分量可以满足平衡微分方程和应力边界条件,即式(8)所示位移为精确解答。在一般情况下(这是一个特殊情况),在位移表达式中只取少数几个待定系数,是不可能得到精确解答的。

设四边固定的矩形薄板,受有平行于板面的体力作用(),坐标轴

如题图所示。求其应力分量。

题图4-2

解: 1.本题为平面应力问题,可用瑞兹法求解。由题意知位移分量在边

界上等于零,所以,所以式中的、都取为零,且将位移函数设置为如下形式:

(1)

把或代入上式,因为,或,所以,

位移边界条件是满足的。

2.把式(1)代入式(9-16),得薄板的变形势能为

(2)

3. 确定系数和。由于位移分量在边界上为零,所以,方程式4-14简化为

(3)

式(2)代入式(3),得

(4)

由于,从式(4)的第一式得,由第二式得

当和取偶数时,和都为零,当和取奇数时,

和都为2。因此,当取偶数时,。当取奇数时,

将和代入式(1)得位移分量为

4.利用几何方程和物理方程,可求出应力分量(和取奇数);

有一矩形薄板,三边固定,一边上的位移给定为,见题图,设位移分量为,

式中,为正整数,可以满足位移边

界条件。使用瑞兹法求维持上述边界位移而要在处所施加的面力。

题图4-3

解:1.平面应力问题时的变形势能为式

其中

2.确定待定系数。按题意三边固定(),一边只存在

而面力待求。所以,

(2)

将式(1)代入式(2),得

当体力分量为零时,,得

当时,,,所以,此时有

,而

3.位移和应力解答为

4.求上边界施加的面力(设),在处

用伽辽金法求解上例。

解:应用瑞兹法求解上例时,形变势能的计算工作量较大。由于此问题并没有应力边界条件,故可认为上例题意所给的位移函数不但满足位移边界条件,而

且也满足应力边界条件,因此,可以用伽辽金法计算。

对于本题,方程可以写成

将上题所给的表达式代入,积分后得

当体力不计时,,此时,而由下式确定:

当时,即,当时,上式成为

由此解出及位移分量如下:

求出的位移和应力分量,以及上边界的面力,都有上例用瑞兹法求得结果相同。铅直平面内的正方形薄板边上为,四边固定,见题图,只受重力作用。设,试取位移表达式为

用瑞兹法求解(在的表达式中,布置了因子和,因为按照问题的对称条件,应该是和的奇函数)。

题图4-4

解:1位移表达式中仅取和项:

(1)

2由得变形势能为

(2)

其中

代入式(2),得

(3)

3.确定系数和。因板四周边界上位移为零(,面力未知),板的体力分量为,所以得

将式(3)代入式(4),得

(5)

注意,有以下对称性:

式(5)积分后成为式(6),由此可求得、和位移、应力分量:

(6)

(7)

(8)

(9)

用伽辽金法求解上题。

解:1位移表达式仍取上题式(1),其两阶偏导数为

(1)

2.确定和。因为,所以伽辽金方程简化为

(2)

将以及式(1)代入(2),得

由此解出和:

(3)

与瑞兹法求出结果一样,由此可见,用伽辽金法计算较为简单。

悬臂梁自由端作用一集中力,梁的跨度为,见题图,试用端兹法求梁的挠度。

题图4-5

解:1.设梁的挠度曲线为

(1)

此函数满足固定端的位移边界条件:,梁的总势能为

由得

代入式(1)得挠度为式(2),最大挠度为式(3)

(2)

(3)

有一长度为的简支梁,在处受集中力作用,见题图,试用瑞兹法和伽辽

金法求梁中点的挠度。

题图4-6

解一:用瑞兹法求解

设满足梁端部位移边界条件的挠度函数为(1)梁的变形能及总势能为

由得

(2)

以上级数的收敛性很好,取很少几项就能得到满意的近似解,如作用于中点()时,跨中挠度为(只取一项)

这个解与材料力学的解()相比,仅相差%。

解二:用伽辽金法求解

1.当对式(1)求二阶导数后知,它满足,亦即满足支承处弯矩为零的静力边界条件,因此,可采用伽辽金求解。将式(1)代入伽辽金方程,注意

到,且作用在处,可得

求出的挠度表达式与(2)一致。

图所示的简支梁,梁上总荷重为,试用瑞兹法求最大挠度。

题图4-7

解:设满足此梁两端位移边界条件的挠度为

(1)

则总势能为

代入式(1)得

梁上总荷重为,因此有

一端固定、另一端支承的梁,其跨度为,抗弯刚度为常数,弹簧系数为,

承受分布荷载作用,见题图。试用位移变分方程(或最小势能原理),导出该梁以挠度形式表示的平衡微分方程和静力边界条件。

题图4-8

解:用位移变分方程推导

1.梁内总应变能的改变为

2.外力总虚功为

3.由位移变分方程式得

(1)对上式左端运用分部积分得

代入式(1),经整理后得

(2)

由于变分的任意性,上述式子成立的条件为

(3)

(4)

(5)

4式(3)就是以挠度表示的平衡微分方程。下面讨论边界条件,由于梁的左端为固定端,因此有

(6)

梁的右端为弹性支承,则有

(7)

注意到式(4)能满足,而欲使式(5)成立,必须满足

(8)

式(6)和式(8)即为题意所求的边界条件。

5.由于最小势能原理与位移变分方程式等价的,所以,从最小势能原理出发,也能得到所求的表达式(略)。

第五章习题答案

矩形薄板具有固定边,简支边及自由边和,角点处有链杆支撑,

板边所受荷载如题图5-1所示。试将各板边的边界条件用挠度表示。

题图5-1

解:1。各边界条件如下:

(1)

(2)或

(3)

或用挠度表示为,

(4)

或用挠度表示为,

(5)

矩形薄板的和边为简支边,和边是自由边,在点有一个向上位移,且由链杆拉住,如题图5-2所示。试证能满足一切条件(其中,

为待定常数),并求出挠度表达式、弯矩和反力。

题图5-2

解:1.挠曲面方程为:。

边界条件为

2.将挠度表达式代入后,可知满足以上各式。由角的位移条件确定,从而求出挠度,内力和反力:

3.分析:给定的角点的位移沿轴反向,故为负值。四个角点反力的数值

虽然相同,但、的方向向上,,则向下,这些反力由外界支承施加于板。

题图5-3所示矩形板在点受集中力作用,和两边简支,和两

边自由,试求挠度、内力和反力。提示:,为任意常数。

题图5-3

解:1.本题的挠曲面方程及边界条件为

2.不难验证能满足以上方程和条件。有角点的补充条件可确定

,进而可求出挠度、内力和反力:

,的方向向上,、则向下(沿轴正方向)

有一块边长分别为和的四边简支矩形薄板,坐标系如题图5-4所示,受板面

荷载作用,试证能满足一切条件,并求出

挠度、弯矩和反力。

题图5-4

解:不难验证能满足所有简支边的边界条件,由挠曲面方程式可确定,从而求出挠度、弯矩和反力。

有一矩形薄板的与边是简支边,其上作用有均布弯矩,和边为自由边,其上作用有均布弯矩,若设能满足一切条件,试求出挠度、弯矩和反力。板面无横向荷载作用,坐标取题图5-5。

题图5-5

解:将代入挠曲面方程,得

弯矩、反力的表达式为

由边界条件确定常数,从而求得挠度和内力:

能满足。

所以,能满足一切条件,,其余内力和反力为零。有一四边简支矩形板,板面荷载如题图5-6所示,求该薄板的挠度。

题图5-6

解:采用纳维解法,挠度表达式为

荷载表达式为

由式求出:

式中,

题图5-7所示的矩形薄板,周边简支,板面无垂直均布荷载作用,只在的

板边受均布弯矩作用,求板的挠度。

题图5-7

解:1。采用李维解法。因为板面荷载为零,故式

右端积分为零,即特解为

零,再考虑变形的对称性,板内挠度应是的偶函数,所以,,则挠度表达式为

2.利用的边界条件确定系数,:

等式两端同乘以,对积分,且注意到三角函数的正交性,得

半径为的固定边圆形薄板,板面荷载为,如题图5-8.求其挠度和内

力。

题图5-8

解:1.板中无孔,满足挠曲面微分方程的挠度可取为

(1)

式中,特解设为,代入挠曲面方程后,得

(2)

2.由边界条件求得常数,进而求出挠度和内力:

(3)

(4)

(5)

3.分析

(1)取半径为的板中部分圆板的平衡()也可求得:

(2)若固定边圆板受荷载作用(题图5-9a),该荷载可分解成题

图5-9b和题图5-9c所示两种荷载。题图5-9b的解答很容易得到,题图5-9c状态下的解答则可将代换本题的式(4)、式(5)中的而求得。题图5-9b

和题图5-9c状态下的解答叠加起来便可求得题图5-9a状态下的解答,不难证明,题图5-9a情况下的挠度为

题图5-9

有一半径为的固支圆板,板中心受集中力作用,见题图5-10a,求其挠度和

内力。

题图5-10

解:1.这是轴对称弯曲问题,板面无均布载荷,故特解为零,则其挠度表达

式为

(1)板中心无孔,挠度应是有限值,应为零。该板的边界条件为

(2)

(3)

取半径为的部分圆板的静力平衡条件,得

(4)

2.由式(2)、式(3)、式(4)求得常数,进而求出挠度和内力:

(5)

(6)

3.分析:题图5-10b所示固支圆板,当版中心链杆支座发生沉陷时,可以用本题的式(5)求解(其中第三项在板中心为零)

(7)

将代入式(5)、式(6),求得题图5-10b情况时的挠度和内力为

(8)

(9)

有一半径为的简支圆板,板面无荷载,但在周边受均布弯矩作用,见题图5-11所示。求圆板的挠度和内力。

题图5-11

解:1.因板面无荷载,板中心无孔,故特解和常数,取为零。挠度、转角、内力表达式如下:

(1)

(2)

(3)

边界条件为:(4)

(5)2.求出,后代回式(1)、式(2)、式(3),得

第六章习题答案

在拉伸试验中,伸长率为,截面收缩率为,其中和为试件的初始横截面面积和初始长度,试证当材料体积不变时有如下关系:

证明:将和的表达式代入上式,则有

为了使幂强化应力-应变曲线在时能满足虎克定律,建议采用以下应力-应变关系:

(1)为保证及在处连续,试确定、值。

(2)如将该曲线表示成形式,试给出的表达式。

解:(1)由在处连续,有

(a)由在处连续,有

(b)

弹塑性力学试卷

二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、; 五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为:

式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量 之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑 的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图 4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作 用。设管内各点处的应力状态均相同,且设在加载过程中始终保持,(采用柱坐 标系,r为径向,θ为环向,z为圆管轴向。)材料的屈服极限为=400MPa。试求此圆管材料屈服时(采用Mises屈服条件)的轴向载荷P和轴矩M s。 (提示:Mises屈服条件:;) 填空题 6 平衡微分方程 选择ABBC

弹塑性力学试题

考试科目:弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+-=+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

应用弹塑性力学李同林第四章

应用弹塑性力学李同林第四章 这是变形理论。这个理论首先由亨斯基提出,然后由前苏联的伊留申进一步完善。问题提出得更清楚了,并且给出了使用条件。因此,这个理论也被称为亨奇-伊柳辛理论。伊柳欣的变形理论应该满足几个条件: (1)外载荷(包括体力)成比例增加,变形体处于主动变形过程中(即应力强度无中间卸载); (2)材料所用体积不可压缩,采用泊松比μ = 1/2进行计算;(3)材料的应力-应变曲线具有幂强化形式,即 或者 ; 在变形过程中 (4)满足小弹塑性变形的各种条件,塑性变形和弹性变形大小相同。满足上述条件后,变形理论将给出正确的结果。如果负载没有成比例地增加,则外部负载成比例地增加是简单负载的必要条件。这样不仅不能保证物体内部的简单加载状态,而且物体表面也不能满足简单加载条件。体积不可压缩性和泊松比μ=1/2的假设不仅简化了具体计算,而且与实验结果基本一致,因此变形理论的物理关系主要表现为应力挠度和应变挠度之间的关系,这是令人满意的。 法律。 使用幂强化模型可以避免区分弹性区和塑性区,但实际上该模型对不同材料的限制很小,因为各种材料都可以通过选择公式中常数a的指

数m来拟合拉伸曲线。采用小变形条件是因为平衡方程和几何方程是在小变形条件下推导出来的,物理关系也是小变形条件下的关系。伊柳辛不仅明确规定了亨奇变形理论的适用条件,而且证明了简单加载定理。他提出,在小的弹塑性变形条件下,总应变与应力挠度成正比,即: 如果使用主应力,有 等效应变的表达式为: 从这里 因此,Hench-Ilyushin理论的应力-应变关系可以写成如下: 展开等式(4-84): 根据胡克定律(4-33),弹性应变为: 因为塑性应变是总应变和弹性应变之间的差,所以它由方程(4-85)和(1)获得: 公式(4-86)可以缩写为: 实施例4-3众所周知,具有封闭端的薄壁圆筒的平均半径为R,平均直径为D,壁厚为T,圆筒长度为L,并且承受内压P以产生塑性变形。材料是各向同性的。尝试找到: (1)如果忽略弹性应变,周向、轴向和径向应变之比在圆筒壁上的一点处增加; (2)如果材料是不可压缩的,即μ=1/2,圆柱壁上一点的周向、轴向和径向应变总量之比。 因为t/r1是解,所以可以近似地考虑圆柱壁中每个点的径向应力ζr=0。

弹塑性力学试卷

一、问答题:(简要回答,必要时可配合图件答题。每小题5分,共10分。) 1、简述固体材料弹性变形的主要特点。 2、试列出弹塑性力学中的理想弹塑性力学模型(又称弹性完全塑性模型)的应力与应变表达式,并绘出应力应变曲线。 二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、;

五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为: 式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图

应用弹塑性力学习题解答[精选.]

应用弹塑性力学习题解答 目录 第二章习题答案 (2) 第三章习题答案 (6) 第四章习题答案 (9) 第五章习题答案 (26) 第六章习题答案 (37) 第七章习题答案 (49) 第八章习题答案 (54) 第九章习题答案 (57) 第十章习题答案 (59) 第十一章习题答案 (62)

第二章习题答案 2.6设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 2.7利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系 可求得。 最终的结果为

2.8已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 2.9已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记

2.10已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,, 2.11已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得

弹塑性力学理论及其在工程上的应用

弹塑性力学理论及其在工程上的应用 摘要:弹塑性力学理论在工程中应用十分的广泛,是工程中分析问题的一个重要手段,本文首先是对弹塑性力学理论进行了阐述,然后讨论了它在工程上面的应用。 关键词:弹塑性力学;工程;应用 第一章 弹塑性力学的基本理论 (一)应力理论 1、 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作 用的物体用一平面A 分成A 和B 两部分(图1.1)。如 将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上 的内力矢量为F ?,则内力的平均集度为F ?/S ?, 如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σo ,即 σ=??→?S F S 0lim 2、二维应力状态与平面问题的平衡微分方程式 上节中讨论应力概念时,是从三维受力物体出发的,其中点P 是从一个三维空间中取出来约点。为简单起见,首先讨论平面问题。掌提了平面问题以后.再讨论空间问题就比较容易了。

当受载物体所受的面力和体力以及其应力都与某—个坐标轴(例如z 轴)无 关。平面问题又分为平面应力问题与平面应变问题。 (1) 平面应力问题 如果考虑如图所示物体是一个很薄的 平板,荷载只作用在板边,且平行于板面,即 xy 平面,z 方向的体力分量Z 及面力分量z F 均 为零,则板面上(2/δ±=z 处)应力分量为 0) (2=±=δσz z 0)()(22==±=±=δ δ ττz zy z zx 图2.2平面应力问题 因板的厚度很小,外荷载又沿厚度均匀分布, 所以可以近似地认为应力沿厚度均匀分布。由此, 在垂直于z 轴的任一微小面积上均有 0=z σ, 0==zy zx ττ 根据切应力互等定理,即应力张量的对称性,必然有0==xz yx ττ。因而对于平面应力状态的应力张量为 ???? ??????=00000y yx xy x ij σττσσ 如果z 方向的尺寸为有限量,仍假设0=z σ,0==zy zx ττ,且认为x σ,y σ和xy τ(yx τ)为沿厚度的平均值,则这类问题称为广义平面应力问题。 (2)平面应变问题 如果物体纵轴方向(oz 坐标方向)的尺寸很长,外荷载及体力为沿z 轴均匀分 布地作用在垂直于oz 方向,如图1.4所示的水坝是这类问题的典型例子。忽略端部效应,则因外载沿z 轴方向为一常数,因而可以认为,沿纵轴方向各点的位

弹塑性力学试题及标准答案(2015、16级工程硕士)

工程硕士研究生弹塑性力学试题 一、简述题(每题5分,共20分) 1.简述弹性力学与塑性力学之间的主要差异。 固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。 弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 2.简述弹性力学中圣维南原理的基本内容。 3.简述薄板弯曲的基本假定。

应用弹塑性力学 李同林 第四章

第四章弹性变形·塑性变形·本构方程 当我们要确定物体变形时其内部的应力分布和变形规律时,单从静力平衡条件去研究是解决不了问题的。因此,弹塑性力学研究的问题大多是静不定问题。要使静不定问题得到解答,就必须从静力平衡、几何变形和物性关系三个方面来进行研究。考虑这三个方面,就可以构成三类方程,即力学方程、几何方程和物性方程。综合求解这三类方程,同时再满足具体问题的边界条件,从理论上讲就可使问题得到解答。 在第二、三两章中,我们已经分别从静力学和几何学两方面研究了受力物体所应满足的各种方程,即平衡微分方程式(2-44)和几何方程式(3-2)等。所以,现在的问题是,必须考虑物体的物性,也即考虑物体变形时应力和应变间的关系。应力应变关系在力学中常称之为本构关系或本构方程。本章将介绍物体产生变形时的弹性和塑性应力应变关系。 大量实验证实,应力和应变之间的关系是相辅相成的,有应力就会有应变,而有应变就会有应力。对于每一种具体的固体材料,在一定条件下,应力和应变之间有着确定的关系,这种关系反映了材料客观固有的特性。下面我们以在材料力学所熟知的典型塑性金属材料低碳钢轴向拉伸试验所得的应力应变曲线(如图4-1所示)为例来说明和总结固体材料产生弹性变形和塑性变形的特点,并由此说明塑性应力应变关系比弹性应力应变关系要复杂的多。 在图4-1中,OA段为比例变形阶段。在这一阶段中,应力和应变之间的关系是线性的,即可用虎克定律来表示: ζ=Eε(4-1) 式中E为弹性模量,在弹性变形过程中,E为常数。A点对应的应力称为比例极限,记作ζP。由A点到B 点,已经不能用线性关系来表示,但变形仍是弹性的。B点对应的应力称为弹性极限,记作ζr。对于许多材料,A点到B点的间距很小,也即ζP与ζr数值非常接近,通常并不加以区分,而均以ζr表示,并认为当应力小于ζr时,应力和应变之间的关系满足式(4-1)。在当应力小于ζr时,逐渐卸去载荷,随着应力的减小,应变也渐渐消失,最终物体变形完全得以恢复。若重新加载则应力应变关系将沿由O到B的原路径重现。BF段称为屈服阶段。C点和D点对应的应力分别称为材料的上屈服极限和下屈服极限。应力到达D点时,材料开始屈服。一般来说,上屈服极限受外界因素的影响较大,如试件截面形状、大小、加载速率等,都对它有影响。因此在实际应用中一般都采用下屈服极限作为材料的屈服极限,并记作ζs。有些材料的屈服流动阶段是很长的,应变值可以达到0.01。由E点开始,材料出现了强化现象,即试件只有在应力增加时,应变才能增加。如果在材料的屈服阶段或强化阶段内卸去载荷,则应力应变不会顺原路径返回,而是沿着一条平行于OA线的MO'''(或HO'、KO'')路径返回。这说明材料虽然产生了塑性变形,但它的弹性性质却并没有变化。如果在点O'''(或O'、O'')重新再加载,则应力应变曲线仍将沿着O'''MFG (或O'HEFG、O''KFG)变化,在M点(或H点、K点)材料重新进入塑性变形阶段。显然,这就相当于提高了材料的屈服极限。经过卸载又加载,使材料的屈服极限升高,塑性降低,增加了材料抵抗变形能力的现象,称为强化(或硬化)。

弹塑性力学试题及答卷-2011

---○---○--- ---○---○--- ………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 ………… 中南大学考试试卷(参考答案) 2010~2011 学年 二 学期 弹塑性力学 课程 时间110分钟 32 学时, 2学分,闭卷,总分100分,占总评成绩 90 % 一、名词解释题(每小题3分,共15分) 1、应力强度因子: 2、弹塑性共存: 3、应力集中: 4、弹塑性体 5、

二、填空题 (每小题2分,共24分) 1、主应力平面上的切应力等于零;主切应力平面上的正应力 不一定等于零。 2、全量应变是 某时刻变形之后的应变量 ; 应变增量是 变形某时刻的应变微分量 。 3、在应力分量表达式σij 中,下标i 表示 应力分量所在平面的外法线方向 , 下标j 表示 应力分量本身的作用方向 。 4、已知主应变ε1>ε2>ε3,则最大剪应变为:γmax = ε1-ε3 。 5、表征变形体内各应力分量之间相互关系的是 应力平衡微分 方程,表征各应变分量之间相互关系的是 应变连续/协调 方程。 6、在滑开型裂纹扩展模式中,应力的作用方向与裂纹扩展方向 平行 ,裂纹面与应力作用方向 平行 。 7、如图所示,受单向均匀拉伸载荷的平板构件,其上的中心穿透小孔边缘的a 、b 及远离小孔的c 、d 点,随着外载荷增加,最先进入塑性变形状态的是 a 点,受压应力的是 b 点。 8、如图所示为变形体内某点处单元体的受力状态,已知σ=σs (屈服应力),用Tresca 屈服准则判别,该点处于 塑性变形 状态;用Mises 屈服准则判别,该点处于 弹性变形 状态。 9、圆柱体在Z 向受压缩,产生均匀塑性变形,则其塑性应变之比为:=p x p x p x εεε::。 10、 11、 12、 题二(8)图 题二(7)图 1.5σ σx

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学习题及答案

1 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

弹塑性力学博士生考题03答案

2003年结构工程博士研究生入学考试 弹塑性力学试卷答案 第一道题答案: 圣维南原理可以这样陈述:如果把作用在物体表面一小部分边界上的面力,被分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同)所代替,那么,近处的应力分布将有显著的改变,但远处所受的影响小得可以忽略不计。 圣维南原理也可以这样陈述:如果物体一小部分边界上的面力是一自相平衡的力系(主矢量及主矩都等于零),那么,这个面力就只会在靠近受力表面附近产生显著的应力,远处(与受力表面之尺寸相较)产生的应力可以忽略不计。 上面两种陈述是一致的,因为,静力等效的两组面力,它们的差异是一个平衡力系。 正确理解和运用圣经南原理的关键是弄清“一小部分”,“静力等效”,“近处与远处”的概念。 实践应用中,圣维南原理可提供: 1.我们知道,弹性力学问题在数学上被称为边值问题,其待求的未知量(应力、位移、应变)完全满足基本方程并不困难,但是,要求在全部边界上都逐点地满足边界条件,往往会发生很大困难。为了使问题得到简化或有解,在符合圣维市原理的那部分边界上,可以放弃严格的逐点边界条件,而改为满足另一组静力等效的以合力形式表示的整体边界条件。这对于离边界较远处的应力状态,并无显著的误差。这已经为理论分析和实验所证实。 2.当物体的一小部分边界,仅仅知道物体所受外力的合力,而不能确知其分布方式时,就不能逐点地写出面力的边界条件,因而难以求解或无法求解。根据圣维南原理,可以在这一小部分边界,直接写合力条件进行求解。 3.当物体一小部分边界上的位移边界条件不能精确满足时,有时也可以应用圣维南原理得到有用的解答。 4.在工程结构的受力分析中,根据圣维南原理,有时可近似地判断应力分布和应力集中的情况。 第三道题答案:

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性力学总结

应用弹塑性力学读书报告 姓名: 学号: 专业:结构工程 指导老师:

弹塑性力学读书报告 弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。 1 基本思想及理论 1.1科学的假设思想 人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。 1.1.1连续性假定 假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 1.1.2线弹性假定(弹性力学) 假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。

弹塑性力学题目

弹塑性力学试题 考试时间:2小时 考试形式:笔试,开卷 一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。每小 题3分,共21分) 1.应力状态不变量与坐标系的选取有关。() 2.若受力物体中取出的微元体处于平衡状态,则整个物体也处于平衡状态。() 3.在与三个应力主轴成相同角度的斜面上,正应力3/)(321σσσσ++=N 。( )4.弹性力学物理方程利用了连续性、线弹性、各向同性三个假设条件。( ) 5.塑性力学假设屈服准则与静水压力无关。( )6.平面问题中应力函数?的量纲为[FL]。()7.Ritz 法和Galerkin 法解薄板小挠度弯曲问题时,都设∑=m m m w C w ,但Ritz 法中m w 必 须满足全部边界条件,Galerkin 法中m w 只需满足几何边界条件。( )二﹑填空及简答题(填空每小题3分,共24分) 1.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。2.空间问题物理方程:e G y y λεσ+=2,式中λ称为( ),其值为(),e 称为(),其值为()。3.图示弹性体(平面问题)边界12 在极坐标系中的应力边界条件为()。4.简述求解薄板小挠度弯曲问题的思路。(5分) 5.简述弹性力学中逆解法和半逆解法成立所依据的原理。(5分) 6.弹性力学空间问题,物体内任一点有6个应力、6个应变、3个位移共15个未知函数,弹性力学从哪些方面来建立这些未知函数之间的关系?(5分) 1o 301q 2q x y 243

三﹑计算题(共55分) 1.试求平面应变问题的Tresca 屈服条件的表达式。(8分) 2.一圆环内半径为a ,外半径为b 。在极坐标系中设函数2 21ln r C r C +=?,式中C 1,C 2均为常数。1)?是否可作为应力函数?2)写出应力分量表达式。3)内外边界上对应着怎样的边界条件?(10分) 3.图示矩形薄板,边长分别为a ,b ,取挠度222222)4/()4/(b y a x C w --=,(C 为常数), 试求: (1)板面上的荷载),(y x q ; (2)板内的最大弯矩()()max max y x M M 、; (3)矩形薄板所应满足的边界条件。(12分) 4.圆形薄板,半径为a ,边界简支,在上板面中心受集中荷载P 作用,下板面中心有一刚度为k 的弹簧弹性支承,求挠度w 及内力r M 、θM 。(10分) 5.一均质空心厚壁圆筒内外半径分别为a 和b ,受内压q 作用,该圆筒由不可压缩的理想材料制成,处于平面应变状态,q 增加时满足简单加载定理,本构方程为3εσA =(A 为常数),求应力分布θσσ,r 。(15分)

弹塑性力学习题题库及答案

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 30106.768 6.77() 104sin 2cos 2sin 602cos 60 221 32 3.598 3.60() 22 x y xy MPa MPa σστατα= --=----+=?+=?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 607322226.768 6.77()104 sin 2cos 2sin 602cos 60 22132 3.598 3.60() 22 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+=----+=-?+=-?+=?+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: c 截面的内力:N z =γ·A ·z ; 题图 1-3

c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =5003008003000 3008003001100-???? +-?? ??-- ?? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τn 。 解:首先求出该斜截面上全应力n P 在x 、y 、z 三个方向的三个分量:n '=n x =n y =n z 题—图 16

弹塑性力学试题

弹塑性力学试题 (土木院15研) 考试时间:2小时 考试形式:笔试,开卷 一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。每小题3 分,共21分) 1. 孔边应力集中的程度与孔的形状有关,圆孔应力集中程度最高。( ) 2. 已知物体内P 点坐标P (x, y, z ), P '点坐标P '(x+dx, y+dy, z+dz ), 若P 点在x, y, z 方向的位移分别为u, v, w ,则P '点在x 方向的位移为dz z w dy y v dx x u u ??+??+??+ ( ) 3. 任何边界上都可应用圣维南(St. Venant )原理,条件是静力等效。。 ( ) 4. 塑性力学假设卸载时服从初始弹性规律。( ) 5. 弹性力学空间问题应变状态第二不变量为2 2 2 - yz xz xy z y z x y x γγγεεεεεε--++。( ) 6. 弹性力学问题的两类基本解法为逆解法和半逆解法。( ) 7. 全量理论中,加载时应力—应变存在一一对应的关系。( ) 二﹑填空及简答题(填空每小题3分,共23分) 1. 弹性力学平面问题,结构特点是( ),受力特点是( )。 2.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。 2. 薄板小挠度弯曲中内力弯矩和剪力的量纲分别为( )、( )。 3. 比较Tresca 屈服准则和von Mises 屈服准则的相同点与不同点。(5分) 4. 弹性力学的几何方程是根据什么假设条件推导出来的?(4分) 6.简述弹性力学量纲分析的基本思路。(5分) 三﹑计算题(共56分) 1. 写出圆形薄板轴对称弯曲的弹性曲面方程。若受均布荷载0q 作用,推导(必须有推导过程)出其挠度w 的表达式。(8分) 2. 已知应力函数)(A 2 3 xy x +=?,A 为常数。试求图中所示形状平板的面力(以表面法向和切向应力表示)并在图中标出。(8分)

弹塑性力学试题

考试科目 :弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+- =+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

相关主题
文本预览
相关文档 最新文档