当前位置:文档之家› 第4章第1节_叶绿素荧光参数及意义-v2

第4章第1节_叶绿素荧光参数及意义-v2

第4章第1节_叶绿素荧光参数及意义-v2
第4章第1节_叶绿素荧光参数及意义-v2

第四章 叶绿素荧光技术应用

第一节 叶绿素荧光参数及其意义

韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333)

叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统 II 的叶绿素 a ,而光系统 II 处于整个光合作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统 II ,进而引起叶绿素 a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的应用。

1 叶绿素荧光的来源

藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1

fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图 1)。而最低激发态的叶绿素分

子可以稳定存在几纳秒(ns ,1 ns=10-9 s )。 A 较高激发态 B 热耗散

吸收蓝光 吸收红光 最低激发态 能量

荧光 基态

波长

荧光

图 1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003)

处于最低激发态的叶绿素分子可以通过几种途径(图 2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素 a ,用于进行光化学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而

光化学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能

量主要用于进行光化学反应,荧光只占约 3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素 b 到叶绿素 a 的传递几乎达到 100%的效率,因此基本检测不到叶绿素 b 荧光。在常温常压下,光系统 I 的叶绿素 a 发出的荧光很弱,基本可以忽略不计,对光系统 I 叶绿素 a 荧光的研究要在 77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系统 II 的叶绿素 a 发出的荧光。

1

第四章叶绿素荧光技术应用

图2激发能的三种去激途径(引自韩博平et al., 2003)

LHC,捕光色素蛋白复合体。

2 叶绿素荧光的研究历史

在19世纪就有了关于叶绿素荧光现象的记载。最初是在1834年由欧洲传教士Brewster发现,当强光穿过月桂叶子的乙醇提取液时,溶液的颜色由绿色变成了红色。1852年Stokes认识到这是一种光发射现象,并创造了“fluorescence”一词。

1931 年,德国科学家 Kautsky 和 Hirsch 用肉眼观察并记录了叶绿素荧光诱导现象,明确指出暗适应处理的叶片照光后的诱导过程中,叶绿素荧光强度的变化与CO2固定呈相反的关系(Kautsky and Hirsch, 1931;Govindjee, 1995),此后的10 余年中,Kautsky 和他的学生Franck 就这一现象作了系统的研究(Kautsky and Franck, 1943)。在Kautsky 研究的基础上,后人进一步对叶绿素荧光诱导现象进行了广泛而深入的研究,并逐步形成了光合作用荧光诱导理论,被广泛应用于光合作用研究。由于Kautsky的杰出贡献,叶绿素荧光诱导现象也被称为Kautsky效应(Kautsky Effect)。

从1960年代到1980年代早期,叶绿素荧光这一生物物理学的技术被广泛用于光合作用基础研究,很多重要发现都与这一技术有关,如光合作用存在两个光反应的提出(Duysens and Sweers, 1963)就是采用的这一技术应用的典型代表。但在那个年代,所有的叶绿素荧光测量都只能在完全遮蔽环境光的“黑匣子”里进行,这大大限制了叶绿素荧光技术在植物胁迫生理学、生理生态学和植物病理学等领域的应用。因此在很长一段时间中,叶绿素荧光技术在基础研究和应用研究的使用中存在一个鸿沟。尽管如此,情况还是在逐步好转。这是因为虽然叶绿素荧光信号虽然复杂,但确实提供了可靠的、定量的信息,并且可以由越来越小型化的仪器来进行测量。

1980 年代中期,德国乌兹堡大学的 Schreiber 提出了叶绿素荧光测量的饱和脉冲理论,并发明了脉冲- 振幅-调制(Pulse-Amplitude-Modulation)叶绿素荧光仪(Schreiber, 1986; Schreiber et al., 1986),也就是今天大名鼎鼎的调制叶绿素荧光仪PAM。Schreiber早年师从Kautsky的学生Franck,在后者的指导下很早就开始进行叶绿素荧光研究(Schreiber et al., 1971; Gielen et al., 2007),并在1975年就设计出了科研界第一款便携式叶绿素荧光仪(Schreiber et al., 1975)。但受限于光电技术的发展,当时这款荧光仪只能测量叶绿素荧光诱导曲线,不能进行深入的淬灭分析,直到PAM的出现才解决了这个问题。

调制叶绿素荧光仪PAM和调制叶绿素荧光测量技术在叶绿素荧光的研究历史上具有里程碑意义。它采用了调制技术进行测量,从而可以在有环境光照(甚至是很强的太阳光)的情况下记录叶绿素荧光信号;

2

第四章叶绿素荧光技术应用

它采用了饱和脉冲技术,使得光化学淬灭和非光化学淬灭的测量成为可能。PAM面世后,很快就替代了传统的光合放氧和CO2同化技术,成为使用最广泛的光合活性测量技术。

早期的调制叶绿素荧光仪主要在实验室内进行测量,到了1990年代发展到可以非常方便的在野外现场测量。早期的仪器采用光电二极管作为检测器,只能测量叶片或细胞浓度很高的藻液,后来采用光电倍增管后可以直接检测大洋海水的叶绿素荧光。随着技术的发展,陆续出现了叶绿素荧光成像测量技术、水下原位叶绿素荧光测量技术、显微叶绿素荧光测量技术、无线远程叶绿素荧光测量技术和利用叶绿素对浮游植物进行分类的技术等,这些技术均在藻类学界得到了广泛的应用。

3 调制叶绿素荧光原理

为了更好的理解调制叶绿素荧光,首先要知道“荧光强度(intensity)”和“荧光产量(yield)”的区别。“荧光强度”的高低依赖于激发光的强度和仪器的信号放大倍数,其变化可以达到几个数量级的幅度。而“荧光产量”可以理解为固定仪器设置下的荧光强度,其变化不会超过5-6倍,是真正包含了光合作用信息的参数。例如针对一个暗适应处理后的样品,照射0.5 mol m-2s-1的测量光后,其荧光产量是非常稳定的。假设此时仪器的增益设置为1,荧光强度为300 mV;当仪器的增益设置改为3后,荧光强度变为900 mV。但实际上由于激发光恒定,样品发出的荧光产量是恒定的,只是在不同的信号放大倍数下检测到的荧光强度不同而已。

理想的荧光仪必须能在不改变样品状态的情况下(即非破坏性)进行生理活性测量,需要满足如下几条要求(Schreiber, 1986; Schreiber et al., 1986; Schreiber, 2004):

1)测量光必须足够低,只激发色素的本底荧光而不引起光合作用,这样才能获得暗适应后的最小荧光Fo;

2)测量光由一系列微秒级的光脉冲组成,这些短光脉冲可以不同的频率给出。在很低的频率下,即使单个微秒级光脉冲的强度比较高,也不会引起光合作用;

3)用反应迅速、线性范围大的光电二极管(或光电倍增管)来检测这些由微秒级测量光脉冲激发的微秒级荧光脉冲;

4)荧光脉冲信号首先由交流耦合放大器放大,然后进一步经选择性锁相放大器处理,只放大和调制测量光同频率的荧光信号,可以有效屏蔽环境中本身就存在的与叶绿素荧光同波长的背

景噪音(这就好比选择调频收音机的某个频道,就可以在浩如烟海的无线电波噪音中获得选

择性接收您需要的无线电波,采用调制技术,可以在大量的环境光背景噪音中选择性测量叶

绿素a发出的荧光);

5)当打开光化光或饱和脉冲时,可以自动提高测量光频率,以提高信号采点率,有效记录一些比较快速的荧光动力学变化(如荧光快速上升动力学)。

调制叶绿素荧光仪有两大核心技术,一个是上文提到的光调制技术,有了它才能使得我们在有环境

光的情况下测量叶绿素荧光;另一个就是饱和脉冲技术。

所谓饱和脉冲技术,就是提供一个瞬间的强光脉冲,来暂时打断光系统II电子传递过程。我们已经知道,光合机构吸收的光能有三条去激途径:光化学反应(Photochemistry, P)、叶绿素荧光(Fluroescence, F)和热耗散(Dissipation, D)。根据能量守恒原理,假设吸收的光能为常数1,得到1=P+F+D。叶绿素荧光产量可以测量出来,而我们希望得出P和D两个参数。根据基本的数学原理,一个等式有两个未知数是无解的。此时如果给出一个饱和脉冲,暂时打断光化学反应过程,则P=0,这个等式就可以求解了。由此可知,饱和脉冲技术的基本作用就是打断光合作用,用于求出光化学反应和热耗散分别用去了多少能量。

早期,科研人员只能通过人为加入农药敌草隆(DCMU)来阻断光系统II的电子传递过程,从而获得最大荧光Fm,而这是不可逆的。后来,Schreiber在“光强倍增”技术(Bradbury and Baker, 1981; Quick and Horton, 1984)的基础上提出了“饱和脉冲”技术(Schreiber et al., 1986)。饱和脉冲技术的最大优点在于,它是暂

时阻断光系统II的电子传递过程,由于持续时间很短(一般0.2-1.5 s),因此饱和脉冲关闭后光合电子传递会在极端的时间内恢复运转。所以说这是一种可逆的过程,正是有了饱和脉冲技术,我们才能不破

3

第四章叶绿素荧光技术应用

坏样品的完整性就获得其光合生理参数。

4叶绿素荧光诱导曲线和典型参数

从Kautsky 发现叶绿素荧光诱导现象并提出其与光合作用的关系后,80 多年来利用叶绿素荧光研究光合作用采用的最主要技术就是荧光诱导曲线。那么什么是叶绿素荧光诱导曲线呢?测量叶绿素荧光诱导曲线能获得哪些生物信息呢?

所谓叶绿素荧光诱导,就是将样品在黑暗的状态下适应一段时间,然后照射光化光,观察样品的光合机构从暗转到光下的响应过程。为什么要暗适应呢?在光合电子传递链上有一个叫做质体醌(PQ)的载体,是整个电子传递过程的限速步骤,可以通俗的称之为电子门。在光合膜上PQ的数量与捕光色素吸收的光子数(微摩尔级)相比是微不足道的。因此光合作用进行时,光系统II释放出的电子总是有部分会累积在电子门PQ处,这部分处于还原态(累积电子)的电子门就处于关闭态,或者说光系统II的反应中心处于关闭态。在暗适应过程中,光系统II无法获得光能激发,因此不会继续释放电子,累积在PQ处的电子会继续往光系统I传递,直到所有电子都传递完毕。当PQ处不再累积电子后,暗适应就足够了。

暗适应结束后,就可以照光进行荧光诱导了。那么采用什么光进行诱导呢?只要能够引起光合作用的光也就是波长在400-700 nm的可见光,都可以进行荧光诱导,我们给它一个专业术语叫做光化光(Actinic Light),也有人翻译为作用光。在光合作用领域,400-700 nm 的光也被称为光合有效辐射(Photosynthetic Active Radiation, PAR)。光化光可以为人工光,如来自日光灯、卤素灯或发光二极管的光,也可以为自然光(直接或间接的太阳光)。但为了使我们的实验具有可重复性,多数荧光诱导的测量会采用仪器提供的恒定光强的人工光(新型仪器多以光强稳定的发光二极管为主)来诱导。只有保证测量条件一致,才能对不同材料或不同处理的样品进行直接比较。

图3叶绿素荧光诱导曲线(韩志国and吕中贤,未发表数据)

SP,饱和脉冲(Saturation Pulse);AL,光化光(Actinic Light)。

Fo,最小荧光;Fm,最大荧光。

整个测量过程中调制测量光需要一直打开。

图3是一条典型的叶绿素荧光诱导曲线,其测量步骤如下:

1)样品首先暗适应处理一段时间,以便累积在PQ 处的所有电子都被传走,光系统II 的所有反应中心都处于开放态。然后打开测量光(Measuring Light, ML),记录暗适应后的最小荧光Fo。测量光很

弱(一般小于1μmol m-2s-1),只激发色素的本底荧光但不足以引起任何的光合作用。

4

第四章叶绿素荧光技术应用

2)紧接着打开一个持续时间仅有 0.2-1.5 s 的饱和脉冲(Saturation Pulse,SP),测量暗适应后的最大荧光Fm。饱和脉冲打开后,由光系统II处释放的电子迅速将PQ全部还原(电子门全部关

闭),光化学反应被打断,光能全部转化为叶绿素荧光和热量,荧光迅速达到最大值Fm。饱和

脉冲的强度非常强,高等植物一般要求达到8000-10000μmol m-2s-1,藻类一般大于4000

μmol m-2 s-1即可。

3)饱和脉冲关闭后荧光迅速回到 Fo 附近,然后打开光化光(Actinic Light,AL),记录叶绿素荧光从黑暗转到光照的响应过程。如上所述,光合作用进行时,总是有部分电子门处于关闭态。这部分处

于关闭态的电子门本应用于光合作用的能量就转化为了叶绿素荧光和热。饱和脉冲关闭后,电子

门迅速全部打开。此时打开光化光,光系统II瞬间释放出大量电子,导致许多电子门被关闭,因

此实时荧光迅速上升。此时,光合器官会迅速启动调节机制来适应这种光照状态,光系统I逐渐

从PQ处获取电子。在恒定的光化光强度下,PS II释放的电子数是恒定的,因此随着时间的延

长,处于关闭态的电子门越来越少,荧光逐渐下降并达到稳态。此时,处于关闭态的电子门数量

达到动态平衡,也就是说光系统II和光系统I达到了动态平衡。

4)等荧光曲线达到稳态后关闭光化光,并结束整个测量过程。有时,为了精确的获得Fo’这个参数,会在关闭光化光的同时打开一个持续几秒的远红光(Far-red Light, FL)(图3中未示

出),以加快电子从PQ向光系统I的传递。

根据图3中的Fo和Fm,可以计算出光系统II的最大光合效率Fv/Fm=(Fm-Fo)/Fm(Kitajima and Butler, 1975),它反映了植物的潜在最大光能转换效率。这是用得最广、使用频率最高的一个参数。早在 1987 年

科研人员就已经阐明多数健康维管束植物的Fv/Fm值为0.832 0.004(Bj?rkman and Demmig, 1987)。目前科研界已基本达成共识,在健康生理状态下,绝大多数高等植物的Fv/Fm在0.8-0.85之间,当Fv/Fm 下降时,代表植物受到了胁迫。因此,F v/F m是研究光抑制或各种环境胁迫对光合作用影响的重要指标。

对藻类而言,由于其进化程度差异大,健康生理状态下的Fv/Fm没有很固定的值。但笔者结合大量文献报道和实际经验,总结出了一些基本的规律。如绿藻门的最大Fv/Fm一般在0.7-0.75之间,没有很大的种间差异性;硅藻门和甲藻门的最大Fv/Fm一般在0.65-0.7之间,也没有很大的种间差异性。对蓝藻门和红藻门而言,由于其捕光结构为藻胆体,而藻胆体可以在光系统II和光系统I之间滑动,造成不同的藻之间没有可以直接比较的最大Fv/Fm值。

若在打开光化光进行叶绿素荧光诱导的过程中,间隔一段时间打开一个饱和脉冲,则可以将光化学反应和热耗散计算出来。图4就是利用这种方法测量出的叶绿素荧光诱导曲线。

图4带淬灭分析的叶绿素荧光诱导曲线(韩志国and吕中贤,未发表数据)

打开光化光进行光合诱导时,在PQ处会累积电子,只有部分电子门处于开放态。如果给出一个饱和

5

叶绿素的提取和分离实验报告

陕西师范大学远程教育学院生物学实验报告 报告题目叶绿素的提取和分离 姓名刘伟 学号 专业生物科学 批次/层次 指导教师 学习中心

叶绿素的提取和分离 一、实验目的 1. 学习叶绿体色素的提取、分离方法。 2. 通过叶绿体色素提取、分离方法的学习了解叶绿体色素的相关理化性质。 3. 为进一步研究各叶绿体色素性质、功能等奠定基础。 二、原理 叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。它们与类囊体膜蛋白相结合成为色素蛋白复合体。它们的化学结构不同,所以它们的物化性质(如极性、吸收光谱)和在光合作用中的地位和作用也不一样。这两类色素是酯类化合物,都不溶于水,而溶于有机溶剂,故可用乙醇、丙醇等有机溶剂提取。提取液可用色谱分析的原理加以分离。因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。 三、材料、仪器设备和试剂 1. 绿色植物如菠菜等的叶片。 2. 研钵、漏斗、三角瓶、剪刀、滴管、康维皿、圆形滤纸(直径11cm)。 3. 试剂:95%乙醇,石英砂,碳酸钙粉,推动剂:按石油醚:丙酮:苯=10:2:1比例配制(v/v) 四、试验步骤 1. 叶绿体色素的提取 (1)取菠菜或其他植物新鲜叶片4-5片(4g左右),洗净,擦干,去掉中脉剪碎,放入研钵中。 (2)研钵中加入少量石英砂及碳酸钙粉,加2-3ml 95%乙醇,研磨至糊状,再加10ml 95%乙醇,然后以漏斗过滤之,残渣用10ml 95%乙醇冲洗,一同过滤于三角瓶中。 2. 叶绿体色素的分离 (1)将11cm的滤纸的一端剪去二侧,中间留一长约1.5cm、宽约0.5cm窄条。 (2)用毛细管取叶绿体色素浓溶液点于窄条上端,用电吹风吹干,如一次点样量不足可反复在色点处点样数次,使色点上有较多的叶绿体色素。 (3)在大试管中加入四氯化碳3-5ml及少许无水硫酸钠。然后将滤纸条固定于软木塞上,插入试管内,使窄端浸入溶剂中,而色点略高于液面,滤纸条边缘不可碰到试管壁,软木塞盖紧,直立于阴暗处层析。 0.5-1小时后,观察色素带分布:最上端橙黄色(胡萝卜素),其次黄色(叶黄素),再崐次 蓝绿素(叶绿素a),最后是黄绿色(叶绿素b)。(4)当展层剂前沿接近滤纸边缘时便可结束实 验,此时可看到不同色素的同心圆环,各色素由内往外的顺序为:叶绿素b(黄绿色)、叶 绿素a(蓝绿色)、叶黄素(鲜黄色)、胡萝卜素(橙黄色),再用铅笔标出各种色素的位置 和名称。

部分叶绿素荧光动力学参数的定义

部分叶绿素荧光动力学参数的定义: F0:固定荧光,初始荧光(minimalfluorescence)。也称基础荧光,0水平荧光,是光系统Ⅱ(PSⅡ)反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。 Fm:最大荧光产量(maximalfluorescence),是PSⅡ反应中心处于完全关闭时的荧光产量。可反映经过PSⅡ的电子传递情况。通常叶片经暗适应20 min后测得。 F:任意时间实际荧光产量(actualfluorescence intensity at any time)。 Fa:稳态荧光产量(fluorescence instable state)。 Fm/F0:反映经过PSⅡ的电子传递情况。 Fv=Fm-F0:为可变荧光(variablefluorescence),反映了QA的还原情况。 Fv/Fm:是PSⅡ最大光化学量子产量(optimal/maximal photochemical efficiency of PSⅡin the dark)或(optimal/maximalquantum yield of PSⅡ),反映PSⅡ反应中心内禀光能转换效率(intrinsic PSⅡefficiency)或称最大PSⅡ的光能转换效率(optimal/maximalPSⅡefficiency),叶暗适应20 min后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降。 Fv’/Fm’:PSⅡ有效光化学量子产量(photochemicalefficiency of PSⅡin the light),反映开放的PSⅡ反应中心原初光能捕获效率,叶片不经过暗适应在光下直接测得。 (Fm’-F)/Fm’或△F/Fm’:PSⅡ实际光化学量子产量(actual photochemical efficiency of PSⅡin the light)(Bilger和Bjrkman,1990),它反映PSⅡ反应中心在有部分关闭情况下的实际原初光能捕获效率,叶片不经过暗适应在光下直接测得。 荧光淬灭分两种:光化学淬灭和非光化学淬灭。光化学淬灭:以光化学淬灭系数代表:qP=(Fm’-F)/(Fm’-F0’);非光化学淬灭,有两种表示方法,NPQ=Fm/Fm’-1或qN=1-(Fm’-F0’)/(Fm-F0)=1-Fv’/Fv。 表观光合电子传递速率以[(Fm’-F)Fm’]×PFD表示,也可写成:△F/Fm’×PFD×0.5×0.84,其中系数0.5是因为一个电子传递需要吸收2个量子,而且光合作用包括两个光系统,系数0.84表示在入射的光量子中被吸收的占84%,PFD是光子通量密度;表观热耗散速率以(1-Fv’/Fm’)×PFD表示。 Fmr:可恢复的最大荧光产量,它的获得是在荧光P峰和M峰后,当开放的PSⅡ最大荧光产量平稳时,关闭作用光得到F0’后,把饱和光的闪光间隔期延长到180s/次,得到一组逐渐增大(对数增长)的最大荧光产量,将该组最大荧光产量放在半对数坐标系中即成直线,该直线在Y轴的截距即为Fmr。以(Fm-Fmr)/Fmr可以反映不可逆的非光化学淬灭产率,即发生光抑制的可能程度。 FO(初始荧光),Fm(最大荧光),Fv= Fm-FO(可变荧光),Fv /Fm(PSII最大光化学效率或原初光能转换效率),Fv /FO(PSII的潜在活性),Yield(PSII总的光化学量子产额),ETR(表观电子传递速率),PAR(光合有效辐射),LT(叶面温度)。其中FO、Fm、Fv /FO测定前将叶片暗适应20 min。各参数日变化从6: 00~18: 00,每2h测定一次。 (Fv /Fm)和(Fv /FO)分别用于度量植物叶片PSII原初光能转换效率和PSII潜在活性,-(Yield)是PSII的实际光化学效率,反映叶片用于光合电子传递的能量占所吸收光能的比例,是PSII反应中心部分关闭时的光化学效率,其值大小可以反映PSII反应中心的开放程度。常用来表示植物光合作用电子传递的量子产额,可作为植物叶片光合电子传递速率快慢的相对指标。即在光合作用进程中,PSII每获得一个光量子所能引起的总的光化学反应。因此,较高的Yield值,有利于提高光能转化效率,为暗反应的光合碳同化积累更多所需的能量,以促进碳同化的高效运转和有机物的积累。同样毛蕊红山茶和长毛红山茶的Yield值也较高。

普通高中叶绿素提取和分离实验

植物叶绿体中色素的提取与分离实验报告 用具:剪刀一把、干燥的定性滤纸、50ml的烧杯及100ml的烧杯各3个、白纸3张、试管架一个、研钵一个、玻璃漏斗一个、尼龙布或纱布、毛细血管一只、药勺一个、10ml 量筒一只,天平一只,试管3支、纸板一块、棉塞3个、培养皿3个、刻度尺、注射器一只、盖玻片 试剂:丙酮、无水乙醇、层吸液(20份石油醚、2份丙酮、1份苯配置而成)、白沙(二氧化硅)、碳酸钙、碳酸钠 材料:新鲜的紫茎泽兰叶、其他野生植物叶片 背景资料: 1、叶绿素等是脂溶性的有机分子,根据相似相溶的原理,叶绿素等色素分子溶于有机溶剂而不溶于有极性的水。故在研磨和收集叶绿色素时要用丙酮或乙醇等有机溶剂而不用水。 2、叶绿素分布于基粒的片层薄膜上,加入少许二氧化硅是为了磨碎细胞壁、质膜、叶绿体被膜和光合片成,使色素溶解于丙酮中。 3、破碎的细胞中含有草酸等有机酸,叶绿素分子中含有的Mg元素处于不稳定化合太,镁离子与有机酸结合将导致色素分子破坏。加入少许碳酸钙使得钙离子与有机酸结合,减少镁离子的转移,防止研磨时叶绿体色素的破坏。所以在研磨时加入适量的碳酸钙,同时加入碳酸钠的道理亦如此。 4、在过滤时选用脱脂棉或纱布,而不用滤纸。原因主要有下:(1)色素分子比较大,不容易透过滤纸;(2)滤纸有较强的吸附性而使色素吸附在滤纸上,从而降低色素浓度,影响实验效果;(3)叶绿素是脂溶性,根据相似相容的原理,脱脂棉可以减少实验过程中色素的流失,增强实验效果。 5、根据物理学中的毛细现象,画滤纸细线前滤纸必须经过干燥处理,是为了阻止水分子堵塞滤纸中的毛细管而影响层析液的扩散。但如果用火烤的话,会使滤纸纤维变形同时破坏啦毛细管,而影响层析液的扩散。 6、由于液面的不同位置表面张力不同,纸条接近液面时,其边缘的表面的张力较大,层析液沿滤纸边缘扩散过快,而导致色素带分离不整齐的现象。故而,在插入层析液的滤纸条一端剪去两个角。 7、为了防止滤纸条倒入层析液中而使层析实验失败。同时,防止因液体表面张力引起层析液沿滤纸条向上的“壁流”而导致色素溶解。 8、色素分离的原理:纸层析是用滤纸作为载体的一种色层分析法,其原理主要是利用混合物中各组分在;流动相和固定相的分配比(溶解度)的不同而使之分离。滤纸上吸附的水为固定相(滤纸纤维常能吸20%左右的水),有机溶剂如乙醇等为流动相,色素提取液为层析试样。把试样点在滤纸的滤液细线位置上,当流动相溶剂在滤纸的毛细管的作用下,连续不断地沿着滤纸前进通过滤液细线时,试样中各组份便随着流动相溶剂向前移动,并在流动相和固定相溶剂之间连续一次有一次的分配。结果分配比比较大的物质移动速度较快,移动距离较远;分配比较小的物质移动较慢,移动距离较近,试样中各组分分别聚集在滤纸的不同的位置上,从而达到分离的目的。符合我国的资源友好型社会。 操作步骤 1.称取新鲜叶子2g,放入研钵中加丙酮5ml,少许碳酸钙(防止叶绿素被破坏)和石英砂(帮助研磨),研磨成匀浆,再加丙酮5ml,然后以漏斗过滤之,即为色素提取液。

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

叶绿素a测定实验报告

叶绿素a测定实验报告 (一)实验目的及意义 水体富营养化可以通过跟踪监测水中叶绿素的含量来实现,其中叶绿素a是所有叶绿素中含量最高的,因此叶绿素a的测定能示踪水体的富营养化程度。 (二)水样的采集与保存 1.确定具体采样点的位置 2.在采样点将采样瓶及瓶盖用待测水体的水冲洗3-5遍 3.将采样瓶下放到距水面0.5-1m处采集水样2.5L 4.在采样瓶中加保存试剂,每升水样中加1%碳酸镁悬浊液1mL 5.将采样瓶拧上并编号 6.用GPS同步定位采样点的位置 (三)仪器及试剂 仪器: 1.分光光度计 2.比色池:10mm 3.过滤装置:过滤器、微孔滤膜(孔径0.45μm,直径60mm) 4.研钵 5.常用实验设备 试剂: 1.碳酸镁悬浮液:1%。称取1.0g细粉末碳酸镁悬浮于100mL蒸馏水中。每次使用时要充分摇匀 2.乙醇溶液 (四)实验原理 将一定量的试样用微孔滤膜过滤,叶绿素会留在滤膜上,可用乙醇溶液提取。 将提取液离心分离后,测定750、663、645、630mm的吸光度,计算叶绿素的浓度。 (五)实验步骤 1.浓缩:在一定量的试样中添加0.2mL碳酸镁悬浮液,充分搅匀后,用直径60mm 的微孔滤膜吸滤.过滤器内无水分后,还要继续抽吸几分钟.如果要延时提取,可把载有浓缩样品的滤膜放在干燥器里冷冻避光贮存。 2. 提取:将载有浓缩样品的滤膜放入研钵中,加入7mL乙醇溶液至滤纸浸湿的程度,把滤膜研碎,再少量地加乙醇溶液,把滤膜完全研碎,然后用乙醇溶液将已磨碎的滤膜和乙醇溶液洗入带刻度的带塞离心管中,使离心管内提取液的总体积不超过10mL,盖上管塞,置于的暗处浸泡24h。 3.离心:将离心管放入离心机中,以4000r/min速度离心分离20min。将上清液移入标定过的10mL具塞刻度管中,加少量乙醇于原提取液的离心管中,再次悬浮沉淀物并离心,合并上清液。此操作重复2-3次,直至沉淀不含色素为止,最后将上清液定容至10mL。 4.测定:取上清液于10mm的比色池中,以乙醇溶液为对照溶液,读取波长750,663,645和630mm的吸光度。

叶绿素荧光研究背景知识介绍

叶绿素荧光研究背景知识介绍 前言 近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。荧光数据是植物光合性能方面的必要研究内容。目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。然而荧光理论和数据解释仍然比较复杂。就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。 荧光测量基础 植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。 调制荧光仪的出现是荧光研究技术的革命性的创新。在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。 为什么荧光产量会发生改变?Kautsky效应和Beyond 叶绿素荧光产量的变化最早在1960年被Kautsky和其合作者发现。他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在1秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少)。一旦PSII吸收光能,初级电子受体Q A(质体醌)接受了电子,它将不能再接受电子,直到它把电子传递给下一级电子载体Q B。此期间,反应中心是关闭的,反应中心关闭的比

叶绿体色素实验报告

叶绿体色素实验报告 ●实验名称 叶绿体色素的提取分离和理化性质测定 ●实验原理 叶绿体是光合作用的细胞器。叶绿体中叶绿素a、叶绿素b、胡萝卜素和叶黄素与类囊体膜结合成为色素蛋白复合体。这些色素可以溶解于乙醇等有机溶剂提取。 薄纸层析色谱法是将吸附剂均匀涂在玻璃板上成一薄层,将此吸附剂薄层作为固定相,把带分离的样品溶液点在薄层板下端,然后用一定量溶剂作流动相,将薄层板下端浸入展开剂中。由于吸附剂对不同物质的吸附能力不同,吸附力强的物质相对移得慢些,吸附力弱的物质相对移得快些,从而使各组分有不同的移动速度而分开。 叶绿素是一种由叶绿酸和叶绿酯形成的复杂酯,故可以与碱起皂化反应而生成甲醇和叶绿酯及叶绿酸盐,盐可溶于水,继而可以分离叶绿素和类胡萝卜素。叶绿素吸收光子转变为激发态,激发态的叶绿素分子很不稳定,当变回基态时可发出红光量子,产生荧光。叶绿体不稳定,容易受强光破坏,特别是当叶绿体与蛋白质分离后,破坏更快,而类胡萝卜素则较稳定。叶绿素中Mg2+可以被H+所取代而成褐色的去镁叶绿素,之后遇铜生成铜代叶绿素。 ●实验材料和工具 1.新鲜的菠菜叶 2.体积分数为95%的乙醇,碳酸钙粉末,展开剂(石油醚:丙酮:苯=7:5:1,体积比) 3.天平,研钵,漏斗,三角瓶,剪刀,点样毛细管,层析缸,硅胶预制板,滤纸 4.刻度试管,小试管,试管架,水浴锅,10ml移液管 5.苯,醋酸铜粉末,质量分数为5%的稀盐酸,醋酸—醋酸铜溶液,氢氧化钾—甲醇溶液 ●实验步骤

(一)色素提取液的制备 1.取新鲜叶片4~5片(2g左右),洗净,擦干叶表面,去中脉剪碎,放入研钵中 2.研钵中加入少量CaCO3,加2~3ml体积分数为95%的乙醇,研磨至糊状,再加10~15ml体积分数为95%的乙醇,上清液用漏斗过滤,残渣再用10ml 体积分数为95%的乙醇冲洗一次,一同过滤于三角瓶中,即制成叶绿体色素提取液,避免阳光直射 (二)叶绿色素的分离 1.取硅胶板一个,用点样毛细管吸取上述提取液,平行与硅胶板短边,据下边缘1cm处划线,风干后再划3~4次 2.干净的层析缸中加适量展开剂,高度约0.5cm,将硅胶板有色素一端放入,使其下端浸入展开剂。迅速盖好 当各种色素得到较好分离时,展开剂前沿接近硅胶板上边缘时,取出并迅速用铅笔标出展开剂前沿和各色素带位置 (三)理化性质的测定 ①光对叶绿色素的破坏 取2支小试管,各加入2.5ml叶绿体色素乙醇提取液,并用体积分数95%的乙醇稀释1倍。其中1支放在直射阳光下,另外1支放到暗处或用锡箔纸包严,40分钟后对比观察颜色变化 ②皂化作用 1.取1支10ml刻度试管加入3ml浓的叶绿素乙醇提取液,加入1ml氢氧化钾—甲醇溶液,充分摇匀 2.片刻后,加入3ml苯,摇匀,再沿管壁慢慢加入1ml左右蒸馏水,轻轻混匀,然后置于试管架上静置分层。 ③H+和Cu2+对叶绿素分子中Mg+的取代作用 1.取两支试管,第一支加叶绿色素提取液5ml作为对照。第二支试管加叶绿体色素提取液5ml后,再加质量分数为5%的HCl数滴,摇匀,观察溶液颜色变化。当溶液变褐后,再加入少量醋酸铜粉末,60℃水浴加热。 2.取新鲜植物叶两片,放入试管中,加醋酸—醋酸铜溶液,使之没过叶片,60℃水浴,观察颜色 ④荧光现象的观察 取一支小试管加入3ml浓的叶绿体色素乙醇提取液,在直射光照射下,比较溶液透射光和反射光颜色有何不同 实验结果 提取与分离 计算方法Rf=斑点中心到原点的距离 溶液前沿至原点的距离R f(叶绿素a)=60.5/84.5=0.716 R f(叶绿素b)=56.0/84.5=0.663 R f(叶黄素)=53.5/84.5=0.633

叶绿素实验报告

一、实验目的: 1、了解植物组织中叶绿素分布及性质。 2、掌握测定叶绿素含量的原理和方法。 3、了解紫外分光光度计的用法。 4、了解一阶导数的含义。 5、了解如何如何排除互相干扰。 二、实验原理: 叶绿体中的色素都能够溶解于有机溶剂丙酮中,所以,可以用丙酮提取叶绿体中的色素。 层析液是一种脂溶性很强的有机溶剂。根据叶绿体中的四种色素在层析液中的溶解度不同来进行分离,溶解度高的在滤纸上扩散的快,溶解度低的扩散地慢。溶解度最高的是胡萝卜素,它随层析液在滤纸上扩散得最快,叶黄素和叶绿素a的溶解度次之;叶绿素b的溶解度最低,扩散速度最慢。这样,四种色素就在扩散过程中分离开来。 叶绿素a和叶绿素b的分子结构相似,它们的吸收光谱、荧光激发光谱和发射光谱重叠,用常规分光光度法和荧光方法难以实现其同时测定。但利用一阶导数光谱技术和同步荧光技术,消除了叶绿素a和叶绿素b的光谱干扰,可以同时测定它们的含量。 在600~700之间胡萝卜素一阶导数为零,没有吸收,在某个特定波长下,叶绿素a有一定的导数值,而叶绿素b的导数为零;同理,在另一个特定波长下,叶绿素b有一定的导数值,而叶绿素a的导数值为零。这样可以实现叶绿素b和叶绿素b的同时测定,又不受胡萝卜素的干扰。 三、实验材料: 1、仪器 干燥的定性滤纸、烧杯(100ml)、研钵、玻璃漏斗、分液漏斗、剪刀、小试管、试剂瓶、药勺、量筒(10ml)、天平、试管架、载玻片、铅笔、 直尺、棉花、移液管、洗耳球、毛细吸管、铁架台、胶头滴管、紫外分光 光度计。 2、药品 新鲜的菠菜叶、石英砂、碱式碳酸镁、90%丙酮、层析液(石油醚:丙酮:苯=20:2:1) 四、实验方法与步骤: 1.提取叶绿素中的色素 (1)取几片绿叶,去掉主脉,用天平称取20g叶片,剪碎,放入研钵。 (2)向研钵中加入少许二氧化硅和碳酸钙,进行充分的研磨。用量筒量取15ml丙酮。倒入研钵中,迅速充分研磨。 (3)将研磨液迅速倒入小玻璃漏斗中进行过滤。将滤液收集到一个小试管中,及时用棉塞将试管塞紧。 2.制备过滤纸 取一块预先干燥处理过的定性滤纸,将滤纸剪成长6cm,宽1cm的滤纸条,

叶绿体色素的提取分离理化性质和叶绿素含量的测定

实验报告 植物生理学及实验(甲)实验类型:课程 名称:实验名称:叶绿体色素的提取、分离、理化性质和叶 绿素含量的测定姓名:专业:学 号:指导老师:同组学生姓名: 实验日期:实验地点: 二、实验内容和原理一、实验目的和要求装 四、操作方法与实验步骤三、主要仪器设备订 六、实验结果与分析五、实验数据记录和处理 七、讨论、心得一、实验目的和要求、掌握植物中叶绿体色素的分离和 性质鉴定、定量分析的原理和方法。1 和b的方法及其计算。a2、熟悉在 未经分离的叶绿体色素溶液中测定叶绿素二、实验内容和原理以青菜为 材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。 原理如下:80%的乙醇或95%叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,1、常用的丙酮提取。、皂化反应。叶绿素是二羧酸酯,与强碱反应, 形成绿色的可溶性叶绿素2. 盐,就可与有机溶剂中的类胡萝卜素分开。- COOCHCOO3 Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH

HONC43230+C20H39OH 、3H+可依次被在酸性或加温条件下,叶-COOCOOCH39 20 绿素卟啉环中的Mg++取代反应。Mg2+, Cu2+ 取代Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。(H+和H+ ) 取代(Zn2+) 绿色褐色 、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。4645其中叶绿素吸收红光和兰紫光,红光区可用于定量分析,5、定量分析。 652可直接用于总量分析。663用于定量叶绿素a,b及总量,而和C最大吸收光谱不同的两个组分的混合液,它们的浓度根据朗伯-比尔定律, *k+C*kOD=Ca*k与吸光值之间有如下的关系: OD=Ca*k+C b2 1g/L和b的80查阅文献得,2b1 b1a1a2b时,比吸收系%丙酮溶液,当浓度为 叶绿素a 值如下。数k k 比吸收系数波长/nm b 叶绿素a 叶绿素 9.27 82.04 663 45.60 645 16.75

利用高光谱植被指数监测紧凑型玉米叶绿素荧光参数F_v_F_m_谭昌伟

第3  2卷,第5期 光谱学与光谱分析Vol.32,No.5,pp 1287-12912 0 1 2年5月 Spectroscopy and Spectral Analysis May,2 012 利用高光谱植被指数监测紧凑型玉米叶绿素荧光参数Fv /Fm谭昌伟1,黄文江2,金秀良1,王君婵1,童 璐1,王纪华2,郭文善1* 1.扬州大学江苏省作物遗传生理重点实验室/农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州 2250092.国家农业信息化工程技术研究中心,北京 100097 摘 要 为进一步评价遥感监测紧凑型玉米叶绿素荧光参数Fv/Fm的可行性,通过开展小区紧凑型玉米试验,分析紧凑型玉米整个生育期Fv/Fm与高光谱植被指数的相关关系,建立紧凑型玉米Fv/Fm高光谱监测模型。结果表明,紧凑型玉米Fv/Fm与选取的高光谱植被指数均呈极显著正相关,其中结构敏感色素指数(SIPI)与Fv/Fm的相关性最好,相关系数(r)为0.88。用SIPI建立紧凑型玉米Fv/Fm的监测模型,其决定系 数(R2 )为0.812  6,均方根误差(RMSE)为0.082。研究表明,利用高光谱植被指数可以有效地监测紧凑型玉米整个生育期的Fv/Fm。 关键词 高光谱植被指数;Fv/Fm;监测模型;紧凑型玉米 中图分类号:S127 文献标识码:A DOI:10.3964/j .issn.1000-0593(2012)05-1287-05 收稿日期:2011-10-30,修订日期:2012-01- 25 基金项目:国家自然科学基金项目( 40801122,41101395),江苏高校优势学科建设工程项目和公益性行业(农业)科研专项经费项目(200803037 )资助 作者简介:谭昌伟,1980年生,扬州大学农学院讲师 e-m ail:tanwei010@126.com*通讯联系人 e-mail:g uows@yzu.edu.cn引 言 国内外大量的研究表明,叶绿素荧光(chlorophy ll fluo-rescence,CF)作为光合作用的指示性探针,已被广泛应用于光合作用机理研究、分析植物对环境胁迫的响应机理和探测 植物体内光合器官运转状况等[ 1- 3]。随着高光谱遥感技术的迅速发展,其很快的被广泛应用到农业的品质鉴定、估产和 病虫害等各方面。Wright[4]和王纪华等[5] 对小麦的蛋白质品质进行了研究;Wim等[6]利用TM影像数据源,使用影像融 合技术重新构建了NPP估产模型,分别对小麦和水稻进行 估产,任建强等[7] 使用MODIS数据源、CASA模型对黄淮 海平原的冬小麦进行估产并取得了较好的效果;Bronson[8]和Hansen等[9]对作物的氮素含量和氮素利用率、Fensholt等[10 ]对叶面积指数(LAI )进行了研究;在作物的病害方面:Adams等 [11] 分别对大豆和蚕豆斑点葡萄孢子病和大豆黄痿 病进行了研究,并建立相关的评估指标。然而对于叶绿素荧光参数与光谱植被指数关系的研究鲜见报道。本工作以紧凑型玉米(以下称为玉米)作为研究对象,利用获取的叶绿素荧光参数与植被指数,构建以光谱植被指数为支撑的叶绿素荧光参数的遥感监测模型,实时准确获取玉米的叶绿素荧光参数信息。 1 实验部分 1.1 试验设计 2010年7月至9月间试验在扬州大学试验农场(119°18′ E,32°26′N) 开展,供试品种为3个紧凑型品种(系):农华8号、金海5号和郑单958。对玉米冠层进行了光谱测量和光合有效辐射测定。为了在田间栽培条件下更大范围地表现出玉米长势差异和生化组分变异,于拔节期安排了一个从不施 氮到施重氮(级差450kg,0~900kg ·ha-1 )3个氮肥水平处理,即N1:不施氮肥;N3:施氮450kg·ha-1 ;N4:施氮900kg ·ha-1 ,使之表现为缺氮、适量氮、过量氮。3次重复,行距×株距为70cm×60cm,每区面积为20m×20m。 常规水分管理。1.2 光谱测试 分别在玉米拔节期(7月23日)、喇叭口期(8月7日)、吐丝期(8月29日)、乳熟期(9月5日) 进行4次光谱测定。采用美国ASD Fieldsp ec FR2 500型野外光谱辐射谱仪,光谱范围350~2 500nm,分辨率在350~1 000nm光谱区为1.4nm,1 000~2  500nm区为2nm,光谱重采样间隔为1nm。在晴朗无云、北京时间10:30~14:00,选择代表性植株进行测定,测定前后用参考板标定,测定时传感器探头向下,距

叶绿素的提取实验报告

叶绿素的提取及叶绿素铜钠的合成及测定生物资源系食卫101 韦琪(20102023) 指导老师:张倩、刘新梅 一、实验目的 1.从蚕沙中提取叶绿素并计算提取率; 2.研究用叶绿素合成叶绿素铜钠的工艺条件; 3.分析叶绿素铜钠产品的纯度,计算产率; 4.通过试验提高综合能力及练习巩固各种相关操作。 二、实验原理 蚕沙是桑蚕的排泄物,由蚕沙制取天然色素——叶绿素酮钠盐,是国外普遍采用的最佳途径。叶绿素是一种酯,因此不溶于水,而溶于乙醇、丙酮、乙醚等有机溶剂。 叶绿素是植物吸收太阳能进行光合作用的主要色素,叶绿素是一种含有卟吩环的天然色素,在叶绿素的结构中,含有一个由四个吡咯环和四个次甲基交替相联形成的卟吩环.卟吩环闭合的共轭体系提供了包围镁离子(或其它相似离子)的刚性平面.高等植物中含有叶绿素a和叶绿素b分子式如下: 蚕沙中含有丰富的叶绿素,其纯含量达0.8—1.0%,居所有天然色素之首,故可用蚕沙来提取叶绿素,由于叶绿素易溶于乙醚、苯、丙酮、乙醇的脂性溶剂,故可用乙醇、丙酮混合液来提取。所得的叶绿素由于遇热、光、酸、碱等易分解,且又不溶于水。110度左右会分解,故把叶绿素制备成叶绿素铜钠,其性质更稳定溶解性也会有所提高。 叶绿素分子中的镁原子和四个吡咯上的氮原子相结合,环上是双羧酸的酯,一个被四所酯化,另一个被叶醇基所酯化,故可以发生皂化反应生成钠盐:

C55H72MgN4O5 + 2 NaOH →C34H30O5N4MgNa2 + CH3OH + C20H39OH 在酸性介质中,叶绿素钠盐分子中的镁极易被氢原子取代生成褐色的叶绿素酸: C34H30O5N4MgNa2+ 4 H+→C34H34O5N4 + Mg2+ + 2 Na+ 叶绿素酸可与铜盐加热条件下生成叶绿素铜酸析出,将叶绿素铜酸溶于丙酮,再与碱反应就生成叶绿素铜钠盐: C34H34O5N4 + Cu2+→C34H34O5N4Cu + 2 H+ C34H34O5N4Cu + 2 NaOH →C34H34O5N4CuNa2 + 2 H2O 由叶绿素转化成叶绿素铜钠的过程也可用化学反应方程表示: (1)皂化: COOCH3COONa C32H30ON4Mg + 2NaOH → C32H30ON4Mg + CH3OH + C20H39OH COOC20H39 COONa (2)酸化: COONa COOH C32H30ON4Mg + 2H2SO4 → C32H30ON4H2 + MgSO4 + NaSO4 COONa COOH (3)铜代: COOH COOH C32H30ON4H2 + CuSO4 → C32H30ON4Cu + H2SO4 COOH COOH (4)成盐: COOH COONa C32H30ON4Cu + 2NaO H → C32H30ON4Cu + 2H2O COOH COONa 三、实验仪器和试剂 1.仪器:(一个),分液漏斗(2个),250mL锥形瓶(1个),烧杯(100ml、250 mL、 500mL )各1个,容量瓶(100mL、250mL)各1个,蒸馏装置,减 压过滤装置,玻璃棒,电子天平,圆底烧瓶(250mL)2个,酸度计, 分光光度仪(一台)。 2.试剂:(50g)、95%乙醇,丙酮,石油醚,2%~5%NaOH乙醇溶液,硫酸铜溶

叶绿素的提取和分离实验报告

叶绿素的提取和分离实 验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西师范大学远程教育学院 生物学实验报告 报告题目叶绿素的提取和分离 姓名刘伟 学号 专业生物科学 批次/层次 指导教师 学习中心 叶绿素的提取和分离 一、实验目的 1. 学习叶绿体色素的提取、分离方法。 2. 通过叶绿体色素提取、分离方法的学习了解叶绿体色素的相关理化性质。 3. 为进一步研究各叶绿体色素性质、功能等奠定基础。 二、原理 叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。它们与类囊体膜蛋白相结合成为色素蛋白复合体。它们的化学结构不同,所以它们的物化性质(如极性、吸收光谱)和在光合作用中的地位和作用也不一样。这两类色素是酯类化合物,都不溶于水,而溶于有机溶剂,故可用乙醇、丙醇等有机溶剂提取。提取液可用色谱分析的原理加以分离。因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。 三、材料、仪器设备和试剂 1. 绿色植物如菠菜等的叶片。 2. 研钵、漏斗、三角瓶、剪刀、滴管、康维皿、圆形滤纸(直径11cm)。 3. 试剂:95%乙醇,石英砂,碳酸钙粉,推动剂:按石油醚:丙酮:苯=10:2:1比例配制(v/v) 四、试验步骤 1. 叶绿体色素的提取 (1)取菠菜或其他植物新鲜叶片4-5片(4g左右),洗净,擦干,去掉中脉剪碎,放入研钵中。 (2)研钵中加入少量石英砂及碳酸钙粉,加2-3ml 95%乙醇,研磨至糊状,再加10ml 95%乙醇,然后以漏斗过滤之,残渣用10ml 95%乙醇冲洗,一同过滤于三角瓶中。

【实验报告】从菠菜中提取叶绿素实验报告三篇

从菠菜中提取叶绿素实验报告三篇 【实验目的】 1、通过绿色植物色素的提取和分离,了解天然物质的分离提纯与方法。 2、通过薄层色谱分离操作,加深了解微量有机物色谱分离鉴定的原理。 【实验原理】 叶绿色存在两种结构相似的形式即叶绿素a{C55H77O5N4Mg}和叶绿素 b{ C55H70O6N4Mg };胡萝卜素是具有长链结构的共轭多烯,有三种异构体;叶黄素C40H56O2是胡萝卜素的羟基衍生物。当提取时,从上到下颜色依次为:黄绿色,蓝绿色,黄色和橙色。 【实验仪器】 研钵,色谱柱,丙酮,乙醇,乙醚,中性氧化铝,菠菜叶,烧杯,漏斗,玻璃棒,滤纸,剪刀,脱脂棉,纱布。 【实验步骤】 1、称取30g洗净后用滤纸喜感的新鲜菠菜叶,用剪刀剪碎,放入研钵中研磨,研磨时放入少量碳酸钙,防止研磨过猛破坏叶绿素结构,研磨至烂。 2、将研磨碎的菠菜叶转入小烧杯中,加入30mL配好的乙醇乙醚溶液,盖上表面皿,防止有机溶剂蒸发。按小组成员分别浸泡 10,15,20,25,30,35,40,45,50,55分钟。 3、浸泡期间,填充色谱柱,在最下面垫入脱脂棉,再盖上一个小滤纸片,装入氧化铝至4/5处,再盖上一层滤纸片。

4、将烧杯中的菠菜叶连带着有机溶剂用纱布挤入漏斗中,转入分液漏斗,加入10mL水洗涤,除去水层(下层),再用10mL水洗涤一次。 5、将分页漏斗中的溶液慢慢倒入色谱柱中,加几滴丙酮既可以看到颜色变化。 6、洗净仪器,收拾实验室,打扫卫生。 【实验记录】 虽然分层现象不是非常明显,但是还是可以看得见分层现象。 【结果与讨论】 1、做这个实验的时候,我觉得不应该用纱布挤干,因为个人感觉很多色素都被 纱布吸走了,导致后来的实验现象没有很明显,经过对比,没用纱布直接过滤的同学做出的现象比用纱布做的现象要明显的多。 2、有机溶剂往往比较容易挥发,所以加入后要盖上表面皿。 3、此实验浸泡15分钟以后现象就可以很明显,因此以后在课堂上给学生演示的时候浸泡的时间不是越长越好的,15分钟足矣。 4、若最后颜色没有明显的分层,可以加入几滴丙酮帮助分层。 绿色植物如菠菜叶中含有叶绿素(绿)、胡萝卜素(橙)和叶黄素(黄)等多种天然色素。 叶绿素存在两种结构相似的形式即叶绿素a(C55H72O5N4Mg)和叶绿素 b(C55H70O6N4Mg)),差别仅是a中一个甲基被b中的甲酰基所取代。它们都是

5种叶绿素荧光参数

5种叶绿素荧光参数:1.Fv/Fo 2.PSI Light 3.ETR 3.Y(II) 4.Act Light 5.Means Light 目前主要研究的小分子RNA 1.miRNA(微小RNA) 2.siRNA(小分子干扰RNA) 3.piRNA(PIWI结合RNA) 5种常见的植物胁迫形式:低温干旱盐碱高温洪涝 十种常见的激素; 茉莉酸生长素细胞分裂素赤霉素脱落酸水杨酸乙烯油菜素内酯萘乙酸吲哚乙酸吲哚丁酸 常见的组蛋白修饰乙酰化甲基化泛素化糖基化羰基化等 什么叫做组蛋白密码?组蛋白在翻译后的修饰中会发生改变,从而提供一种识别标志,为其他蛋白与DNA结合产生协同或拮抗效应,它是一种动态转录调控成分, 活性氧常见的5种形式:超氧自由基超氧阴离子过氧化氢含氧自由基过氧阴离子 蛋白质翻译后修饰的意义:是指mRNA被翻译成蛋白质后,对蛋白质上个别氨基酸残基进行共价修饰的过程。他可以使蛋白 质的结构更加复杂,功能更加完善,调节更为精细,作用更专一。正式蛋白质的翻译后修饰使得一个基因并不只对应一种蛋白质,增加了蛋白质的结构和功能的多样性,从而赋予生命更多复杂的过程。 常见的修饰方式:泛素化,磷酸化,糖基化,脂基化,甲基化,乙酰化 9、植物防御反应的生化原理:1.病原体的侵入可以激活所有细胞中的多种防御反应;2.超敏反应使局部细胞迅速死亡;3.在植物抗性反应的早期常常会产生有反应活性的氧化物;4.在植物不相容相互作用过程中,诱导生成了一种哺乳动物的信号分子——一氧化氮;5.细胞壁加固和细胞外酶活有助于植物的抗病反应;6.苯甲酸和水杨酸可能参与了大量的植物防御反应;7.防御 坏死营养型真菌以及诱导某些植物防御基因时所需的茉莉酮酸和乙烯可能会加剧病症;8.致病相关蛋白和其他防御相关蛋白包 括真菌细胞壁降解酶类、抗维生素多肽和信号转导级联途径中的组分;9.植物抗生素包括有机次生代谢物和无机次生代谢物;10.蛋白酶的抑制剂由食草的靶昆虫诱导;11.转录后基因沉默是植物应对治病病毒的一种特异性防御反应;12.平行的信号途径协调复杂而高度局域化的植物防御反应; 10.植物体内ROS(活性氧)与NO在植物防御反应中的作用及二者的协同关系 1.ROS在植物防御中的作用,H2O2可能直接对病原体有毒,在铁存在时,H2O2会产生活性极强的羟基自由基。另一种看法是,它或者通过各种富含羟脯氨酸或脯氨酸的糖蛋白与多糖基质交联,或者通过过氧化物酶的作用提高木质素多聚物的合成速率,从而加固植物细胞壁的结构,这两种作用都可以提高植物细胞壁对微生物穿透和酶促降解的抵抗能力。某些ROS还可能有信号转导功能。 2.NO是哺乳动物用以调控免疫,神经和血管系统中多种生物过程的一种信号分子。植物在识别无病毒病原菌的同时,即迅速 从头合成NO. 局部发生的超敏反应是遗传不相容相互作用的一贯特征,但是ROS大量的生成不足以诱导植物细胞的死亡,而可能可以抑制病原体的生长。NO可以加强ROS诱导植物细胞死亡的能力。已知NO可以与血红素结合,因此可以抑制用以解除H2O2毒性的 过氧化氢酶和抗坏血酸盐过氧化物酶。植物细胞悬浮培养物和叶子中加入可以产生NO的化合物,会使好几个与防御和细胞保 护相关基因的mRNA的积累。NO诱导ROS的大量积累导致细胞死亡。NO和活性氧共同提高植物病原体过程中提高协同作用。

对叶绿素荧光仪各参数的说明

对叶绿素荧光仪各参数的说明 各参数顺序按照数据传输软件上传出数据的顺序 SL(T):饱和脉冲强度。 AL(T):光化光强度。 Total T:测量总时长。 FR T:远红光时长。 Dark T:黑暗时长。 Fo:固定荧光,初始荧光(minimalfluorescence),也称基础荧光,0水平荧光,是光系统Ⅱ(PS Ⅱ) 反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。 Fj:在O-J-I-P 荧光诱导曲线j点处的荧光强度 Fi:在O-J-I-P 荧光诱导曲线i 点处的荧光强度 Fm:荧光产量(maximal fluorescence) ,是PS Ⅱ反应中心处于完全关闭时的荧光产量。可反映通过PSⅡ的电子传递情况。通常叶片经暗适应20 min 后测得。 Fv = Fm - Fo,为可变荧光(variable fluorescence) ,反映了QA 的还原情况(许大全等,1992) 。 Fv/Fm:是PSⅡ光化学量子产量(optimal/ maximal photochemical efficiency of PSⅡin the dark) 或(optimal/ maximal quantum yield of PS Ⅱ) ,反映PSⅡ反应中心内禀光能转换效率(intrinsicPSⅡefficiency)或称PSⅡ的光能转换效率(optimal/ maximal PS Ⅱefficiency) ,叶暗适应20 min 后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降(许大全等,1992) 。 Fo':光下荧光,在光适应状态下全部PSⅡ中心都开放时的荧光强度,qP=1,qN≥0。为了使照光后所有的PSⅡ中心都迅速开放,一般在照光后和测定前应用一束远红光(波长大于680nm,几秒钟)。 Fm':光下荧光,在光适应状态下全部PSⅡ中心都关闭时的荧光强度,qP=0,qN≥0。Fm'受非光化学猝灭的影响,而不受光化学猝灭的影响。 Fs:稳态荧光产量。响应光合作用在光反应与暗反应达到平衡时的荧光产量。

叶绿素的提取实验报告

一.实验目地 、学习从植物中提取色素地方法. 、学习柱色谱(层析)地原理及其操作方法. 、掌握天然药物化学实验报告地一般写法. 二.实验原理 、绿色植物叶中含有叶绿素(绿)、胡萝卜素(橙)和叶黄素(黄)等多种天然色素.各种色素能溶解在有机溶剂(无水乙醇等)中形成溶液,使色素从生物组织中脱离出来.文档来自于网络搜索 、柱色谱是通过色谱柱来实现分离地.在色谱柱内装有固体吸附剂(固定相)如氧化铝或硅胶.液体样品从柱顶加入,当液体流经吸附剂时,由于吸附剂表面对液体中各组分吸附能力不同而按一定地顺序吸附.然后从柱顶加入洗脱剂(流动相),样品中地各组分随洗脱剂按一定地顺序从色谱柱下端流出,根据不同颜色分段收集.吸附剂,常用吸附剂有氧化铝、硅胶、氧化镁等.吸附剂对化合物地吸附能力与分子地极性有关,极性越强,吸附能力越大,分子中含有极性较大地基团,其吸附能力也越强.溶剂,溶剂分为溶解样品地溶剂和洗脱剂.选择溶剂时还要考虑到被分离物各组分地极性和溶解度.通常是先将要分离地样品溶于非极性溶剂中,从柱顶加入柱中.然后用稍大极性地溶剂使各组分在柱中形成若干谱带.再用极性更大地溶剂洗脱被吸附地物质.为了提高洗脱效果,有时也使用混合溶剂.在本实验中色素成分在不同比例混合洗脱剂地作用下可以分离出来.文档来自于网络搜索 三.实验仪器及试剂 仪器:烧杯、量筒、色谱柱、分液漏斗、玻璃棒、干燥地锥形瓶、滤纸、旋转蒸发仪、酸式滴定管、布氏漏斗、研钵、胶头滴管、剪刀、天平文档来自于网络搜索 试剂:新鲜植物叶、中性氧化铝、甲醇( %,分析纯) 、乙醇、石油醚( ~%) 、丙酮、无水硫酸钠、正丁醇、新鲜植物叶、文档来自于网络搜索 四.实验内容 . 绿叶色素地提取 把新鲜绿叶洗净晾干或用滤纸吸干,称取绿叶,剪碎后放入研钵,再加入乙醇.研磨后用布氏漏斗抽滤,弃去滤渣.文档来自于网络搜索 将滤液放回研钵,每次用(体积比)地石油醚甲醇混合液萃取两次,每次需加以研磨并且抽滤.把两次滤液合并,转入分液漏斗中.用水洗涤两次,弃去水甲醇层, 洗涤时要轻轻旋荡,以防止产生乳化.石油醚层转入干燥地锥形瓶中用无水硫酸钠干燥.干燥后地液体在旋转蒸发仪上蒸除石油醚至体积约左右.文档来自于网络搜索 .柱色谱分离色素 取一支干净地酸式滴定管,向柱内加入石油醚至柱高约处.再缓慢加入氧化铝,并打开活塞,控制流出速度约为滴,并保持液面不低于固定相.打开下端活塞,放出溶剂,直到氧化铝表面溶剂剩下-高时关上活塞.注意,在任何情况下,氧化铝表面不得露出液面.文档来自于网络搜索 色素浓溶液用滴管小心加到色谱柱顶部,并要旋转加入.加完后打开下部活塞,让液面下降到柱面以下左右关闭活塞.旋转加入数滴石油醚,重新打开活塞使液面下降,重复几次使有色物质全部进入柱体内,待色素全部进入柱体后,观察并记录下此时实验地现象.在柱顶小心加洗脱剂—石油醚丙酮溶液(体积比).打开活塞,让洗脱剂逐滴放出,层析即开始进行,用试管收集.当第一个有色成分即将滴出时,取另一试管收集,得橙黄色溶液,它就是胡萝卜素.用石油醚丙酮(体积比)作洗脱剂,分出第二个黄色带,它是叶黄素().再用丁醇乙醇水(体积比)洗脱叶绿素(蓝绿色)和叶绿素(黄绿色).文档来自于网络搜索

相关主题
文本预览
相关文档 最新文档