当前位置:文档之家› 对叶绿素荧光仪各参数的说明

对叶绿素荧光仪各参数的说明

对叶绿素荧光仪各参数的说明
对叶绿素荧光仪各参数的说明

对叶绿素荧光仪各参数的说明

各参数顺序按照数据传输软件上传出数据的顺序

SL(T):饱和脉冲强度。

AL(T):光化光强度。

Total T:测量总时长。

FR T:远红光时长。

Dark T:黑暗时长。

Fo:固定荧光,初始荧光(minimalfluorescence),也称基础荧光,0水平荧光,是光系统Ⅱ(PS Ⅱ) 反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。

Fj:在O-J-I-P 荧光诱导曲线j点处的荧光强度

Fi:在O-J-I-P 荧光诱导曲线i 点处的荧光强度

Fm:荧光产量(maximal fluorescence) ,是PS Ⅱ反应中心处于完全关闭时的荧光产量。可反映通过PSⅡ的电子传递情况。通常叶片经暗适应20 min 后测得。

Fv = Fm - Fo,为可变荧光(variable fluorescence) ,反映了QA 的还原情况(许大全等,1992) 。

Fv/Fm:是PSⅡ光化学量子产量(optimal/ maximal photochemical efficiency of PSⅡin the dark) 或(optimal/ maximal quantum yield of PS Ⅱ) ,反映PSⅡ反应中心内禀光能转换效率(intrinsicPSⅡefficiency)或称PSⅡ的光能转换效率(optimal/ maximal PS Ⅱefficiency) ,叶暗适应20 min 后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降(许大全等,1992) 。

Fo':光下荧光,在光适应状态下全部PSⅡ中心都开放时的荧光强度,qP=1,qN≥0。为了使照光后所有的PSⅡ中心都迅速开放,一般在照光后和测定前应用一束远红光(波长大于680nm,几秒钟)。

Fm':光下荧光,在光适应状态下全部PSⅡ中心都关闭时的荧光强度,qP=0,qN≥0。Fm'受非光化学猝灭的影响,而不受光化学猝灭的影响。

Fs:稳态荧光产量。响应光合作用在光反应与暗反应达到平衡时的荧光产量。

qP=(Fm'-Fs)/(Fm'-Fo'),指光化学猝灭系数。这里,(Fm'-Fs)代表光化学猝灭的荧光。qP是PSⅡ反应中心中开放的反应中心所占比例的指标,或者将捕获的电子能量用于光化学反应的能力的指标。而1-qP则是关闭的反应中心所占的比列,反应QA的还原程度,有时被称为PSⅡ的激发压。

qN=1-(Fm'-Fo')/(Fm-F0)=1-Fv'/Fv,指非光化学猝灭系数。非光学猝灭系数表示PSⅡ吸收的光能中以热能形式耗散的比率。

ΦPSⅡ=(Fm'-Fs)/Fm',在作用光存在时PSⅡ实际的量子效率,即PSⅡ反应中心电荷分离的实际的量子效率。这个参数不仅与碳同化有关,也与光呼吸及依赖O2的电子流有关。qP、Fv/Fm、ΦPSⅡ之间有如下关系,Fv/ Fm=ΦPSⅡ/qP。

叶绿素荧光参数及意义

第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最 广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统II 的叶绿素a ,而光系统II 处于整个光合 作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统II ,进而引起 叶绿素a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量 方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的 应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来 的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少, 叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析 吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图1)。而最低激发态的叶绿素分子可以稳定 存在几纳秒(ns ,1 ns=10-9 s )。 波长吸收荧光红 B 蓝 荧光 热耗散 最低激发态较高激发态基态吸收蓝光吸收红光能量A 图1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素a ,用于进行光化 学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞 争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化 学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用 于进行光化学反应,荧光只占约3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素b 到叶绿素a 的传递几乎达到100%的效率,因此基本检测不到 叶绿素b 荧光。在常温常压下,光系统I 的叶绿素a 发出的荧光很弱,基本可以忽略不计,对光系统I 叶 绿素a 荧光的研究要在77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系 统II 的叶绿素a 发出的荧光。

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

部分叶绿素荧光动力学参数的定义

部分叶绿素荧光动力学参数的定义: F0:固定荧光,初始荧光(minimalfluorescence)。也称基础荧光,0水平荧光,是光系统Ⅱ(PSⅡ)反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。 Fm:最大荧光产量(maximalfluorescence),是PSⅡ反应中心处于完全关闭时的荧光产量。可反映经过PSⅡ的电子传递情况。通常叶片经暗适应20 min后测得。 F:任意时间实际荧光产量(actualfluorescence intensity at any time)。 Fa:稳态荧光产量(fluorescence instable state)。 Fm/F0:反映经过PSⅡ的电子传递情况。 Fv=Fm-F0:为可变荧光(variablefluorescence),反映了QA的还原情况。 Fv/Fm:是PSⅡ最大光化学量子产量(optimal/maximal photochemical efficiency of PSⅡin the dark)或(optimal/maximalquantum yield of PSⅡ),反映PSⅡ反应中心内禀光能转换效率(intrinsic PSⅡefficiency)或称最大PSⅡ的光能转换效率(optimal/maximalPSⅡefficiency),叶暗适应20 min后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降。 Fv’/Fm’:PSⅡ有效光化学量子产量(photochemicalefficiency of PSⅡin the light),反映开放的PSⅡ反应中心原初光能捕获效率,叶片不经过暗适应在光下直接测得。 (Fm’-F)/Fm’或△F/Fm’:PSⅡ实际光化学量子产量(actual photochemical efficiency of PSⅡin the light)(Bilger和Bjrkman,1990),它反映PSⅡ反应中心在有部分关闭情况下的实际原初光能捕获效率,叶片不经过暗适应在光下直接测得。 荧光淬灭分两种:光化学淬灭和非光化学淬灭。光化学淬灭:以光化学淬灭系数代表:qP=(Fm’-F)/(Fm’-F0’);非光化学淬灭,有两种表示方法,NPQ=Fm/Fm’-1或qN=1-(Fm’-F0’)/(Fm-F0)=1-Fv’/Fv。 表观光合电子传递速率以[(Fm’-F)Fm’]×PFD表示,也可写成:△F/Fm’×PFD×0.5×0.84,其中系数0.5是因为一个电子传递需要吸收2个量子,而且光合作用包括两个光系统,系数0.84表示在入射的光量子中被吸收的占84%,PFD是光子通量密度;表观热耗散速率以(1-Fv’/Fm’)×PFD表示。 Fmr:可恢复的最大荧光产量,它的获得是在荧光P峰和M峰后,当开放的PSⅡ最大荧光产量平稳时,关闭作用光得到F0’后,把饱和光的闪光间隔期延长到180s/次,得到一组逐渐增大(对数增长)的最大荧光产量,将该组最大荧光产量放在半对数坐标系中即成直线,该直线在Y轴的截距即为Fmr。以(Fm-Fmr)/Fmr可以反映不可逆的非光化学淬灭产率,即发生光抑制的可能程度。 FO(初始荧光),Fm(最大荧光),Fv= Fm-FO(可变荧光),Fv /Fm(PSII最大光化学效率或原初光能转换效率),Fv /FO(PSII的潜在活性),Yield(PSII总的光化学量子产额),ETR(表观电子传递速率),PAR(光合有效辐射),LT(叶面温度)。其中FO、Fm、Fv /FO测定前将叶片暗适应20 min。各参数日变化从6: 00~18: 00,每2h测定一次。 (Fv /Fm)和(Fv /FO)分别用于度量植物叶片PSII原初光能转换效率和PSII潜在活性,-(Yield)是PSII的实际光化学效率,反映叶片用于光合电子传递的能量占所吸收光能的比例,是PSII反应中心部分关闭时的光化学效率,其值大小可以反映PSII反应中心的开放程度。常用来表示植物光合作用电子传递的量子产额,可作为植物叶片光合电子传递速率快慢的相对指标。即在光合作用进程中,PSII每获得一个光量子所能引起的总的光化学反应。因此,较高的Yield值,有利于提高光能转化效率,为暗反应的光合碳同化积累更多所需的能量,以促进碳同化的高效运转和有机物的积累。同样毛蕊红山茶和长毛红山茶的Yield值也较高。

HORIBAFL-3000FM4荧光光谱仪操作说明解读

设备名称荧光光谱仪 设备型号HORIBA FL-3000/FM4-3000 设备操作规范: 一、开机前准备: 1、实验室温度应保持在15℃~30℃之间,空气湿度应低于75%。 2、确认样品室内无样品后,关上样品室盖。 二、开机 3、打开设备电源开关(氙灯自动点亮,预热20min; 4、打开计算机,双击桌面上的荧光光谱软件,进入工作站,等待光谱仪自检。 三、装样: 5、将样品处理为粉末状,装入样品槽,为防止样品脱落,可加盖载玻片;将样品槽装入样品室,盖好样品室盖子。 四、测试发射光谱: 6、点击菜单中的“Menu”按钮,选择“Spectral”项目中的“Emission”。 7、设置单色器(M:设置激发光波长(如460nm、发射波长扫描范围(如470nm-700nm和狭缝宽度(一般可设置1-5nm,荧光强度强,狭缝宽度要调小。 8、设置检测器(Detector:Formulars选择公式S1。 9、点击右下角“RUN”开始测量; 五、测试激发光谱:

10、点击菜单中的“Menu”按钮,选择“Spectral”项目中的“Excitation”。 11、设置单色器(M:设置监测波长(如625nm、发射波长扫描范围(如380nm-500nm和狭缝宽度(一般可设置1-5nm,荧光强度强,狭缝宽度要调小。 12、设置检测器(Detector:Formulars选择公式S1/R1。 13、点击右下角“RUN”开始测量。 六、测试量子产率: 14、线缆连接积分球:将积分球有指示箭头的一端连接激发口,另一端连接发射。 15、装样:将样品处理为粉末状,装入标准白板样品槽,并加盖石英片;将样品槽装入积分球样品台,先推上层样品台,卡好后,推入下层样品台。 16、点击软件菜单中的“Menu”按钮,选择“Spectral”项目中的“Emission”。 17、设置单色器(M:设置激发光波长(如460nm、扫描范围(如380nm-700nm和狭缝宽度(一般设置1nm。 18、设置检测器(Detector:选中暗电流选项和Correction S1选项,Formulars选择公式S1c,积分时间设置为1s(时间设置越大,扫描越慢。 19、点击右下角“RUN”开始扫描。 20、测试空白样品。测试方法如16-19,样品台内放置标准白板。 21、计算量子产率:点击“QY”按钮,在出现的对话框中设置如下参数:○1找校正谱(在D盘下“校正谱图”,选择固体校正谱;○2导入将要计算的样品谱图;○3导入空白样品谱图;○4输入需计算的激发与发射光谱起始与终止波长。 22、点击确定开始计算。

稳态瞬态荧光光谱仪(FLS 920)操作说明书

稳态/瞬态荧光光谱仪(FLS 920)操作说明书 中级仪器实验室 一、仪器介绍 1.FLS 920稳态/瞬态荧光光谱仪具有两种功能 稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。 瞬态测量:荧光(磷光)寿命(100ps—10s)。 适合各类液体和固体样品的测试。 2.主要应用 高分子和天然高分子自然荧光的研究 溶液中大分子分子运动的研究 固体高分子取向的研究 高聚物光降解和光稳定的研究 光敏化过程的研究 3.主要性能指标 光谱仪探测范围:(光电倍增管, 190-870nm;Ge探测器,800-1700nm) 荧光寿命测量范围:100ps-10s 信噪比:6000:1(水峰Raman) 可以配用制冷系统,为样品提供变温环境 液氮系统(77K-320K) 使用Glan棱镜,控制激发光路、发射光路的偏振状态 使用450W氙灯和纳秒、微秒脉冲闪光灯做激发光源 F900系统软件:控制硬件,包括变温系统,数据采集、分析

4. 仪器主要部分结构图

5.仪器光路图 二、仪器测试原理(SPC) 时间相关单光子计数原理是FLS920测量荧光寿命的工作基础。 时间相关单光子计数法(time-correlated single photon counting)简称“单光子计数(SPC)法”,其基本原理是,脉冲光源激发样品后,样品发出荧光光子信号,每次脉冲后只记录某特定波长单个光子出现的时间t,经过多次计数,测得荧光光子出现的几率分布P(t),此P(t)曲线就相当于激发停止后荧光强度随时间衰减的I(t)曲线。这好比一束光(许多光子)通过一个小孔形成的衍射图与单个光子一个一个地通过小孔长时间的累计可得完全相同的衍射图的原理是一样的。

叶绿素荧光研究背景知识介绍

叶绿素荧光研究背景知识介绍 前言 近些年来,叶绿素荧光技术已经逐渐成为植物生理生态研究的热门方向。荧光数据是植物光合性能方面的必要研究内容。目前这种趋势由于叶绿素荧光检测仪的改进而得到发展。然而荧光理论和数据解释仍然比较复杂。就我们所了解的情况来看,目前许多研究者对荧光理论不是很清楚,仪器应用仅仅限于简单的数据说明的基础上,本文在此基础上,目的在于简单明晰地介绍相关理论和研究要点,以求简单明确地使用叶绿素荧光检测设备,充分分析实验数据,重点在于植物生理生态学技术的应用和限制。 荧光测量基础 植物叶片所吸收的光的能量有三个走向:光合驱动、热能、叶绿素荧光。三个过程之间存在竞争,其中任何一个效率的增加都将造成另外两个产量的下降。因此,测量叶绿素荧光产量,我们可以获得光化学过程与热耗散的效率的变化信息。尽管叶绿素荧光的总量很小(一般仅占叶片吸收光能总量的1-2%),测量却非常简单。荧光光谱不同于吸收光谱,其波长更长,因此荧光测量可以通过把叶片经过给定波长的光线的照射,同时测量发射光中波长较长的部分光线的量来实现。有一点需要注意的是,这种测量永远是相对的,因为光线不可避免会有损失。因此,所有分析必须把数据进行标准化处理,包括其进一步计算的许多参数也是如此。 调制荧光仪的出现是荧光研究技术的革命性的创新。在这类仪器中,测量光源是调制(高频率开关)的,其检测器也被调谐来仅仅检测被测量光激发的荧光。因此,相对的荧光产量可以在背景光线(主要是指野外全光照的条件下)存在的条件下进行测量。目前绝大多数的荧光仪采用了调制系统,同时也强烈建议选择调制荧光仪(Kate Maxwell,2000)。 为什么荧光产量会发生改变?Kautsky效应和Beyond 叶绿素荧光产量的变化最早在1960年被Kautsky和其合作者发现。他们发现,当把植物叶片从黑暗中转入光下,荧光产量瞬间上升(大约在1秒左右)这种上升可以解释为光合途径中电子受体的还原(可接受电子的受体的减少)。一旦PSII吸收光能,初级电子受体Q A(质体醌)接受了电子,它将不能再接受电子,直到它把电子传递给下一级电子载体Q B。此期间,反应中心是关闭的,反应中心关闭的比

荧光光谱仪操作规范

XXX有限公司 荧光光谱仪操作规范文件编号 :WI-ZL-389 版本/版次: A/2 页次:1/1 1.目的 为保证使用者正确的操作,以达成仪器之正确使用维护。提高仪器的使用寿命,特制定此规范。 参考资料:《Ux220 WorkStation V6.0使用说明书》 2.使用环境: 温度:15℃-25℃ 湿度:30-80%RH 3.仪器说明: 荧光光谱仪由测试仪主机,电脑及测试软件,测试结果输出的打印机组成。 4. 荧光光谱仪的操作方法: 4.1打开仪器电源:测试主机电源、电脑电源; 4.2开启操作程序Ux220 v6.4; 4.3开机预热:打开“设置X光管”窗口,勾选“打开高压电源”及“慢速升管压管流”,确定即可; 4.4用银校正片进行校正,校正不成功重新校正; 4.5输入样品信息、选择合适基材; 4.6将样品放入样品室,确认样品信息、测量次数无误后点击开始测量; 4.7测量完成输出报告并把报告存档。 5.注意事项: 5.1本仪器只允许经过专业培训并有上岗证的人员操作。 5.2本仪器只能检测均匀且颜色单一的物质,如导线,必须把铜丝与绝缘外皮分别进行检测;必须确保样 品厚度在2-3mm以上,若厚度不足可堆叠数个样品至适当厚度;若粒状样品其粒径大于5mm可直接进行测量,若粒径小于5mm则将样品放置样品杯中,尽量不要留下空隙且样品厚度要有2-3mm。 5.3银片校正时银片金属面朝下。 5.4关机时先降管流管压,再关程序,最后关电源; 5.5“Running”指示灯亮时,禁止打开仪器样品室的盖,以免X射线辐射对人体造成危害。 5.6测试大件样品样品室盖无法关闭时,仪器附件人员必须远离仪器三米以外,待延时灯闪烁10秒后 仪器开始测试,待延时灯(也叫做测量指示灯)熄灭后,人员方可靠近。

利用高光谱植被指数监测紧凑型玉米叶绿素荧光参数F_v_F_m_谭昌伟

第3  2卷,第5期 光谱学与光谱分析Vol.32,No.5,pp 1287-12912 0 1 2年5月 Spectroscopy and Spectral Analysis May,2 012 利用高光谱植被指数监测紧凑型玉米叶绿素荧光参数Fv /Fm谭昌伟1,黄文江2,金秀良1,王君婵1,童 璐1,王纪华2,郭文善1* 1.扬州大学江苏省作物遗传生理重点实验室/农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州 2250092.国家农业信息化工程技术研究中心,北京 100097 摘 要 为进一步评价遥感监测紧凑型玉米叶绿素荧光参数Fv/Fm的可行性,通过开展小区紧凑型玉米试验,分析紧凑型玉米整个生育期Fv/Fm与高光谱植被指数的相关关系,建立紧凑型玉米Fv/Fm高光谱监测模型。结果表明,紧凑型玉米Fv/Fm与选取的高光谱植被指数均呈极显著正相关,其中结构敏感色素指数(SIPI)与Fv/Fm的相关性最好,相关系数(r)为0.88。用SIPI建立紧凑型玉米Fv/Fm的监测模型,其决定系 数(R2 )为0.812  6,均方根误差(RMSE)为0.082。研究表明,利用高光谱植被指数可以有效地监测紧凑型玉米整个生育期的Fv/Fm。 关键词 高光谱植被指数;Fv/Fm;监测模型;紧凑型玉米 中图分类号:S127 文献标识码:A DOI:10.3964/j .issn.1000-0593(2012)05-1287-05 收稿日期:2011-10-30,修订日期:2012-01- 25 基金项目:国家自然科学基金项目( 40801122,41101395),江苏高校优势学科建设工程项目和公益性行业(农业)科研专项经费项目(200803037 )资助 作者简介:谭昌伟,1980年生,扬州大学农学院讲师 e-m ail:tanwei010@126.com*通讯联系人 e-mail:g uows@yzu.edu.cn引 言 国内外大量的研究表明,叶绿素荧光(chlorophy ll fluo-rescence,CF)作为光合作用的指示性探针,已被广泛应用于光合作用机理研究、分析植物对环境胁迫的响应机理和探测 植物体内光合器官运转状况等[ 1- 3]。随着高光谱遥感技术的迅速发展,其很快的被广泛应用到农业的品质鉴定、估产和 病虫害等各方面。Wright[4]和王纪华等[5] 对小麦的蛋白质品质进行了研究;Wim等[6]利用TM影像数据源,使用影像融 合技术重新构建了NPP估产模型,分别对小麦和水稻进行 估产,任建强等[7] 使用MODIS数据源、CASA模型对黄淮 海平原的冬小麦进行估产并取得了较好的效果;Bronson[8]和Hansen等[9]对作物的氮素含量和氮素利用率、Fensholt等[10 ]对叶面积指数(LAI )进行了研究;在作物的病害方面:Adams等 [11] 分别对大豆和蚕豆斑点葡萄孢子病和大豆黄痿 病进行了研究,并建立相关的评估指标。然而对于叶绿素荧光参数与光谱植被指数关系的研究鲜见报道。本工作以紧凑型玉米(以下称为玉米)作为研究对象,利用获取的叶绿素荧光参数与植被指数,构建以光谱植被指数为支撑的叶绿素荧光参数的遥感监测模型,实时准确获取玉米的叶绿素荧光参数信息。 1 实验部分 1.1 试验设计 2010年7月至9月间试验在扬州大学试验农场(119°18′ E,32°26′N) 开展,供试品种为3个紧凑型品种(系):农华8号、金海5号和郑单958。对玉米冠层进行了光谱测量和光合有效辐射测定。为了在田间栽培条件下更大范围地表现出玉米长势差异和生化组分变异,于拔节期安排了一个从不施 氮到施重氮(级差450kg,0~900kg ·ha-1 )3个氮肥水平处理,即N1:不施氮肥;N3:施氮450kg·ha-1 ;N4:施氮900kg ·ha-1 ,使之表现为缺氮、适量氮、过量氮。3次重复,行距×株距为70cm×60cm,每区面积为20m×20m。 常规水分管理。1.2 光谱测试 分别在玉米拔节期(7月23日)、喇叭口期(8月7日)、吐丝期(8月29日)、乳熟期(9月5日) 进行4次光谱测定。采用美国ASD Fieldsp ec FR2 500型野外光谱辐射谱仪,光谱范围350~2 500nm,分辨率在350~1 000nm光谱区为1.4nm,1 000~2  500nm区为2nm,光谱重采样间隔为1nm。在晴朗无云、北京时间10:30~14:00,选择代表性植株进行测定,测定前后用参考板标定,测定时传感器探头向下,距

植物体叶绿素荧光测定仪的原理与使用方法

植物体叶绿素荧光测定仪的原理与使用方法 【实验目的】 ?了解目前在光合作用研究中先进的叶绿素荧光技术,了解便携式叶绿素荧光仪测定 植物光合作用叶绿素荧光参数的基本原理和仪器的使用方法。 ?老师演示和学生分组利用便携式叶绿素荧光仪(PAM2100)测定实验植物的叶绿素荧 光基本参数(Fo, Fm, Fv/Fm, Fm’, Fo’, Yield, ETR, PAR, qP, qN等)。 ?了解荧光仪的广泛应用 【实验原理】 仪器介绍和工作原理 叶绿素荧光(Chlorophyll Fluorescence)的产生 ?传统的光合作用测定是通过测量植物光合作用时CO2的消耗或干物质积累计算出 来。叶绿素荧光分析技术通过测量叶绿素荧光量准确获得光合作用量及相关的植物生长潜能数据。 ?叶绿素荧光动力学技术在测定叶片光合作用过程中光系统对光能的吸收、传递、耗 散、分配等方面具有独特的作用,与“表观性”的气体交换指标相比,叶绿素荧光参数更具有反映“内在性”特点。 ?本实验以调制式叶绿素荧光仪PAM-2100(W ALZ)为例,测定植物叶绿素荧光主 要参数。植物叶片的生长状况不同,所处位置的不同,光照不同,叶绿素荧光参数数值也会有所不同,所以不同叶片之间叶绿素荧光产量存在着一定的差异。 【实验内容与步骤】 一、仪器使用步骤讲解 1. 仪器安装连接 将光纤和主控单元和叶夹2030-8相连接。光纤的一端必须通过位于前面板的三孔光纤连接器连接到主控单元,光纤的另一端固定到叶夹2030-B上。同时,叶夹2030-B还应通过LEAF CLIP插孔连接到主控单元。 2. 开机 按“POWER ON”键打开内置电脑后,绿色指示灯开始闪烁,说明仪器工作正常。随后在主控单元的显示器中会出现PAM-2100的表示。从仪器启动到进入主控单元界面大概要40秒。 3. PAM-2100的键盘 PAM-2100主控单元上有20个按键,现分别简要介绍主要按键的功能。

布鲁克XRF荧光光谱仪说明书 11-SampleDef-样品定义

SAMPLEDEF 目录 1 启动 1.1 为什么使用SAMPLEDEF 1.1.1 LOADER 和DEF 文件 1.1.2 使用几个DEF文件 1.1.3 在SPECTRA plus数据里样品定义表的互动1.2 启动SAMPLEDEF 2 使用SAMPLEDEF 2.1 列的管理 2.1.1 创建新列 2.1.2 在列表里工作 2.1.3 设置列的选项 2.2 定义列的类型 2.3 选择数据类型 2.3.1 指定列内容的数据类型 2.3.2 设置为数字数据类型的选项 2.3.3 设置为字符数据类型的选项 2.3.4 设置为组合数据类型的选项 2.3.5 设置为字符串数据类型的选项 3 教材:使用SAMPLEDEF 设置标准样品定义表步骤一启动SAMPLEDEF 步骤二创建位置列 步骤三创建样品列 步骤四创建方法列 步骤五创建SSD-文件列 步骤六创建样品颜色 步骤七创建样品尺寸列 步骤八创建Sample-ID-样品编号列 步骤九创建制样方法列 步骤十创建类型列 步骤十一保存和测试样品定义表 步骤十二从LOADER运行样品定义表 索引

1 启动 1.1 为什么使用SAMPLEDEF 1.1.1 LOADER 和DEF 文件 我们可以通过LOADER程序把样品交付到测量程序。为此,需建立样品与进样器位置、测量程序、样品编号之间的联系,以便日后查询数据。还可以增加其他参数(如样品的稀释比、流水号等等)。在SPECTRA plus,这些样品信息都在SampledDef里定义。 输入界面,即:样品定义表里的各个列,是在扩展名为DEF的文件里定义的。这些DEF文件可以在SAMPLEDEF创建。 1.1.2 使用几个DEF文件 如何建立样品与仪器的联系有很多不同的方法,最简便的方法是接近实验室的实际工作,下面举例说明: 1 样品从不同的工厂送来,并且需要区别,测量方法可以在已建立的方法里选,等等; 2 不同班次的工人用相同的分析方法测量同样的样品,只需要让仪器知道需要测量的样品 在进样器的位置。 当然,很多实验室需要进行上述两样的工作,甚至更多。这就是为什么实验室需要多个样品定义表。 特定的样品定义表(DEF 文件)可以保存选项,从而避免输入错误。如:样品类型强制规定为液体,就可以避免在真空光路测量液体样品。 标准的样品定义表是随SPECTRA plus交付的,(Routine.def 在\Libraries\MeasMethods\)。这个表是通用的表,可以在SAMPLEDEF里进行个性化设定。

布鲁克XRF荧光光谱仪说明书 3-Getting Started-总体介绍

目录 1 安装SPECTRA plus 2 使用 SPECTRA plus第一步2.1 连接 2.2 无标样测量 2.2.1 预装的测量方法 2.2.2 特殊测量方法 2.2.3 分析结果的重新评估 2.3 绘制校准曲线 2.4 特殊应用 3 登录 3.1 登录的目的 3.2 操作人员管理 3.3 登录和退出 3.4 在不同的Windows 用户中登录

1 安装SPECTRA plus 安装必须在管理员界面里进行。 安装程序需以管理员权限进入,以安装某些动态资料库(DLL 文件),特别是这关系到数据库的管理,和某些注册钥匙,如在.DEFAULT 文件夹。 如果没有进入管理员界面,请询问网络管理员取得此资格。 安装时,请参考”Installation notes”(它是与SPECTRA plus分开的另一文件),和安装光盘里的READMEFIRST.TXT 文件、INSTALLATION.PDF 文件。 安装术语 ? Recalibration data diskette 重校正数据软盘: 是随光谱仪一起交付的软盘,包括与用户光谱仪相对应的特定文件:硬件配置文件和谱线库。在首次安装时必须安装,但不要用于升级:因为在使用了一段时间后,谱线库里会加进用户自己定义的谱线,硬件配置文件也可能进行了修改,如果重新安装时再使用重校正数据软盘里的数据,仪器就回到了出厂时的状态,用户加进去的内容会被删除,。 ? Master diskette 母盘: 是随初始SPECTRA plus软件包一起交付的软盘,内有信用证。在第一次安装时信用证被转移到硬盘。如果您想卸载软件,如,将软件安装至另一台电脑或其他目录,不要忘了把信用证转移回母盘,然后再转安装至其他地方。如果只是软件升级,没有改变目录,建议把信用证留在硬盘以避免误操作。 信用证的管理,见L_WIZARD程序。 快捷键图标程序手册?章 无L_WIZARD.EXE 11 只是在安装或卸载SPECTRA plus软件时才需要转移信用证,在通常情况下不要安装或卸载SPECTRA plus软件,也就不要用L_WIZARD去转移信用证。

藻类叶绿素荧光仪快讯

藻类研究监测快讯 藻类是水体生态系统中的生产者,在生态系统中起着不可或缺的作用。随着能源与环境方面研究的深入,藻类已经越来越多的被利用到实验当中。叶绿素荧光是藻细胞中的叶绿素吸收光能后受激发而释放出的能量,通过检测荧光的强弱, 可初步判断藻类的光合作用强度及生理状况。该项技术使藻 类的生理生化研究变得更加简单、方便、精确。 重要参数如下: Ft瞬时荧光,与藻细胞浓度、叶绿素浓度有 关。在暗适应状态下测得的Ft值即为Fo最小荧 光值,在给予饱和光照时,即为Fm最大荧光值; QY反映藻类的光合效率,对胁迫非常敏感;暗适应条件下测得的QY值为最大光合效率值即(Fm-Fo)/Fm,反映藻类的潜在光合效率,光照下测得的QY值为有效光量子产量即(Fm’-Ft)/Fm’,反映藻类的实际光合效率。 OJIP曲线快速荧光诱导曲线,可测定藻类在由暗适应转到光照下的瞬间荧光变化,其中 FixArea与藻类叶绿素浓度 呈正相关,可作为藻类浓度 指标;PI为功能指数,对 胁迫非常敏感。有些胁迫不 会影响PSⅡ,也不会导致 QY降低,但可通过PI体 现出来,PI可以反映三个方面:反应中心密度、用于电荷分离过程的光子吸收率、电子传递效率。 NPQ 非光化学荧光淬灭,多余辐射能的散失,反映的藻类的光保护能力。 1、AquaPen探头式藻类荧光仪 AquaPen探头式藻类荧光仪用于水体微藻类的荧光测量,其高灵敏度和便携性可以对水 体较低浓度的浮游植物进行快速测量。检测极限可达0.5 μg Chl/L,测量计算参数:Fo, Ft, Fm, Fm‘, QY, OJIP, NPQ等。 光化学光和饱和光的强度在0 - 3,000 μmol·m-2·s-1可调,光 化光的持续时间可调,界面简单,易于操作,内存可达4Mb, 4节AAA电池供电,数据可通过USB数据线传至计算机或 掌上电脑。检测器前带有暗适应罩子,适合野外测量。

布鲁克XRF荧光光谱仪说明书 2-应用SPECTRA plus作你的第一条回归曲线

应用SPECTRA plus作你的第一条校准曲线目录 应用SPECTRA plus作你的第一条校准曲线 简介 建立校准曲线 了解校准曲线工具箱 开始作校准曲线 Si KA1 HS-Min的校准曲线 如何检查计算的浓度是否被接受 P KA1-HS-Min 的校准曲线 S KA1 HR-Min的校准曲线 V KA1-HS-Min的校准曲线 Cr KA1-HS-Min的校准曲线 Mn KA1-HR-Min的校准曲线 V KA1 HS-Min的校准曲线 Ni KA1-HS-Min的校准曲线 Cu-KA1-HS-Min的校准曲线 漂移校正/重校正 低合金未知样品的测量 使用Results Monitor功能 监视分析结果 查询结果 转移结果 再评估测量数据 结论

简介 本教学课程包括下列内容,以便使你熟悉制作校准曲线的过程: l建立校准曲线 l组织材料 l输入标准浓度到数据库 l定义测量方法 l了解校准曲线工具 l校准已测量的低合金样品 l用低合金曲线测量未知样品 l使用结果管理器 按照这一部分的介绍,你可以一步一步地制作你的第一条校准曲线。使用一套BCS低合金标样,SPECTRA plus谱线库中预定义的谱线及扫描测量模式,你的任务是绘制低合金样品的校准曲线。由于所有的样品已经在德国Bruker AXS 公司测量过,不需要在你的仪器上进行实际的测量。为了得到所显示的相同结果,必须仔细地按照所有步骤进行。

建立校准曲线 从SPECTRA plus程序或桌面打开Quantification Editor (FQuant) 程序。 图 1 桌面上的Spectra Plus程序文件夹

5种叶绿素荧光参数

5种叶绿素荧光参数:1.Fv/Fo 2.PSI Light 3.ETR 3.Y(II) 4.Act Light 5.Means Light 目前主要研究的小分子RNA 1.miRNA(微小RNA) 2.siRNA(小分子干扰RNA) 3.piRNA(PIWI结合RNA) 5种常见的植物胁迫形式:低温干旱盐碱高温洪涝 十种常见的激素; 茉莉酸生长素细胞分裂素赤霉素脱落酸水杨酸乙烯油菜素内酯萘乙酸吲哚乙酸吲哚丁酸 常见的组蛋白修饰乙酰化甲基化泛素化糖基化羰基化等 什么叫做组蛋白密码?组蛋白在翻译后的修饰中会发生改变,从而提供一种识别标志,为其他蛋白与DNA结合产生协同或拮抗效应,它是一种动态转录调控成分, 活性氧常见的5种形式:超氧自由基超氧阴离子过氧化氢含氧自由基过氧阴离子 蛋白质翻译后修饰的意义:是指mRNA被翻译成蛋白质后,对蛋白质上个别氨基酸残基进行共价修饰的过程。他可以使蛋白 质的结构更加复杂,功能更加完善,调节更为精细,作用更专一。正式蛋白质的翻译后修饰使得一个基因并不只对应一种蛋白质,增加了蛋白质的结构和功能的多样性,从而赋予生命更多复杂的过程。 常见的修饰方式:泛素化,磷酸化,糖基化,脂基化,甲基化,乙酰化 9、植物防御反应的生化原理:1.病原体的侵入可以激活所有细胞中的多种防御反应;2.超敏反应使局部细胞迅速死亡;3.在植物抗性反应的早期常常会产生有反应活性的氧化物;4.在植物不相容相互作用过程中,诱导生成了一种哺乳动物的信号分子——一氧化氮;5.细胞壁加固和细胞外酶活有助于植物的抗病反应;6.苯甲酸和水杨酸可能参与了大量的植物防御反应;7.防御 坏死营养型真菌以及诱导某些植物防御基因时所需的茉莉酮酸和乙烯可能会加剧病症;8.致病相关蛋白和其他防御相关蛋白包 括真菌细胞壁降解酶类、抗维生素多肽和信号转导级联途径中的组分;9.植物抗生素包括有机次生代谢物和无机次生代谢物;10.蛋白酶的抑制剂由食草的靶昆虫诱导;11.转录后基因沉默是植物应对治病病毒的一种特异性防御反应;12.平行的信号途径协调复杂而高度局域化的植物防御反应; 10.植物体内ROS(活性氧)与NO在植物防御反应中的作用及二者的协同关系 1.ROS在植物防御中的作用,H2O2可能直接对病原体有毒,在铁存在时,H2O2会产生活性极强的羟基自由基。另一种看法是,它或者通过各种富含羟脯氨酸或脯氨酸的糖蛋白与多糖基质交联,或者通过过氧化物酶的作用提高木质素多聚物的合成速率,从而加固植物细胞壁的结构,这两种作用都可以提高植物细胞壁对微生物穿透和酶促降解的抵抗能力。某些ROS还可能有信号转导功能。 2.NO是哺乳动物用以调控免疫,神经和血管系统中多种生物过程的一种信号分子。植物在识别无病毒病原菌的同时,即迅速 从头合成NO. 局部发生的超敏反应是遗传不相容相互作用的一贯特征,但是ROS大量的生成不足以诱导植物细胞的死亡,而可能可以抑制病原体的生长。NO可以加强ROS诱导植物细胞死亡的能力。已知NO可以与血红素结合,因此可以抑制用以解除H2O2毒性的 过氧化氢酶和抗坏血酸盐过氧化物酶。植物细胞悬浮培养物和叶子中加入可以产生NO的化合物,会使好几个与防御和细胞保 护相关基因的mRNA的积累。NO诱导ROS的大量积累导致细胞死亡。NO和活性氧共同提高植物病原体过程中提高协同作用。

移动式X射线荧光光谱仪使用说明

移动式X射线荧光光谱仪使用说明 型号规格:EPX-50 生产厂家:美国Innov-X System公司 购置日期:2010年3月 性能指标:本仪器为低能量色散X射线荧光光谱仪,由X光源(X射线光管,Ta(W)阳极,50KV,10W能量)、滤光片(5个滤光片,3光束连续自动测试)、检测器(电制冷的高分辨率Si-Pin检测器,在5.95KeV Mn Kα<190 eV FWHM, 温度范围:-10℃至50℃)组成。适合大规模样品的筛查分析、现场应急污染初步检测和实验室固体样品的定性半定量分析(含量大于0.01%的重元素可以进行定量分析)。 应用范围:可一次分析土壤、沉积物、矿物、淤泥、固体废弃物等固体粉末及金属、合金样品中15P-92U的25个元素,具体为Cr, Pb, As, Hg, Se, Ag, Cd, Ba,Tl, Cu, Zn, Ni, Sb,V, Mn, Fe, Co, Sn, Rb, Zr, Sr, Mo,P, S, Cl, K, Ca。(Na,Mg,Al,Si等轻元素不能检测)。分析速度快,30~120秒内即可完成样品中以上元素的测试。 -1 操作方法: 1、将仪器自带的变压器一端接到220V 电源上,一端接到仪器上,将220伏电 压转换为18伏后打开仪器。 2、输入用户名称和密码进入操作界面。 3、用仪器自带的316合金将仪器标准化,使仪器处于最佳工作状态。 4、样品测试:将固体粉末样品装入不含氯的透明塑料袋内,打开盖子并将样品 袋轻轻放在测试窗上面,关闭样品仓盖,点击Mode选择测量模式(Soil 3 Beam,Mining,Analytical,Soil),点击start 开始测量。多个样品依次进行测试,数据自动按照标准样式保存,结果显示在电脑屏幕上。 5、数据导出:用格式化的U 盘将测量数据导出,结果还可以报告形式打印出来。

对叶绿素荧光仪各参数的说明

对叶绿素荧光仪各参数的说明 各参数顺序按照数据传输软件上传出数据的顺序 SL(T):饱和脉冲强度。 AL(T):光化光强度。 Total T:测量总时长。 FR T:远红光时长。 Dark T:黑暗时长。 Fo:固定荧光,初始荧光(minimalfluorescence),也称基础荧光,0水平荧光,是光系统Ⅱ(PS Ⅱ) 反应中心处于完全开放时的荧光产量,它与叶片叶绿素浓度有关。 Fj:在O-J-I-P 荧光诱导曲线j点处的荧光强度 Fi:在O-J-I-P 荧光诱导曲线i 点处的荧光强度 Fm:荧光产量(maximal fluorescence) ,是PS Ⅱ反应中心处于完全关闭时的荧光产量。可反映通过PSⅡ的电子传递情况。通常叶片经暗适应20 min 后测得。 Fv = Fm - Fo,为可变荧光(variable fluorescence) ,反映了QA 的还原情况(许大全等,1992) 。 Fv/Fm:是PSⅡ光化学量子产量(optimal/ maximal photochemical efficiency of PSⅡin the dark) 或(optimal/ maximal quantum yield of PS Ⅱ) ,反映PSⅡ反应中心内禀光能转换效率(intrinsicPSⅡefficiency)或称PSⅡ的光能转换效率(optimal/ maximal PS Ⅱefficiency) ,叶暗适应20 min 后测得。非胁迫条件下该参数的变化极小,不受物种和生长条件的影响,胁迫条件下该参数明显下降(许大全等,1992) 。 Fo':光下荧光,在光适应状态下全部PSⅡ中心都开放时的荧光强度,qP=1,qN≥0。为了使照光后所有的PSⅡ中心都迅速开放,一般在照光后和测定前应用一束远红光(波长大于680nm,几秒钟)。 Fm':光下荧光,在光适应状态下全部PSⅡ中心都关闭时的荧光强度,qP=0,qN≥0。Fm'受非光化学猝灭的影响,而不受光化学猝灭的影响。 Fs:稳态荧光产量。响应光合作用在光反应与暗反应达到平衡时的荧光产量。

第4章第1节_叶绿素荧光参数及意义-v2.

第四章 叶绿素荧光技术应用 第一节 叶绿素荧光参数及其意义 韩志国,吕中贤(泽泉开放实验室,上海泽泉科技有限公司,上海,200333) 叶绿素荧光技术作为光合作用的经典测量方法,已经成为藻类生理生态研究领域功能最强大、使用最广泛的技术之一。由于常温常压下叶绿素荧光主要来源于光系统 II 的叶绿素 a ,而光系统 II 处于整个光合作用过程的最上游,因此包括光反应和暗反应在内的多数光合过程的变化都会反馈给光系统 II ,进而引起叶绿素 a 荧光的变化,也就是说几乎所有光合作用过程的变化都可通过叶绿素荧光反映出来。与其它测量方法相比,叶绿素荧光技术还具有不需破碎细胞、简便、快捷、可靠等特性,因此在国际上得到了广泛的应用。 1 叶绿素荧光的来源 藻细胞内的叶绿素分子既可以直接捕获光能,也可以间接获取其它捕光色素(如类胡萝卜素)传递来的能量。叶绿素分子得到能量后,会从基态(低能态)跃迁到激发态(高能态)。根据吸收的能量多少,叶绿素分子可以跃迁到不同能级的激发态。若叶绿素分子吸收蓝光,则跃迁到较高激发态;若叶绿素分析吸收红光,则跃迁到最低激发态。处于较高激发态的叶绿素分子很不稳定,会在几百飞秒(fs ,1 fs=10-15 s )内通过振动弛豫向周围环境辐射热量,回到最低激发态(图 1)。而最低激发态的叶绿素分 子可以稳定存在几纳秒(ns ,1 ns=10-9 s )。 A 较高激发态 B 热耗散 吸收蓝 光 吸收红光 最低激发态 能量 荧光 基态 蓝 波长 红 荧光 图 1 叶绿素吸收光能后能级变化(A )和对应的吸收光谱(B )(引自韩博平 et al., 2003) 处于最低激发态的叶绿素分子可以通过几种途径(图 2)释放能量回到基态(韩博平 et al., 2003; Schreiber, 2004):1)将能量在一系列叶绿素分子之间传递,最后传递给反应中心叶绿素 a ,用于进行光化学反应;2)以热的形式将能量耗散掉,即非辐射能量耗散(热耗散);3)放出荧光。这三个途径相互竞争、此消彼长,往往是具有最大速率的途径处于支配地位。一般而言,叶绿素荧光发生在纳秒级,而光化学反应发射在皮秒级(ps ,1 ps=10-12 s ),因此在正常生理状态下(室温下),捕光色素吸收的能量主要用于进行光化学反应,荧光只占约 3%~5%(Krause and Weis, 1991; 林世青 et al., 1992)。 在活体细胞内,由于激发能从叶绿素 b 到叶绿素 a 的传递几乎达到 100%的效率,因此基本检测不到叶绿素 b 荧光。在常温常压下,光系统 I 的叶绿素 a 发出的荧光很弱,基本可以忽略不计,对光系统 I 叶绿素 a 荧光的研究要在 77 K 的低温下进行。因此,当我们谈到活体叶绿素荧光时,其实指的是来自光系统 II 的叶绿素 a 发出的荧光。

相关主题
文本预览
相关文档 最新文档