当前位置:文档之家› 智能抗肿瘤药物递送系统的设计及体外评估

智能抗肿瘤药物递送系统的设计及体外评估

智能抗肿瘤药物递送系统的设计及体外评估
智能抗肿瘤药物递送系统的设计及体外评估

智能抗肿瘤药物递送系统的设计及体外评估近年来,基于肿瘤微环境与正常组织微环境之间的差异来设计抗肿瘤药物递送系统,在肿瘤治疗过程中占据着越来越重要的地位。由于纳米抗肿瘤药物递送系统能改善目前所用化疗药物的安全性及提高治疗效果,因此纳米抗肿瘤药物递送系统的研究和应用引起了广泛的关注。

此外,为了进一步增强治疗效果,这些纳米抗肿瘤药物递送系统被设计为基于内部刺激的纳米药物递送系统,即pH敏感药物递送系统,还原敏感纳米药物递送系统,及基于外部刺激的纳米药物递送系统,例如光辐射纳米药物递送系统。基于此,为了改善化疗药物的安全性及提高治疗效果,本论文基于不同的材料(譬如天然聚电解质、可控合成的嵌段共聚物及氧化石墨烯)构建具有不同结构的抗肿瘤药物递送系统,而且不同的相互作用(譬如静电相互作用、疏水相互作用及π-π相互作用)被用来有效地负载抗肿瘤药物阿霉素。

此外,这些抗肿瘤药物递送系统具有如pH、还原及光响应特性,而且集靶向性、低细胞毒性、可降解性及分子成像特性与一身。本论文主要包括以下几个部分。

首先,我们通过层层自组装方法将FITC功能化壳聚糖及透明质酸钠(分别作为聚阳离子及聚阴离子)包覆在磺化聚苯乙烯微球模板上,最后一层控制为乳糖酸功能化壳聚糖,再刻蚀去除磺化聚苯乙烯模板从而制备了该具有pH敏感荧光肝靶向功能的聚电解质空心微球(CSFITC/HA)4/GC。其粒径约为260 nm,且动态光散射分析表明其具有pH及离子强度双重响应特性。

经实验表明,该聚电解质空心微球具有pH敏感荧光、肝靶向功能及低细胞毒性。在此基础上,为了简化实验步骤,缩短实验周期,通过聚电解质共沉淀法将乳

糖酸功能化壳聚糖与透明质酸钠构建成具有离子交换海绵结构的聚电解质纳米微球GC/HA NPs。

其粒径约为80 nm。该聚电解质纳米微球表面电荷可在中性条件或碱性条件下的负电荷翻转成在酸性条件下的正电荷,揭示了其在响应肿瘤组织外环境pH

递送抗肿瘤药物方面的潜在应用。

此外,该具有独特离子交换海绵结构的聚电解质纳米微球具有高的抗肿瘤药物阿霉素的药物负载容量及封装效率,及pH触发的药物释放。MTT实验及荧光显微镜分析揭示了阿霉素负载GC/HA NPs不仅拥有良好的生物相容特性,且具有高效的肝靶向功能。

同时,我们还通过简单的离子(pH敏感),共价(还原敏感)双交联FA及Rh 6G 功能化透明质酸(FA-HA-Rh 6G)制备了一种具有ph/还原响应性荧光标记叶酸靶向的药物递送系统(dclfa-ha-rh6gnps)。该药物递送系统能有效地负载抗肿瘤药物阿霉素(dlc及dee分别为0.7161±0.0341mg/mg及71.60%±3.4%)),且拥有在模拟肿瘤组织微环境条件下理想的释放行为。

mtt实验及clsm分析揭示了该双交联的透明质酸药物递送系统不仅具有良好的生物相容特性,而且能有效地实现对hela细胞的叶酸受体介导的靶向。其次,通过在壳聚糖骨架上引入peg构建了该具有生物相容特性的peg功能化壳聚糖基共聚物,该共聚物能在ph6.8的pbs中分子组装成胶束。

基于该两亲性壳聚糖基胶束,通过调节壳聚糖的粘均分子量及peg2000-cho 的接入量,构建了一系列可控形貌及粒径的dox/cs-peg胶束。此外,在pbs(ph7.4)下的dox的累计释放量仅为2.68wt%,而在pbs(ph5.0)下可达到72.76wt%的累计释放量。

该在正常生理条件下的稳定性及在弱酸性条件(ph5.0)下的暴释行为使得该dox/cs100k-peg2具有肿瘤微环境响应的“开关”阿霉素释放特性。mtt实验及clsm分析表明,该抗肿瘤药物递送系统可以有效地将抗肿瘤药物阿霉素递送进

肿瘤细胞的细胞核,进而显著地抑制该肿瘤细胞。

再次,我们联合原子转移自由基聚合,开环聚合,点击化学及酯基水解反应制备了一种能自组装成核-壳-冕型胶束的三嵌段共聚物

(peg43-b-p(aa30-co-tba18)-b-pcl53)。该三嵌段共聚物通过二硫键交联后能有效的调控其药物释放行为,其粒径约为52nm。

该药物递送系统具有在正常生理条件下慢的阿霉素释放能力,而在模拟肿瘤组织条件下其具有快速的抗肿瘤药物释放能力。另外,生物毒性实验及hepg2细胞增殖抑制实验共同揭示了该药物递送系统具有良好的生物相容特性,且阿霉素负载的该胶束具有与纯药阿霉素相媲美的抗肿瘤活性。

同时,clsm分析也证明了该结论。此外,通过原子转移自由基聚合、水解反应及酯化反应制备了一种具有光敏感性的两亲性共聚物

peg43-b-p(aa76-co-nbac35-co-tba9)。

在紫外辐照下该胶束的形貌转变赋予其良好的释放行为及其能通过触发进而增强阿霉素的递送效率。该共聚物胶束在365nm紫外光下具有快速紫外响应特性,其光断裂反应可在二十分钟内完成。

最后,氧化石墨烯二维纳米材料具有大的比表面积,大的苯环共轭体系及低细胞毒性,可以有效地通过π-π堆积作用负载具有苯环结构的抗癌药物小分子dox。本工作中通过将叶酸端基化peg共价修饰氧化石墨烯,使其具有叶酸靶向性,及进一步改善的低细胞毒性。

实验证明,该药物递送系统具有高的阿霉素负载效率,且具有精确的肿瘤细胞靶向性。在此工作的基础上,发展了一种具有理想尺寸及形貌的氧化石墨烯纳米微球基药物递送系统,其通过二硫键将低细胞毒性的peg功能化海藻酸钠共价耦联至氧化石墨烯基纳米微球表面,且其具有高效的药物递送能力。

此外,该药物递送系统在血液循环中能防止其所负载的抗肿瘤药物的漏释,且其能在肿瘤微环境高浓度GSH下剥离脱落海藻酸层。同时,通过在PEG功能化氧化石墨烯纳米微球表面铈引发自由基聚合甲基丙烯酸,再通过胱胺交联,首次报道了具有理想尺寸及分布的还原触发功能的氧化石墨烯纳米微球基药物递送系统。

且该药物递送系统通过引入交联聚甲基丙烯酸壳层,从而减少了其在模拟正常组织条件下所负载的抗肿瘤药物阿霉素的漏释,且其能在模拟肿瘤组织还原剂存在下高效地释放所负载的抗肿瘤药物阿霉素。体外释放实验表明,该药物递送系统在pH 5.0及10 m M GSH下的药物的累计释放量是在pH 7.4及10μM GSH 时的6倍。

项目名称新型抗肿瘤分子靶向递送系统研究-北京大学科学研究部

1.项目名称:新型抗肿瘤分子靶向递送系统研究 2.推荐单位:教育部 3.项目简介: 科学问题 化疗在肿瘤治疗中应具有重要作用,但实际疗效相当不理想。重要原因之一是化疗药在体内分布上对肿瘤组织缺乏选择性(包括小分子靶向药物);当前各种被动和主动靶向策略的细胞内靶向效率仍不理想。因此,如何提高活性成分(治疗或诊断药物)对肿瘤细胞的选择性,真正实现胞内高效药物递送,获得肿瘤细胞内较高的药物浓度,长期以来都是科学家们面临的重大科学问题。 主要研究内容 1)以肿瘤生物标志物作为药物载体递送的靶,开展新一代受体介导的抗肿瘤分子靶向载体系统研究; 2)同时以2种肿瘤生物标志物作为药物载体递送的靶,开展新型抗肿瘤双分子靶向递送系统研究; 3)用于分子靶向递送的新型药物载体系统的创制; 4)用于分子靶向递送的新配体分子的发现与应用。 成果及意义 1)提出了一系列抗肿瘤分子靶向递送的新策略和新思路。特别是通过新一代受体介导靶向递送明显提高了细胞内递送效率,证明把肿瘤生物标志物作为药物载体递送的靶是可行的,证实被动与主动靶向相结合的优势,阐明肿瘤细胞和新生血管双重靶向、双分子靶向递送、新载体系统结合受体介导等的可行性和重要性,为肿瘤诊治提供了新途径和新方案; 2)阐明了一系列相关科学问题和科学规律,发表了一系列代表性学术论文,获得了第三方的高度评价与关注; 3)研究产生了积极的引导作用,对学科交叉和相关学科的发展产生了重要的推动作用。相关研究思路和方法已被国际学术界广泛接受认同,有的成为当前靶向递送研究的主流方向之一; 4)研究具有重要的临床应用价值。1种双分子靶向成像系统已进入开发阶段,一种新的配体分子GE11也成功实现技术转让并进入临床前研究。

常用抗肿瘤药物大全

.抗肿瘤药物大全 15.1.烷化剂 苯丙氨酸氮芥L~Phenylalanine Mustard (D) 【别名】美法仑,爱克兰。Melphalan,Alkeran。【医保】乙 【应用】能进入肿瘤细胞,抑制肿瘤细胞和一切增生迅速的组织如骨髓、淋巴组织的细胞核分裂,适用于多发性骨髓瘤、乳腺癌、卵巢癌、慢性淋巴细胞和粒细胞白血病、恶性淋巴瘤、恶性黑色素瘤、软组织肉瘤、骨肉瘤等。 【用法用量】口服:每日8~10mg/m2,每日1次,连用4~6日,每隔6周重复1次。 【副作用】消化道反应和骨髓抑制。 【规格】片剂:2mgx25片/瓶,¥¥¥。 环磷酰胺Cyclophosphamide (D) 【别名】环磷氮芥。ENDOxAN,CTx。【医保】甲 【应用】在体内被活化,释放出氮芥基,从而抑制肿瘤生长。亦通过杀伤多种免疫细胞而抑制抗体形成,排斥反应,移植物抗宿主反应和迟发性超敏反应。用于恶性淋巴瘤、急、慢性淋巴细胞白血病、多发性骨髓瘤、乳腺癌、晚期肺癌、晚期鼻咽癌、神经母细胞瘤、骨肉瘤及睾丸肿瘤。 【用法用量】口服:50~100mg/次,2~3次/日,1疗程总量10~15g。静注:联盒用药1次500mg/m2,每周1次,连用2次,3~4周为1疗程。 【副作用】骨髓抑制、脱发、胃肠道反应、口腔炎、膀胱炎等。 【注意事项】(1)盒用巴比妥或皮质激素、别嘌醇等肝药酶诱导剂时需注意。(2)肾功能异常慎用。(3)本品代谢物对尿路有刺激,应用时应多喝茶水。 【规格】粉针剂:0.2g/瓶,¥。 异环磷酰胺Ifosfamide (D) 【别名】匹服平。Isofamide,Iphosphamide。【医保】乙 【应用】环磷酰胺同分异构体,对造血系统毒性较环磷酰胺低。用于骨及软组织肉瘤、非小细胞肺癌、乳腺癌、头颈部癌、子宫癌、食管癌。 【用法用量】静滴:常用剂量每次1.2~2.0g/m2,每日1次,连续5日,每3~4周重复1次。 【副作用】同环磷酰胺。 【注意事项】(1)对本品过敏、严重骨髓抑制、肾功能不良、双侧输尿管阻塞者禁用。(2)注意骨髓、肝、肾功能改变情况。(3)本品应与泌尿系统保护剂美司那(见19.解毒药)盒用。 【规格】粉针剂:1.0g/瓶,¥¥¥¥。 甲环亚硝脲MeCCNU 【别名】司莫司丁。Semustine。【医保】甲 【应用】在体内其氯乙基部分使DNA链断裂,RNA及蛋白质受到烷化发挥抗肿瘤作用。用于恶性黑色素瘤、恶性淋巴瘤、脑瘤、肺癌。 【用法用量】口服:单用100~200mg/m2,每6~8周给药1次,亦可36mg/m2 ,1次/周,6周为1疗程。盒用其他药物可75~150mg/m2 ,1次/6周或30mg/m2,1次/周,连给6周。 【副作用】迟发性骨髓抑制,血小板、白细胞减少,亦有恶心、呕吐、食欲下降等胃肠道反应和口腔炎、脱发、肝损等。 【规格】胶囊剂:50mgx5粒/瓶,¥¥¥。 尼莫司汀NIMUSTINE 【别名】丁禾青。【医保】乙 【应用】脑肿瘤、消化道癌(胃癌、肝癌、结肠癌、直肠癌),肺癌、恶性淋巴瘤、慢性白血病等。 【用法用量】通常,本剂按每5mg溶于注射用水1ml的比例溶解下述剂量,供静脉或动脉给药。1.以盐酸尼莫司汀计,按体重给药,1次给2~3mg/kg,其后据血象停药4~6周,再次给药,如此反复,直到临床满意的效果。2. 以盐酸尼莫司汀计,将1次量2mg/kg,隔1周给药,2~3次后据血象停药4~6周,再次给药,如此反复,直到临床满意的效果。 【副作用】 1.重大不良反应:(1)骨髓抑制:出现白细胞减少、血小板减少、贫血,有时出现出血倾向、骨髓抑制、全血细胞减少等,因此每次给药后至少6周应每周进行周围血象检查,若发现异常应作适当处理。(2)间质性肺炎及肺纤维症:偶出现间质性肺炎及肺纤维症。2.其他不良反应:(1)过敏症:有时出现皮疹,若出现此类过敏症状,应停药。(2)肝脏:有时出现AST、ALT等上升。(3)肾脏:有时出现BUN上升、蛋白尿。(4)消化道:出现食欲不振、恶心、欲吐、呕吐,有时出现口内炎、腹泻等。(5)其他:有时出现全身乏力感、发热、头痛、眩晕、痉挛、脱发、低蛋白血症。禁忌:(1)骨髓功能患者禁用;(2)对本品有严重过敏症既往史患者。 【注意事项】 1.下列患者慎用:(1)肝功能损害患者。(2)合并感染患者。(3)水痘患者。2.会引起迟缓性骨髓功能抑制等严重不良反应,因此每次给药后至少6周应每周进行临床检验(血液检查\肝功能及肾功能检查等),充分观察患者状态。若发现异常应作减量或停药等适当处理。另外,长期用药会加重不良反应呈迁延性推移,因此应慎重给药。3.应充分注意感染症及出血倾向的出现及恶化。4.小儿用药应慎重,尤应注意不良反应的出现。5.小儿及育龄患者用药时,应考虑对性腺的影响。给药途径:不得用于皮下或肌肉注射。7.本品与其他药物配伍有时会发生变化,故应避免与其他药物混盒使用。8.本品溶解后应迅速使用,因遇光易分解,水溶液不稳定。9.静脉内给药时,若药液漏于管外,会引起注射部位硬结及坏死,故应慎重给药以免药液漏于管外。 【规格】粉针剂:25mg/瓶,¥¥¥¥¥。 15.2.抗代谢药 甲氨蝶呤Methotrexate (x)

pH响应二氧化硅纳米药物递送系统的构建及抗肿瘤活性研究

目录 摘要................................................................................................................................................I ABSTRACT................................................................................................................................III 符号说明....................................................................................................................................VII 第一章绪论 (1) 1.1引言 (1) 1.2恶性肿瘤的特点与治疗 (1) 1.2.1恶性肿瘤的特点 (2) 1.2.2恶性肿瘤的治疗 (3) 1.3溶酶体 (3) 1.3.1溶酶体膜通透性与完整性 (4) 1.3.2溶酶体与细胞凋亡 (4) 1.3.3溶酶体与肿瘤关系 (5) 1.4纳米载药递送系统概述 (5) 1.4.1纳米技术与医学应用 (6) 1.4.2纳米药物递送系统 (7) 1.4.3纳米技术在肿瘤药物递送系统中的应用 (8) 1.5二氧化硅纳米粒子研究进展 (10) 1.5.1介孔二氧化硅纳米材料 (10) 1.5.2介孔二氧化硅纳米材料在生物医学上的应用 (12) 1.5.3空心介孔二氧化硅纳米材料 (13) 1.5.4基于空心介孔二氧化硅载药系统在肿瘤治疗的应用 (14) 1.6论文的选题依据和主要研究内容 (17) 1.6.1选题依据 (17) 1.6.2主要研究内容 (18) 第二章基于介孔二氧化硅纳米载药系统的构建及可控释放研究 (19) 2.1引言 (19) 2.2实验部分 (19)

纳米介孔硅及聚合物胶束智能药物递送系统制备与抗肿瘤效应研究

纳米介孔硅及聚合物胶束智能药物递送系统制备与抗肿瘤效应 研究 恶性肿瘤是威胁人类健康和生命的重大疾病之一。传统临床手术、放疗及化疗治疗手段仍存在诸多缺陷,如易复发、无靶向特异性、多药耐药性及严重毒副作用等,因而较难彻底根治肿瘤,尤其对晚期肿瘤疗效甚微。 纳米颗粒药物载体由于其独特的增强渗透性和滞留性(EPR)效应,在提高抗肿瘤药物生物利用率、增强疗效以及减少毒副作用方面发挥着重要作用,有广阔的临床应用前景。目前,已开发出基于脂质体、无机纳米颗粒和聚合物胶束的多种抗肿瘤纳米医药制剂。 智能药物递送系统就是其中的佼佼者,该体系可以选择性的将治疗药物靶向递送到肿瘤病灶,原位响应生物信号刺激释放化疗药物/光敏剂/siRNA。兼顾生物相容性的前提下,智能药物递送系统能够对肿瘤高效地杀伤且毒副作用小,在临床上有巨大的应用前景。 智能药物递送系统一般是以纳米颗粒为药物载体,通过多功能修饰手段整合诸如刺激响应性释放机制以及靶向分子等策略来构建。介孔硅纳米颗粒以及聚合物胶束作为其中的典型代表,受到了研究人员的广泛关注。 介孔硅纳米颗粒具有合成简单、高比表面积、粒径可调和易修饰等特点,作为纳米储存器被广泛开发及应用到药物递送和生物成像等医学领域。聚合物胶束由于其良好的生物相容性、低免疫原性、高药物装载量以及可降解等优点,在靶向递送药物/基因治疗肿瘤等方面有巨大的应用前景。 但仍存在一些亟待解决的问题:1.如何构建有高载药量和良好生物相容性的生物信号响应性介孔硅靶向药物递送系统,使其特异性的靶向肿瘤病灶,在肿瘤

微环境特有生物信号的刺激下,原位递送化疗药物特异性地杀伤肿瘤,在提高药物利用率的同时减少对正常组织的副作用;2.如何设计构建有良好生物相容性和刺激响应性的可降解聚合物胶束靶向药物递送系统,实现对肿瘤的特异性靶向及提高肿瘤细胞对载体的摄取效率,使其被摄取后能够有效地从溶酶体逃逸到胞浆,并且响应性的触发载体降解和化疗药物/功能性治疗分子的释放机制,对肿瘤组织高效杀伤。基于以上问题,本文设计合成了三种纳米介孔硅及三种可降解聚合物胶束,通过多功能化修饰手段整合生物信号刺激响应性释放/降解机制以及引入肿瘤靶向基元,共构建了六种硅纳米颗粒/聚合物胶束药物递送系统,较系统地研究了各体系体内外刺激响应性药物释放特性、细胞靶向、生物成像、免疫响应、肿瘤抑制及相关分子机制,为研发靶向药物递送系统提供科学依据。 本文的主要研究内容和结论如下:一、基于纳米介孔硅颗粒响应性药物递送系统的构建及抗肿瘤研究1.还原响应性介孔硅/肝素药物递送系统构建及抗肝 肿瘤评价本章构建了以MSN为纳米储存器,二硫键为分子开关、肝素作为纳米塞、乳糖酸作为靶向基元的还原响应性靶向药物递送系统(MSNs-S-S-HP-LA)。透射电镜、热重、Zeta电位、红外光谱和比表面及孔隙度表征证实已成功构建 MSNs-S-S-HP-LA靶向药物递送系统。 药物控释实验证实该体系有还原敏感的控释特性。细胞毒性实验表明该体系有良好的生物相容性。 激光共聚焦、流式细胞仪、细胞透射及凝胶电泳DNA片段测定实验表明该靶向药物递送系统可以被肝肿瘤细胞HepG2特异性识别并摄取。在肿瘤细胞内高浓度GSH的刺激下,释放装载的抗肿瘤药物阿霉素DOX,有效地杀伤肿瘤细胞。 体内实验证实该体系可以有效抑制肿瘤生长并减少化疗药物的毒副作用。

抗肿瘤多级纳米药物递送系统的研究

抗肿瘤多级纳米药物递送系统的研究 基于聚合物的纳米药物递送系统用于增强化疗药物抗肿瘤治疗具有重要的研究与应用价值。然而,纳米药物进入体内后会面临血液、肿瘤等形成的多重生理障碍。 因此,如何通过改变纳米药物载体纳米特性,克服体内多重生物屏障,实现靶部位有效药物输送仍旧面临多种挑战。本论文主要集中于设计整合多种纳米特性药物递送系统,针对性克服纳米药物体内输送多重障碍,增强药物抗肿瘤作用。 本论文的研究内容主要分为两个部分:1、发展了一种基于肿瘤组织微酸性环境刺激响应性集束化纳米药物载体以协同克服多重药物递送障碍。该纳米载体通过肿瘤组织微酸环境响应化学键桥连的聚己内酯-树枝状大分子聚酰胺胺(PCL-CDM-PAMAM)和聚乙二醇-聚己内酯(PEG-b-PCL)以及聚己内酯(PCL)共组装而成,同时将铂类抗肿瘤药物键合于树枝状大分子PAMAM上。 PEG-b-PCL在纳米载体表面形成PEG层以避免其在血液中快速清除,PCL用于调控颗粒的尺度以及稳定性。集束化纳米药物载体可以在体内药物输送中的血液环境,肿瘤微环境以及肿瘤细胞内环境中各自发挥其功能。 在生理环境下,集束化纳米载体保持约100 nm的尺度,具有良好的血液长循环效应,从而通过肿瘤组织不完整的血管溢出,增强药物在肿瘤部位的富集;当集束化纳米药物进入肿瘤组织后,在微酸性肿瘤环境下(pHe,~6.5-7.2)触发小尺寸颗粒(PAMAM)的释放,携载药物进一步穿透整个肿瘤组织,与更多的肿瘤细胞接触,进而促进肿瘤细胞对药物的摄取。当进入到肿瘤细胞内部,键合的顺铂前药在细胞内部的还原环境下转变为顺铂并杀伤肿瘤细胞。 研究结果表明这种多级的纳米药物输送策略能够有效增强抗肿瘤药物在肿

抗肿瘤药物分类

抗肿瘤药物的分类和临床应用 抗肿瘤药物的分类和临床应用 1.根据药物的化学结构和来源分:烷化剂、抗代谢药物、抗肿瘤抗生素、抗肿瘤植物药、激素和杂类。 2.根据抗肿瘤作用的生化机制分:干扰核酸生物合成的药物、直接影响DNA结构与功能的药物、干扰转录过程和阻止RNA合成的药物、干扰蛋白质合成与功能的芗、影响激素平衡的药物和其他。 3.根据药物作用的周期或时相特异性分:细胞周期非特异性药物和细胞周期(时相)特异性药物。 恶性肿瘤是危害人类健康的最危险的疾病之一,肿瘤的治疗强调综合治疗的原则,化疗是其中的一个重要手段。近年来抗肿瘤药物的研究取得了飞速发展,出现了一些新型的抗肿瘤药物,作用于肿瘤发生和转移的不同环节和新靶点。按照抗肿瘤药物的传统分类和研究进展,将抗肿瘤药物分为细胞毒药物;影响激素平衡的药物;其他抗肿瘤药物,包括生物反应调节剂和新型分子靶向药物等;抗肿瘤辅助用药。 一、细胞毒药物 1.破坏DNA结构和功能的药物 氮芥烷化剂类的代表药物,高度活泼,在中性或弱碱条件下迅速与多种有机物质的亲核基团结合,作用强但缺乏选择性。进入血中后水解或与细胞的某些成分结合,在血中停留的时间只有几分钟,作用短暂而迅速。G1期及M期细胞对氮芥的作用最敏感,大剂量时对各周期的细胞和非增殖细胞均有杀伤作用。主要用于恶性淋巴瘤及癌性胸膜、心包及腹腔积液。目前已很少用于其他肿瘤。不良反应包括消化道反应、骨髓抑制脱发、注射于血管外可引起溃疡。 环磷酰胺周期非特异性药,作用机制与氮芥相同。在体外无活性,主要通过肝p450酶水解成醛磷酰胺再形成磷酰胺氮芥发挥作用。抗瘤谱广,对白血病和实体瘤都有效。环磷酰胺口服后易被吸收,约1小时后血浆浓度达最高峰,在体内t1/2 4—6小时,约50%由肾脏排出,对泌尿道有毒性。大部分不能透过血脑屏障。环磷酰胺临床广泛应用,对恶性淋巴瘤、白血病、多发性骨髓瘤均有效,

智能抗肿瘤药物递送系统的设计及体外评估

智能抗肿瘤药物递送系统的设计及体外评估近年来,基于肿瘤微环境与正常组织微环境之间的差异来设计抗肿瘤药物递送系统,在肿瘤治疗过程中占据着越来越重要的地位。由于纳米抗肿瘤药物递送系统能改善目前所用化疗药物的安全性及提高治疗效果,因此纳米抗肿瘤药物递送系统的研究和应用引起了广泛的关注。 此外,为了进一步增强治疗效果,这些纳米抗肿瘤药物递送系统被设计为基于内部刺激的纳米药物递送系统,即pH敏感药物递送系统,还原敏感纳米药物递送系统,及基于外部刺激的纳米药物递送系统,例如光辐射纳米药物递送系统。基于此,为了改善化疗药物的安全性及提高治疗效果,本论文基于不同的材料(譬如天然聚电解质、可控合成的嵌段共聚物及氧化石墨烯)构建具有不同结构的抗肿瘤药物递送系统,而且不同的相互作用(譬如静电相互作用、疏水相互作用及π-π相互作用)被用来有效地负载抗肿瘤药物阿霉素。 此外,这些抗肿瘤药物递送系统具有如pH、还原及光响应特性,而且集靶向性、低细胞毒性、可降解性及分子成像特性与一身。本论文主要包括以下几个部分。 首先,我们通过层层自组装方法将FITC功能化壳聚糖及透明质酸钠(分别作为聚阳离子及聚阴离子)包覆在磺化聚苯乙烯微球模板上,最后一层控制为乳糖酸功能化壳聚糖,再刻蚀去除磺化聚苯乙烯模板从而制备了该具有pH敏感荧光肝靶向功能的聚电解质空心微球(CSFITC/HA)4/GC。其粒径约为260 nm,且动态光散射分析表明其具有pH及离子强度双重响应特性。 经实验表明,该聚电解质空心微球具有pH敏感荧光、肝靶向功能及低细胞毒性。在此基础上,为了简化实验步骤,缩短实验周期,通过聚电解质共沉淀法将乳

常用抗肿瘤药物配置方法一览表(2)

常用抗肿瘤药物配置方法一览表(2) 序名称储藏溶解溶解后稀释使用方法及注意事项 23长春地辛遮光,0.9% NaCI6h内使用5%GS 或0.9%NaCI只可静脉注射(缓慢)及静滴(6~12小时),不能肌注、皮下及鞘内注射。 (西艾克,2~10C500~1000ml静注时如果外漏,立即停止用药,用大量生理盐水冲洗,1%普鲁卡因局部VDS) 封闭,温湿敷或冷敷。 24长春瑞宾遮光,5% GS 或0.9% 5%GS 或0.9%NaCI24 h内室温下储存。 (诺维本,2~8C NaCI125ml,浓度为可静注(6~10分钟内)或静滴(15~20分钟内);给药后用至少75~125ml NVB) 浓度为0.5~2.0 mg/ml0.9%NS、GNS、GS、林格氏液等冲洗:禁止鞘内注射。 1.5~3.0mg /ml静注时如果外漏,立即停止给药并在另一静脉重新开始将剩下的药品注射 完毕。 不可使用碱性药物稀释本品,以免产生沉淀。 25羟基喜树碱遮光0.9 %NaCl可静注(缓慢)、肝动脉给药、动脉滴注、膀胱灌注。 (HCPT)本品不宜用GS等酸性药液溶解。 26伊立替康遮光40mg/2ml12h室温5%GS 或0.9%NaCI静滴(30~90分钟内完成)。 (开普拓)24h冷藏250ml 27拓扑替康遮光1mg/ml注射用5%GS 或0.9%NaCI24h内室温下储存,静滴(不少于30分钟)。 (和美新)水 28足叶乙甙遮光注射用水、0.9%静滴(不少于30分钟):不宜胸腔、腹腔注射或鞘内注射,不能肌注,静 (依托泊苷,NaCI,浓度为滴时注意不能外漏。 VP-16) 10~20mg/L (在与阿糖胞苷、环磷酰胺、卡氮芥有协冋作用。 5%GS中不稳定) 29替尼泊苷50mg/5ml0.9 % NaCI静滴(1.5~2小时),不能静注。 (鬼臼噻吩浓度为0.5~1mg/ml5%GS稀释后容易产生沉淀,有沉淀不能使用。 苷,卫萌,与肝素配伍禁忌。

环境敏感型纳米抗肿瘤药物传递系统的研究

环境敏感型纳米抗肿瘤药物传递系统的研究 专业:药物化学姓名:学号:201622267 摘要:目的;综述环境敏感型纳米抗肿瘤药物传输系统的研究进展。方法;参考近年来国内外相关文献,对环境敏感型纳米抗肿瘤药物传输系统分类以及研究进展进行综述。结果;基于聚合物的纳米给药系统具有可多功能化的特点,增加了化疗药物的给药方式,其分子质量大小可调,延长了药物在肿瘤部位的停留时间等。结论;环境敏感型药物传输系统在未来的抗肿瘤领域具有巨大潜在的应用价值。 关键词:纳米粒子;环境敏感;抗肿瘤药物;药物传递系统 针对临床肿瘤治疗的迫切需要,以生物材料为基础的药物可控释放系统应运而生,可望克服临床小分子药物的毒副作用大、抗肿瘤效率低以及多疗程使用导致多药耐药性(multiple drug resistance,MDR)等不足。随着近几十年来纳米技术的飞速发展,纳米技术已被广泛地应用于抗肿瘤药物载体的研究[1]。纳米药物控释系统具有被动靶向的特点,能有效改善化疗药物给药途径,提高抗肿瘤效率。前期研究表明,纳米药物传递系统一般在5~250 nm,适中的尺寸有效帮助克服体内多种生物学屏障,能明显提高药物的吸收和利用度。此外,纳米粒子高度分散,大大延长了药物在体内循环时间,提高抗肿瘤药物在肿瘤细胞/ 组织的高富集,增加了治疗效果,降低药物的毒副作用[2]。迄今为止,在众多的纳米给药系统中,基于聚合物的纳米给药系统表现出了可观的应用前景。聚合物具有可多功能化的特点,增加了化疗药物的给药方式,其分子质量大小可调,延长了药物在肿瘤部位的停留时间。药物可以通过物理包埋或化学键合两种方式结合或键合到聚合物纳米粒子中。载有药物的聚合物纳米粒子到达肿瘤部位后,药物能通过扩散、聚合物自身的降解或从聚合物上的断裂来达到缓释的效果。尽管聚合物纳米粒子为肿瘤的药物治疗开辟了新的方法和途径,人们依然在临床试验中发现,给药系统中负载的药物面临着缺乏理想的可控性,缺乏足够的肿瘤部位药物累积等问题。前期研究表明,大多数聚合物纳米粒子给药系统被注射进入体内后,大部分药物在到达肿瘤部位之前就已经在体内循环的过程中释放,只有少部分药物

项目名称:新型抗肿瘤递送系统的治疗效应与作用机制

项目名称:新型抗肿瘤递送系统的治疗效应与作用机制 推荐单位:北京大学 项目简介: 恶性肿瘤死亡率高、治愈率低,严重危害人类健康与生命。由于肿瘤的复杂性,如何提高药物对肿瘤细胞的选择性(靶向性),发展多靶标、多功能的肿瘤治疗体系,一直是科学家们面临的重大科学问题。本课题(属于北京大学“分子药剂学与释药系统北京市重点实验室”)集中研究新型抗肿瘤递送系统的治疗效应与作用机制,主要研究内容包括以下四个方面:新型受体介导的抗肿瘤分子靶向递送系统研究;新型抗肿瘤双分子靶向递送系统研究;新型抗肿瘤光声诊疗递送系统研究;新型抗肿瘤干细胞递送系统研究。 重要科学发现如下:1)以新生血管和肿瘤细胞高表达的生物标志物整合素等为分子靶标,证实新一代受体提导的抗肿瘤分子递送系统的有效性和作用机理;首次提出并验证了提高抗癌药细胞内摄取以增强化疗效果的新策略,提出并证明被动靶向结合主动靶向的优势;2)在成功发展新型受体介导分子靶向递送系统的基础上,创制了全新的双靶头分子修饰的抗肿瘤双分子靶向递送系统,以一种递送系统实现对两个重要靶标(如血脑屏障和脑癌细胞)的双重递送功能,获得了更好疗效,阐明了双分子靶向递送系统的分子机制;3)在双分子靶向递送的基础上,创制了全新的肿瘤诊断治疗一体化的双功能体系,设计并验证了全新的金纳米壳包覆高分子微泡,获得了良好的超声成像和光热治疗效应;设计并验证用单一聚吡咯纳米粒同时实现光声成像和光热治疗的双重功能;4)在双分子靶向递送的基础上,创制了全新的抗肿瘤干细胞靶向联合治疗体系,包括抗癌细胞和肿瘤干细胞两种递送系统,分别载带抗癌药和肿瘤干细胞治疗剂,实现杀灭癌细胞和肿瘤干细胞的双重功能,改善了疗效,阐明了抗肿瘤干细胞递送系统的作用机制。 本研究创新的思路和理念等,对药剂学科特别是分子药剂学的发展发挥了重要推动作用,具有重要科学价值;研究发展了抗癌药递送与治疗的新策略和新方法,对靶向递送系统的研究和转化产生了积极的引领作用,具有重要临床价值。研究成果在本领域权威学术杂志Advanced Materials(IF=18.17)、Angew Chem Int Ed(12.06)、Biomaterials(9.31)、JCR(8.10)等发表主要论文20篇,SCI他引1111次;8篇代表性论文SCI他引583次;被影响因子排名第一的CA Cancer J Clin(115.8)以及Science(35.2)、Nature Materials (35.7,亮点报导)、Chem Soc Rev(36.0)等顶级杂志引用和高度评价;4篇论文引用超过100次;3篇论文成为SCI高被引用论文并被ESI列为前沿研究领域;课题成员作为第一完成人在本领域研究中获得5项省部级一等奖,包括4项自然科学奖一等奖和1项科学技术奖一等奖;基于本研究成果的一种新型抗肿瘤递送系统(静脉注射用自乳化抗肿瘤递送系统)获得重要进展,目前已完成全部临床前研究,获得CFDA的临床批件,并完成I期临床试验;培养了973首席科学家2人次,973课题负责人4人次,国家杰出青年1人次。总之,本研究为肿瘤治疗开辟了新的研究领域和方向,为抗肿瘤递送系统的发展做出了重要贡献。 主要完成人情况表(公示姓名、排名、技术职称、工作单位、完成单位、对本项目技术创造性贡献、曾获国家科技奖励情况。) 姓名:张强; 排名:1; 技术职称:教授; 工作单位:北京大学; 完成单位:北京大学; 对本项目技术创造性贡献:本人对《重要科学发现》中所列第一项科学发现(新型受体介导的分子靶向递送系统研究)和第四项科学发现(新型抗肿瘤干细胞靶向递送系统研究)做出了创造性贡献;对《重要科学发现》中所列第二项科学发现(新型抗肿瘤双分子靶向递送系

常见抗肿瘤药物及医院

癌症种类 1:头颈部癌症:头颈癌,甲状腺肿瘤,鼻咽癌,脑膜瘤,听神经瘤,垂体腺瘤,口腔癌,颅咽管,瘤丘脑和脑干肿瘤,血管源性肿瘤,颅内其他肿瘤,颅内转移瘤;2:呼吸系统癌症:肺癌; 3:消化系统癌症:肝癌,胃癌,食管癌,大肠癌,胰腺癌; 4:泌尿系统癌症:肾肿瘤,膀胱肿瘤,阴茎癌,睾丸肿瘤,前列腺癌; 5:骨骼系统癌症:骨肿瘤 6:血液系统癌症:白血病恶性淋巴瘤,多发性骨髓瘤 7:妇科癌症:乳癌,子宫体癌,卵巢癌,宫颈癌,外阴与阴道癌 8:其他类型癌症:恶性黑色素瘤,皮肤及附件肿瘤,神经胶质瘤 常见肿瘤类型 男性:肺癌、胃癌、肝癌、结肠直肠癌、食道癌和前列腺癌。 女性:乳癌、肺癌、胃癌、结肠直肠癌和子宫颈癌 肿瘤医院 胃癌 1、北京肿瘤医院 2、复旦大学附属肿瘤医院 3、医科院肿瘤医院 4、北京301医院 5、上海中山医院 6、上海长海医院 7、天津市肿瘤医院 8、北京协和医院 结肠癌 1、北京肿瘤医院 2、北京301医院 3、复旦大学附属肿瘤医院 4、上海长海医院 5、医科院肿瘤医院 6、北京协和医院 7、上海瑞金医院 8、辽宁省肿瘤医院淋巴瘤 1、北京肿瘤医院 2、中山大学附属肿瘤医院 3、天津市肿瘤医院 4、医科院肿瘤医院 5、郑州大学一附院 6、复旦大学附属肿瘤医院 7、北京协和医院 8、北京301医院 直肠癌 1、北京肿瘤医院 2、医科院肿瘤医院 3、上海长海医院 4、北京协和医院 5、辽宁省肿瘤医院 6、北京军区总医院 7、中国医科大学附属盛京医院 8、北京301医院 黑色素瘤 1、北京肿瘤医院 2、复旦大学附属肿瘤医院 3、西京医院 4、医科院肿瘤医院 5、上海华山医院 6、武汉协和医院 7、江苏省肿瘤医院 8、解放军304医院乳腺癌 1、天津市肿瘤医院 2、北京肿瘤医院 3、复旦大学附属肿瘤医院 4、医科院肿瘤医院 5、北京协和医院 6、中山大学附属肿瘤医院 7、北京301医院 8、北京307医院

【CN109718381A】一种亚细胞靶向的纳米药物递送系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910177112.7 (22)申请日 2019.03.08 (71)申请人 山东大学 地址 250100 山东省济南市历城区山大南 路27号 (72)发明人 姜玮 王磊 丁胜勇 徐晓文  (74)专利代理机构 济南圣达知识产权代理有限 公司 37221 代理人 张晓鹏 (51)Int.Cl. A61K 47/54(2017.01) A61K 47/69(2017.01) A61K 9/51(2006.01) A61K 31/337(2006.01) A61K 38/12(2006.01) A61P 35/00(2006.01) (54)发明名称 一种亚细胞靶向的纳米药物递送系统 (57)摘要 本公开属于纳米药物递送系统技术领域,具 体涉及一种亚细胞靶向的纳米药物递送系统。 针对现有技术中抗肿瘤药物协同递送系统难以实 现亚细胞靶向的问题,本公开提供了一种细胞内 组件可拆卸的MSN协同递送纳米载体,用于亚细 胞靶向的药物递送,该载体为核-壳-钩结构,采 用MSN作为核材料用于携载PTX ;聚合的多酚 (EGCg)作为壳材料用于封装MSN(MSN@EGCg)中的 药物中并为钩提供修饰位点;适体AS1411连接的 双链DNA(dsDNA -Apt)作为钩用于结合核仁素和 携载Dox。该纳米载体能够分别递送Dox和PTX至 细胞核和细胞质,提高药物递送的细胞内靶向能 力,应用于抗肿瘤药物的开发, 具有可观前景。权利要求书1页 说明书8页序列表1页 附图6页CN 109718381 A 2019.05.07 C N 109718381 A

抗肿瘤药物

抗肿瘤药物 一.烷化剂 环磷酰胺Cyclophosphamide(环磷氮芥、CTX) 【作用用途】细胞周期非特异性药物。体内转化为磷酰胺氮芥而发挥作用,抗瘤谱广,毒性低。主用于急或慢性淋巴细胞白血病、恶性淋巴瘤、多发性骨髓瘤及乳腺癌、卵巢癌、肺癌、鼻咽癌、神经母细胞瘤等。可与长春新碱、甲氨蝶呤合用,以提高疗效。 【用法用量】静注:每次0.2g,每日或隔日1次或每次0.6~0.8g,每周1次。一疗程总量8~10g。小儿每次2~6mg/kg,每日或隔日1次,2~3g为一疗程。肌注:每次0.2g,每日或隔日1次,总量8~10g。动脉注射:每次0.2~0.4g,每日或隔日1次,总量8~10g。口服:每次50~100mg,每日2~3次,一疗程总量10~15g;小儿每日2~8mg/kg,每日2次。 【制剂规格】片剂:50mg。注射剂:0.1g、0.2g。 【注】可见胃肠道反应、骨髓抑制、脱发、肝脏损害、膀胱炎等。孕妇禁用,肝肾损害者慎用,哺乳期妇女不宜用。用药累积达4g,疗效不明显者应停药。用药期间应定期检查血象及骨髓象,白细胞过度下降者应停药。 异环磷酰胺Ifosfamide(匹服平) 【作用用途】环磷酰胺异构体。溶解度高,代谢物活性增强。抗癌作用具有时间依赖性,分次给药可增加抗癌效果和降低毒副反应。主要用于骨及软组织肉瘤、非小细胞肺癌、乳腺癌、头颈部癌、子宫颈癌、食管癌等。 【用法用量】静滴:常用量为2.5~5g/m2 ,每日1次,连续5天,每3~4周重复1次。最大剂量为18g/m2 静脉滴注,连续4天。 【制剂规格】粉针剂:0.5g、1g、2g。 【注】宜与尿路保护剂美司纳合用及适当水化。心、肾、神经功能不全者慎用或忌用。不宜与中枢神经抑制药(镇静药、镇痛药、抗组胺药、麻醉药)并用。 消卡芥Nitrocaphane(消瘤芥、AT-1258) 【作用用途】氮芥类抗肿瘤药。主要破坏细胞DNA,对增殖细胞和非增殖细胞均有抑制作用,属细胞非周期性药物。本品治疗指数高,毒性较小。主用于肺癌、鼻咽癌、淋巴肉瘤等,对食管癌、肝癌、脑瘤也有效。局部用于乳腺癌或宫颈癌有较好疗效。与更生霉素合用于绒毛膜上皮癌疗效也较好。 【用法用量】口服:每次20mg,每日2次,5~7日为一疗程。小儿每日1mg/kg,分3次服,5~7日为一疗程。静注或静滴:每次20~40mg,每日或隔日1次,200~400mg为一疗程。治疗肝癌时剂量减半。小儿每次0.4~0.8mg/kg,5~10次为一疗程。肿瘤内注射:每次20~40mg,用生理盐水溶解,于肿瘤四周分点注入。 【制剂规格】片剂:5mg、10mg。注射剂:20mg、40mg。 【注】可见有胃肠道反应、白细胞及血小板减少等。恶液质及肝、肾功能不全者禁用。 苯丁酸氮芥Chlorambucil(瘤可宁) 【作用用途】氮芥类抗肿瘤药。口服吸收好,但奏效慢,服药2周后才逐步呈显治疗反应。对淋巴细胞有较高选择性。主用于治疗慢性淋巴细胞白血病、淋巴肉瘤、巨滤性淋巴瘤等。对多发性骨髓瘤、神经母细胞瘤和睾丸肿瘤也有一定疗效。

一种酸敏感纳米药物递送系统

胰腺癌是一种恶性程度高,诊断和治疗都很困难的消化道恶性肿瘤,约90%为起源于腺管上皮的导管腺癌。其发病率和死亡率近年来明显上升,5年生存率<1%,是预后较差的恶性肿瘤之一,被称为“癌中之王”。主要原因在于胰腺癌微环境具有结缔组织过度增生、纤维化和血供贫乏的病理特征,这些障碍严重阻碍了临床一线化疗药物的输送和渗透。 肿瘤微环境主要由间质细胞和细胞外基质(ECM)组成,其中活化的胰腺癌星状细胞(PSC)大量分泌胶原、纤连蛋白以及基质金属蛋白酶等细胞外基质,是胰腺癌微环境基质屏障的主要来源和关键因素,同时也为抗肿瘤治疗提供了一个潜在的靶点。如何逆转胰腺星状细胞的活化状态,从而调控胰腺癌微环境基质平衡,对胰腺癌治疗至关重要。 这里生物学术专栏将为读者回顾一篇2018年8月23日发表在Nature Communications上的文章“Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem”(2018, 9 (1): 3390)。这是国家纳米科学中心聂广军研究员、赵宇亮研究员、李一叶副研究员与博士生韩雪祥等合作的创新研究成果,是利用智能纳米药物递送系统调控胰腺癌微环境并提升疗效的代表性工作。 文章构建了一个基于酸敏感PEG化阳离子聚合物(聚乙二醇-C=N-聚乙烯亚胺)包覆的金纳米颗粒,作为肿瘤微环境响应的纳米递送系统,并利用该系统协同递送全反式维甲酸(ATRA, PSCs沉默诱导剂)和靶向热休克蛋白47 (HSP47,胶原特异性分子伴侣)的siRNA,从而实现对PSCs的调控。纳米递送系统可同时诱导PSCs沉默,抑制ECM增生,从而促进化疗药物吉西他滨向胰腺肿瘤的传递,显著提高化疗药物的抗肿瘤效果。该策略通过靶向活化的PSCs来恢复均

常用抗肿瘤药物中英文名称和缩写

常用抗肿瘤药物中英文名称和缩写缩写英文名称中文名称 ACD ACNU ADM AG Ara-C ASP AT-1258 BCNU BLM BUS CBP CCNU CCY CF CLB COL COLM CTX DBM DDP DRN DTIC DXM EPI FTL FT-207 5-Fu GEMZ HCPT HCFU HMM HH HN2 Actinomycin D Nimustine Adriamycin Aminoglutethimide Cytosine arabinoside L-asparaginase Nitrocaphane Carmaustine Bleomycin Busulfan(myleran) Carboplatin Lomustine Cyclocytidine Calcium folinate Citrovorum factor Chlorambucil Colchicine Colchicine amide Cyclophosphamide Dibromomannitol Cisplatin Daunorubicin Dacarbazine Dexamethasone Epirubicin Fortulon Ftorafur,Tegafur 5-Fluorouracil Gemcitabine Hydroxycamptothecin Carmofur Hexamethylmelamine Homoharringtonine Nitrogen mustard 更生霉素 尼莫司汀 阿霉素,比柔比星 安鲁米特,氨苯哌酮 阿糖胞苷 左旋门冬酰胺酶 消卡芥,消瘤芥 卡莫司汀,卡氮芥 博莱霉素 白消安,马利兰 卡铂 洛莫司汀,环己亚硝脲 环胞苷 亚叶酸钙 甲酰四氢叶酸钙 苯丁酸氮芥 秋水仙碱 秋水仙酰胺 环磷酰胺 二溴甘露醇 顺铂 柔红霉素 氮烯咪胺,达卡巴嗪 地塞米松 表阿霉素,表柔比星 氟铁龙 喃氟啶,替加氟 5-氟尿嘧啶 双氟胞苷,键择 羟基喜树碱 卡莫氟,嘧福禄 六甲嘧胺,六甲氰胺 高三尖杉酯碱 氮芥

肿瘤微环境响应型药物基因纳米递送系统构建及其抗肿瘤药效学研究

肿瘤微环境响应型药物/基因纳米递送系统构建及其抗肿瘤药效 学研究 纳米递送系统(Nano-delivery systems,NDS)相比于传统的化疗药物具有独特的优势,近年来取得重要进展。为实现肿瘤的高效靶向递送,NDS需要跨越多重生理障碍,但每个过程对NDS的物理化学性质有不同的要求。 利用肿瘤组织的微环境特征,设计物理化学性质灵活可变的NDS用于肿瘤药物/基因靶向递送,可达到增效减毒的目的。本研究构建了三种肿瘤微环境响应性NDS,采用化疗或化疗/基因治疗联用的策略,旨在探讨该类微环境敏感NDS在肿瘤治疗中的优势。 第一章:简要介绍了近年来肿瘤靶向NDS的发展及肿瘤微环境响应型NDS在肿瘤靶向治疗中的应用,阐述了siRNA/药物联合治疗肿瘤的优势,以此为背景确立了本文的立题依据和设计思路。第二章:以壳聚糖(Chitosan)CS为主体,先后修饰可响应肿瘤细胞内pH(Intracellular pH,pHi)的尿刊酸(Urocanic acid,UA)与响应肿瘤细胞外pH(Extracellular pH,pHe)的2,3-二甲基马来酸酐(DMMA),合成聚合物DA-CS-UA,通过自组装形成逐步pH响应型纳米粒DA-NPs。 pH响应性考察发现DA-NPs在pHe刺激下发生电荷翻转,同时可响应pHi使粒径显著增大。DA-NPs对化疗药物阿霉素(Doxorubicin,DOX)具有较高的包封率和载药量,制得的DOX/DA具有适宜的粒径,释药行为呈现明显的pH响应性。 细胞摄取实验发现DOX/DA在pHe条件下相比于生理条件具有更高的细胞摄取。进入细胞后,NPs的UA段响应pHi刺激,使DOX从NPs释放扩散入核发挥作用。 体内试验表明DA-NPs对肿瘤具有较好的靶向性,能显著抑制实体瘤的增长,

物理调控型抗肿瘤药物精准递送系统研究

物理调控型抗肿瘤药物精准递送系统研究基于肿瘤靶细胞或靶器官的特异性药物递送系统是实现肿瘤精准治疗的物质基础。抗肿瘤药物精准递送系统,如同精确制导的“智能炸弹”,最大程度杀死肿瘤靶标的同时可最大限度避免损害非靶器官,以其高效、低毒的巨大优势成为新型抗癌药物研究的热点。 纳米技术的发展为肿瘤精准递药提供了新的研究机遇,而基于纳米材料的某些物理或化学特性所发展起来的肿瘤新兴治疗模式(如光热治疗、光动力学治疗、磁热治疗及声动力学治疗等)亦为肿瘤的综合治疗提供了新的策略。本课题分别合成了新型的近红外光响应型多壁碳纳米管-二氧化钛纳米复合材料 (TiO2@MWCNTs)、交变磁场响应型的介孔四氧化三铁纳米粒 (mFe3O4)、超声响应型的隐形纳米粒(RBC-HPBs),并以上述物理响应型纳米材料为基础设计并构建了3种肿瘤精准递药系统,用于抗肿瘤药物的靶向递送、智能控释及多机制治疗。 主要内容如下:1.近红外光触发的原位杂化水凝胶系统用于肿瘤的协同治疗研究作为最常用的化疗药物之一,阿霉素(DOX)在临床应用中出现全身给药后特异性差、具有严重的剂量依赖性毒性等缺点,从而降低了其治疗指数。本研究制备了一种可注射的近红外光引发的原位光敏杂化水凝胶,作为局部递药系统来实现DOX在肿瘤部位的长效控释及肿瘤的多机制治疗。 首先,合成了新型的多壁碳纳米管-二氧化钛纳米复合材料 (TiO2@MWCNTs),将TiO2的光催化响应特性由紫外区扩展到近红外区。将其作为光引发剂和光热-光敏剂,然后负载DOX,以聚乙二醇二丙烯酸酯(PEGDA)为聚合物基质,通过自由基引发的光交联反应制备近红外光

抗菌药物、抗肿瘤药物分类整理

抗菌药物、抗肿瘤药物 分类整理

抗真菌药物 根据化学结构分类。1、抗生素类抗真菌药:两性霉素B、制霉素、灰黄霉素;2、唑类:分为咪唑类(酮康唑、咪康唑、益康唑、克霉唑和联苯苄唑)和三唑类(伊曲康唑、氟康唑、伏立康唑);3、丙烯胺类:特比奈芬;4、嘧啶类:氟胞嘧啶。 1、两性霉素B:广谱抗真菌药,与真菌细胞膜的麦角固醇结合,在膜上形成孔道,从而增加膜的通透性。细菌不含固醇类物质,对细菌、立克次体、病毒无效,人体细胞含固醇类,因此对人毒性大而严重。主要用于治疗全身深部真菌感染(首选药)。滴注前需给患者服用解热镇痛药和抗组胺药,滴注液中加生理量的地塞米松可减轻反应。不能与氨基糖苷类药物合用,以防肾毒性。 2、氟胞嘧啶:在体内转化为5-FU,抑制真菌DNA合成而不抑制哺乳动物细胞合成核酸,故不良反应少。主要与两性霉素B合用治疗深部真菌感染,可产生协同作用。 3、咪唑类和三唑类抗真菌药:广谱抗真菌药,可抑制真菌细胞膜中麦角固醇合成,抑制真菌生长。 4、特比萘芬; 抑制细胞膜麦角固醇的合成。 5、卡泊芬净:能有效抑制β(1,3)-D-葡聚糖的合成,从而干扰真菌细胞壁的合成。 6、咪康唑及克霉唑:局部应用。 抗病毒药物 根据药物的作用机制,抗病毒药物可分为以下几类。 (1)穿入和脱壳抑制剂:金刚烷胺、金刚乙胺、恩夫韦地、马拉韦罗。 (2)DNA多聚酶抑制剂:阿昔洛韦、更昔洛韦、伐昔洛韦、泛

昔洛韦、膦甲酸钠。 (3)反转录酶抑制剂:①核苷类:拉米夫定、齐多夫定、恩曲他滨、替诺福韦、阿德福韦酯;②非核苷类:依法韦伦、奈韦拉平、地拉韦定。 (4)蛋白酶抑制剂:沙奎那韦、利托那韦、英地那韦、奈非地韦和安普那韦等。 (5)神经氨酸酶抑制剂:奥司他韦、扎那米韦。 (6)广谱抗病毒药:利巴韦林、干扰素。 (7)阻碍病毒生物合成:碘苷抑制胸腺嘧啶核苷合成酶,阿糖胞苷干扰DNA聚合酶 1、阿昔洛韦:对单纯疱疹病毒(HSV)作用强。更昔洛韦:对巨细胞病毒(CMV)的抑制作用强于阿昔洛韦(100倍)。 2、反转录酶抑制剂及蛋白酶抑制剂抗HIV药。 3、金刚烷胺:特异性地抑制甲型流感病毒,用于预防和治疗甲型流感,对乙型流感无效。 4、鸡尾酒疗法——艾滋病治疗联合用药疗法,3联:齐多夫定+拉米夫定+阿巴卡韦。 5、拉米夫定既可抑制HIV、又可抑制乙肝病毒(HBV)。 抗结核药 1、异烟肼(H):抑制分枝菌酸(结核分枝杆菌壁特有成分)的合成,从而使细胞丧失耐酸性、疏水性和增殖力而死亡。不良反应有神经毒性,异烟肼的化学结构与维生素B6相似,维生素B6在体内参与神经递质的合成,异烟肼能竞争性抑制维生素B6的生物作用,并促进维生素B6的排泄,从而产生神经毒性,表现为周围神经炎。肝毒性。为肝药酶抑制剂。

相关主题
文本预览
相关文档 最新文档