当前位置:文档之家› 项目名称:新型抗肿瘤递送系统的治疗效应与作用机制

项目名称:新型抗肿瘤递送系统的治疗效应与作用机制

项目名称:新型抗肿瘤递送系统的治疗效应与作用机制
项目名称:新型抗肿瘤递送系统的治疗效应与作用机制

项目名称:新型抗肿瘤递送系统的治疗效应与作用机制

推荐单位:北京大学

项目简介:

恶性肿瘤死亡率高、治愈率低,严重危害人类健康与生命。由于肿瘤的复杂性,如何提高药物对肿瘤细胞的选择性(靶向性),发展多靶标、多功能的肿瘤治疗体系,一直是科学家们面临的重大科学问题。本课题(属于北京大学“分子药剂学与释药系统北京市重点实验室”)集中研究新型抗肿瘤递送系统的治疗效应与作用机制,主要研究内容包括以下四个方面:新型受体介导的抗肿瘤分子靶向递送系统研究;新型抗肿瘤双分子靶向递送系统研究;新型抗肿瘤光声诊疗递送系统研究;新型抗肿瘤干细胞递送系统研究。

重要科学发现如下:1)以新生血管和肿瘤细胞高表达的生物标志物整合素等为分子靶标,证实新一代受体提导的抗肿瘤分子递送系统的有效性和作用机理;首次提出并验证了提高抗癌药细胞内摄取以增强化疗效果的新策略,提出并证明被动靶向结合主动靶向的优势;2)在成功发展新型受体介导分子靶向递送系统的基础上,创制了全新的双靶头分子修饰的抗肿瘤双分子靶向递送系统,以一种递送系统实现对两个重要靶标(如血脑屏障和脑癌细胞)的双重递送功能,获得了更好疗效,阐明了双分子靶向递送系统的分子机制;3)在双分子靶向递送的基础上,创制了全新的肿瘤诊断治疗一体化的双功能体系,设计并验证了全新的金纳米壳包覆高分子微泡,获得了良好的超声成像和光热治疗效应;设计并验证用单一聚吡咯纳米粒同时实现光声成像和光热治疗的双重功能;4)在双分子靶向递送的基础上,创制了全新的抗肿瘤干细胞靶向联合治疗体系,包括抗癌细胞和肿瘤干细胞两种递送系统,分别载带抗癌药和肿瘤干细胞治疗剂,实现杀灭癌细胞和肿瘤干细胞的双重功能,改善了疗效,阐明了抗肿瘤干细胞递送系统的作用机制。

本研究创新的思路和理念等,对药剂学科特别是分子药剂学的发展发挥了重要推动作用,具有重要科学价值;研究发展了抗癌药递送与治疗的新策略和新方法,对靶向递送系统的研究和转化产生了积极的引领作用,具有重要临床价值。研究成果在本领域权威学术杂志Advanced Materials(IF=18.17)、Angew Chem Int Ed(12.06)、Biomaterials(9.31)、JCR(8.10)等发表主要论文20篇,SCI他引1111次;8篇代表性论文SCI他引583次;被影响因子排名第一的CA Cancer J Clin(115.8)以及Science(35.2)、Nature Materials (35.7,亮点报导)、Chem Soc Rev(36.0)等顶级杂志引用和高度评价;4篇论文引用超过100次;3篇论文成为SCI高被引用论文并被ESI列为前沿研究领域;课题成员作为第一完成人在本领域研究中获得5项省部级一等奖,包括4项自然科学奖一等奖和1项科学技术奖一等奖;基于本研究成果的一种新型抗肿瘤递送系统(静脉注射用自乳化抗肿瘤递送系统)获得重要进展,目前已完成全部临床前研究,获得CFDA的临床批件,并完成I期临床试验;培养了973首席科学家2人次,973课题负责人4人次,国家杰出青年1人次。总之,本研究为肿瘤治疗开辟了新的研究领域和方向,为抗肿瘤递送系统的发展做出了重要贡献。

主要完成人情况表(公示姓名、排名、技术职称、工作单位、完成单位、对本项目技术创造性贡献、曾获国家科技奖励情况。)

姓名:张强;

排名:1;

技术职称:教授;

工作单位:北京大学;

完成单位:北京大学;

对本项目技术创造性贡献:本人对《重要科学发现》中所列第一项科学发现(新型受体介导的分子靶向递送系统研究)和第四项科学发现(新型抗肿瘤干细胞靶向递送系统研究)做出了创造性贡献;对《重要科学发现》中所列第二项科学发现(新型抗肿瘤双分子靶向递送系

统研究)做出了部分贡献;本人是代表性论文1、7、8的责任作者,也是代表性论文2、5、6的共同作者;新型抗肿瘤分子靶向载体递送系统研究是本人的主要研究方向之一,占本人工作总量的70%左右。

曾获国家科技奖励情况:无。

姓名:吕万良;

排名:2;

技术职称:教授;

工作单位:北京大学;

完成单位:北京大学;

对本项目技术创造性贡献:本人对《重要科学发现》中所列第二项科学发现(新型抗肿瘤双分子靶向递送系统研究)和第四项科学发现(新型抗肿瘤干细胞靶向递送系统研究)做出了创造性贡献;对《重要科学发现》中所列第一项科学发现(新型受体介导的分子靶向递送系统研究)做出了部分贡献;本人是代表性论文2、5、6的责任作者,也是代表性论文1的共同作者;新型抗肿瘤分子靶向载体递送系统研究是本人的主要研究方向之一,占本人工作总量的80%左右。

曾获国家科技奖励情况:无。

姓名:戴志飞;

排名:3;

技术职称:教授;

工作单位:北京大学;

完成单位:北京大学;

对本项目技术创造性贡献:本人对《重要科学发现》中所列第三项科学发现(新型抗肿瘤光声诊疗递送系统研究)做出了创造性贡献;本人是代表性论文3、4的责任作者。新型抗肿瘤递送系统研究、特别是新型抗肿瘤光声诊疗递送系统研究是本人的主要研究方向之一,占本人工作总量的80%左右。

曾获国家科技奖励情况:无。

姓名:张烜;

排名:4;

技术职称:教授;

工作单位:北京大学;

完成单位:北京大学;

对本项目技术创造性贡献:本人对《重要科学发现》中所列第一、二、四项科学发现(新型受体介导的分子靶向递送系统研究、新型抗肿瘤双分子靶向递送系统研究、新型抗肿瘤干细胞靶向递送系统研究)做出了部分贡献;本人是代表性论文1、5、6、7、8的共同作者;新型抗肿瘤分子靶向载体递送系统研究是本人的主要研究方向之一,占本人工作总量的75%左右。

曾获国家科技奖励情况:无。

姓名:王坚成;

排名:5;

技术职称:教授;

工作单位:北京大学;

完成单位:北京大学;

对本项目技术创造性贡献:本人对《重要科学发现》中所列第一、二、四项科学发现(新型受体介导的分子靶向递送系统研究、新型抗肿瘤双分子靶向递送系统研究、新型抗肿瘤干细胞靶向递送系统研究)做出了部分贡献;本人是代表性论文5、6、7、8的共同作者;新型抗肿瘤分子靶向载体递送系统研究是本人的主要研究方向之一,占本人工作总量的75%左右。

曾获国家科技奖励情况:无。

代表性论文专著目录

抗肿瘤药物的作用机制

抗肿瘤药物的作用机制 1.细胞生物学机制 几乎所有的肿瘤细胞都具有一个共同的特点,即与细胞增殖有关的基因被开启或激活,而与细胞分化有关的基因被关闭或抑制,从而使肿瘤细胞表现为不受机体约束的无限增殖状态。从细胞生物学角度,诱导肿瘤细胞分化,抑制肿瘤细胞增殖或者导致肿瘤细胞死亡的药物均可发挥抗肿瘤作用。 2.生化作用机制 (1)影响核酸生物合成:①阻止叶酸辅酶形成;②阻止嘌呤类核苷酸形成;③阻止嘧啶类核苷酸形成;④阻止核苷酸聚合;(2)破坏DNA结构和功能;(3)抑制转录过程阻止RNA 合成;(4)影响蛋白质合成与功能:影响纺锤丝形成;干扰核蛋白体功能;干扰氨基酸供应;(5)影响体内激素平衡。 烷化剂烷化剂可以进一步分为: 氮芥类:均有活跃的双氯乙基集团,比较重要的有氮芥、苯丁酸氮芥、环磷酰胺(CTX)、异环磷酰胺(IFO)等。其中环磷酰胺为潜伏化药物需要活化才能起作用。目前临床广泛用于治疗淋巴瘤、白血病、多发性骨髓瘤,对乳腺癌、肺癌等也有一定的疗效。 该药除具有骨髓抑制、脱发、消化道反应,还可以引起充血性膀胱炎,病人出现血尿,临床在使用此药时应鼓励病人多饮水,达到水化利尿,减少充血性膀胱炎的发生。还可以配合应用尿路保护剂美斯纳。 亚硝脲类:最早的结构是N-甲基亚硝脲(MNU)。以后,合成了加入氯乙集团的系列化合物,其中临床有效的有ACNU、BCNU、CCNU、甲基CCNU等,链氮霉素均曾进入临床,但目前已不用。其中ACNU、BCNU、CCNU、能通过血脑屏障,临床用于脑瘤及颅内转移瘤的治疗。主要不良反应是消化道反应及迟发性的骨髓抑制,应注意对血象`的观测,及时发现给予处理。 乙烯亚胺类:在研究氮芥作用的过程中,发现氮芥是以乙烯亚胺形式发挥烷化作用的,因此,合成了2,4,6-三乙烯亚胺三嗪化合物(TEM),并证明在临床具有抗肿瘤效应,但目前在临床应用的只有塞替派。此药用于治疗卵巢癌、乳腺癌、膀胱癌,不良反应主要为骨髓抑制,注意对血象定期监测。 甲烷磺酸酯类:为根据交叉键联系之复合成的系列化合物,目前临床常用的只有白消安(马利兰)。临床上主要用于慢性粒细胞白血病,主要不良反应是消化道反应及骨髓抑制,个别病人可引起纤维化为严重的不良反应。遇到这种情况应立即停药,更换其它药物。 其他:具有烷化作用的有达卡巴嗪(DTIC)、甲基苄肼(PCZ)六甲嘧胺(HHN)等。环氧化合物,由于严重不良反应目前已被淘汰。 抗代谢药物抗代谢类药物作用于核酸合成过程中不同的环节,按其作用可分为以下几类药物: 胸苷酸合成酶抑制剂:氟尿嘧啶(5-FU)、呋喃氟尿嘧啶(FT-207)、二喃氟啶(双呋啶FD-1)、优氟泰(UFT)、氟铁龙(5-DFUR)。 抗肿瘤作用主要由于其代谢活化物氟尿嘧啶脱氧核苷酸干扰了脱氧尿嘧啶苷酸向脱氧胸腺嘧啶核苷酸转变,因而影响了DNA的合成,经过四十年的临床应用,成为临床上常用的抗肿瘤药物,成为治疗肺癌、乳腺癌、消化道癌症的基本药物。 不良反应比较迟缓,用药6-7天出现消化道粘膜损伤,例如:口腔溃疡、食欲不振、恶心、呕吐、腹泻等,一周以后引起骨髓抑制。而连续96小时以上粘腺炎则成为其主要毒性反应。临床上如长时间连续点滴此类药物应做好病人的口腔护理,教会病人自己学会口腔清洁的方法,预防严重的粘膜炎发生。

项目名称新型抗肿瘤分子靶向递送系统研究-北京大学科学研究部

1.项目名称:新型抗肿瘤分子靶向递送系统研究 2.推荐单位:教育部 3.项目简介: 科学问题 化疗在肿瘤治疗中应具有重要作用,但实际疗效相当不理想。重要原因之一是化疗药在体内分布上对肿瘤组织缺乏选择性(包括小分子靶向药物);当前各种被动和主动靶向策略的细胞内靶向效率仍不理想。因此,如何提高活性成分(治疗或诊断药物)对肿瘤细胞的选择性,真正实现胞内高效药物递送,获得肿瘤细胞内较高的药物浓度,长期以来都是科学家们面临的重大科学问题。 主要研究内容 1)以肿瘤生物标志物作为药物载体递送的靶,开展新一代受体介导的抗肿瘤分子靶向载体系统研究; 2)同时以2种肿瘤生物标志物作为药物载体递送的靶,开展新型抗肿瘤双分子靶向递送系统研究; 3)用于分子靶向递送的新型药物载体系统的创制; 4)用于分子靶向递送的新配体分子的发现与应用。 成果及意义 1)提出了一系列抗肿瘤分子靶向递送的新策略和新思路。特别是通过新一代受体介导靶向递送明显提高了细胞内递送效率,证明把肿瘤生物标志物作为药物载体递送的靶是可行的,证实被动与主动靶向相结合的优势,阐明肿瘤细胞和新生血管双重靶向、双分子靶向递送、新载体系统结合受体介导等的可行性和重要性,为肿瘤诊治提供了新途径和新方案; 2)阐明了一系列相关科学问题和科学规律,发表了一系列代表性学术论文,获得了第三方的高度评价与关注; 3)研究产生了积极的引导作用,对学科交叉和相关学科的发展产生了重要的推动作用。相关研究思路和方法已被国际学术界广泛接受认同,有的成为当前靶向递送研究的主流方向之一; 4)研究具有重要的临床应用价值。1种双分子靶向成像系统已进入开发阶段,一种新的配体分子GE11也成功实现技术转让并进入临床前研究。

常用抗肿瘤药物大全

.抗肿瘤药物大全 15.1.烷化剂 苯丙氨酸氮芥L~Phenylalanine Mustard (D) 【别名】美法仑,爱克兰。Melphalan,Alkeran。【医保】乙 【应用】能进入肿瘤细胞,抑制肿瘤细胞和一切增生迅速的组织如骨髓、淋巴组织的细胞核分裂,适用于多发性骨髓瘤、乳腺癌、卵巢癌、慢性淋巴细胞和粒细胞白血病、恶性淋巴瘤、恶性黑色素瘤、软组织肉瘤、骨肉瘤等。 【用法用量】口服:每日8~10mg/m2,每日1次,连用4~6日,每隔6周重复1次。 【副作用】消化道反应和骨髓抑制。 【规格】片剂:2mgx25片/瓶,¥¥¥。 环磷酰胺Cyclophosphamide (D) 【别名】环磷氮芥。ENDOxAN,CTx。【医保】甲 【应用】在体内被活化,释放出氮芥基,从而抑制肿瘤生长。亦通过杀伤多种免疫细胞而抑制抗体形成,排斥反应,移植物抗宿主反应和迟发性超敏反应。用于恶性淋巴瘤、急、慢性淋巴细胞白血病、多发性骨髓瘤、乳腺癌、晚期肺癌、晚期鼻咽癌、神经母细胞瘤、骨肉瘤及睾丸肿瘤。 【用法用量】口服:50~100mg/次,2~3次/日,1疗程总量10~15g。静注:联盒用药1次500mg/m2,每周1次,连用2次,3~4周为1疗程。 【副作用】骨髓抑制、脱发、胃肠道反应、口腔炎、膀胱炎等。 【注意事项】(1)盒用巴比妥或皮质激素、别嘌醇等肝药酶诱导剂时需注意。(2)肾功能异常慎用。(3)本品代谢物对尿路有刺激,应用时应多喝茶水。 【规格】粉针剂:0.2g/瓶,¥。 异环磷酰胺Ifosfamide (D) 【别名】匹服平。Isofamide,Iphosphamide。【医保】乙 【应用】环磷酰胺同分异构体,对造血系统毒性较环磷酰胺低。用于骨及软组织肉瘤、非小细胞肺癌、乳腺癌、头颈部癌、子宫癌、食管癌。 【用法用量】静滴:常用剂量每次1.2~2.0g/m2,每日1次,连续5日,每3~4周重复1次。 【副作用】同环磷酰胺。 【注意事项】(1)对本品过敏、严重骨髓抑制、肾功能不良、双侧输尿管阻塞者禁用。(2)注意骨髓、肝、肾功能改变情况。(3)本品应与泌尿系统保护剂美司那(见19.解毒药)盒用。 【规格】粉针剂:1.0g/瓶,¥¥¥¥。 甲环亚硝脲MeCCNU 【别名】司莫司丁。Semustine。【医保】甲 【应用】在体内其氯乙基部分使DNA链断裂,RNA及蛋白质受到烷化发挥抗肿瘤作用。用于恶性黑色素瘤、恶性淋巴瘤、脑瘤、肺癌。 【用法用量】口服:单用100~200mg/m2,每6~8周给药1次,亦可36mg/m2 ,1次/周,6周为1疗程。盒用其他药物可75~150mg/m2 ,1次/6周或30mg/m2,1次/周,连给6周。 【副作用】迟发性骨髓抑制,血小板、白细胞减少,亦有恶心、呕吐、食欲下降等胃肠道反应和口腔炎、脱发、肝损等。 【规格】胶囊剂:50mgx5粒/瓶,¥¥¥。 尼莫司汀NIMUSTINE 【别名】丁禾青。【医保】乙 【应用】脑肿瘤、消化道癌(胃癌、肝癌、结肠癌、直肠癌),肺癌、恶性淋巴瘤、慢性白血病等。 【用法用量】通常,本剂按每5mg溶于注射用水1ml的比例溶解下述剂量,供静脉或动脉给药。1.以盐酸尼莫司汀计,按体重给药,1次给2~3mg/kg,其后据血象停药4~6周,再次给药,如此反复,直到临床满意的效果。2. 以盐酸尼莫司汀计,将1次量2mg/kg,隔1周给药,2~3次后据血象停药4~6周,再次给药,如此反复,直到临床满意的效果。 【副作用】 1.重大不良反应:(1)骨髓抑制:出现白细胞减少、血小板减少、贫血,有时出现出血倾向、骨髓抑制、全血细胞减少等,因此每次给药后至少6周应每周进行周围血象检查,若发现异常应作适当处理。(2)间质性肺炎及肺纤维症:偶出现间质性肺炎及肺纤维症。2.其他不良反应:(1)过敏症:有时出现皮疹,若出现此类过敏症状,应停药。(2)肝脏:有时出现AST、ALT等上升。(3)肾脏:有时出现BUN上升、蛋白尿。(4)消化道:出现食欲不振、恶心、欲吐、呕吐,有时出现口内炎、腹泻等。(5)其他:有时出现全身乏力感、发热、头痛、眩晕、痉挛、脱发、低蛋白血症。禁忌:(1)骨髓功能患者禁用;(2)对本品有严重过敏症既往史患者。 【注意事项】 1.下列患者慎用:(1)肝功能损害患者。(2)合并感染患者。(3)水痘患者。2.会引起迟缓性骨髓功能抑制等严重不良反应,因此每次给药后至少6周应每周进行临床检验(血液检查\肝功能及肾功能检查等),充分观察患者状态。若发现异常应作减量或停药等适当处理。另外,长期用药会加重不良反应呈迁延性推移,因此应慎重给药。3.应充分注意感染症及出血倾向的出现及恶化。4.小儿用药应慎重,尤应注意不良反应的出现。5.小儿及育龄患者用药时,应考虑对性腺的影响。给药途径:不得用于皮下或肌肉注射。7.本品与其他药物配伍有时会发生变化,故应避免与其他药物混盒使用。8.本品溶解后应迅速使用,因遇光易分解,水溶液不稳定。9.静脉内给药时,若药液漏于管外,会引起注射部位硬结及坏死,故应慎重给药以免药液漏于管外。 【规格】粉针剂:25mg/瓶,¥¥¥¥¥。 15.2.抗代谢药 甲氨蝶呤Methotrexate (x)

pH响应二氧化硅纳米药物递送系统的构建及抗肿瘤活性研究

目录 摘要................................................................................................................................................I ABSTRACT................................................................................................................................III 符号说明....................................................................................................................................VII 第一章绪论 (1) 1.1引言 (1) 1.2恶性肿瘤的特点与治疗 (1) 1.2.1恶性肿瘤的特点 (2) 1.2.2恶性肿瘤的治疗 (3) 1.3溶酶体 (3) 1.3.1溶酶体膜通透性与完整性 (4) 1.3.2溶酶体与细胞凋亡 (4) 1.3.3溶酶体与肿瘤关系 (5) 1.4纳米载药递送系统概述 (5) 1.4.1纳米技术与医学应用 (6) 1.4.2纳米药物递送系统 (7) 1.4.3纳米技术在肿瘤药物递送系统中的应用 (8) 1.5二氧化硅纳米粒子研究进展 (10) 1.5.1介孔二氧化硅纳米材料 (10) 1.5.2介孔二氧化硅纳米材料在生物医学上的应用 (12) 1.5.3空心介孔二氧化硅纳米材料 (13) 1.5.4基于空心介孔二氧化硅载药系统在肿瘤治疗的应用 (14) 1.6论文的选题依据和主要研究内容 (17) 1.6.1选题依据 (17) 1.6.2主要研究内容 (18) 第二章基于介孔二氧化硅纳米载药系统的构建及可控释放研究 (19) 2.1引言 (19) 2.2实验部分 (19)

纳米介孔硅及聚合物胶束智能药物递送系统制备与抗肿瘤效应研究

纳米介孔硅及聚合物胶束智能药物递送系统制备与抗肿瘤效应 研究 恶性肿瘤是威胁人类健康和生命的重大疾病之一。传统临床手术、放疗及化疗治疗手段仍存在诸多缺陷,如易复发、无靶向特异性、多药耐药性及严重毒副作用等,因而较难彻底根治肿瘤,尤其对晚期肿瘤疗效甚微。 纳米颗粒药物载体由于其独特的增强渗透性和滞留性(EPR)效应,在提高抗肿瘤药物生物利用率、增强疗效以及减少毒副作用方面发挥着重要作用,有广阔的临床应用前景。目前,已开发出基于脂质体、无机纳米颗粒和聚合物胶束的多种抗肿瘤纳米医药制剂。 智能药物递送系统就是其中的佼佼者,该体系可以选择性的将治疗药物靶向递送到肿瘤病灶,原位响应生物信号刺激释放化疗药物/光敏剂/siRNA。兼顾生物相容性的前提下,智能药物递送系统能够对肿瘤高效地杀伤且毒副作用小,在临床上有巨大的应用前景。 智能药物递送系统一般是以纳米颗粒为药物载体,通过多功能修饰手段整合诸如刺激响应性释放机制以及靶向分子等策略来构建。介孔硅纳米颗粒以及聚合物胶束作为其中的典型代表,受到了研究人员的广泛关注。 介孔硅纳米颗粒具有合成简单、高比表面积、粒径可调和易修饰等特点,作为纳米储存器被广泛开发及应用到药物递送和生物成像等医学领域。聚合物胶束由于其良好的生物相容性、低免疫原性、高药物装载量以及可降解等优点,在靶向递送药物/基因治疗肿瘤等方面有巨大的应用前景。 但仍存在一些亟待解决的问题:1.如何构建有高载药量和良好生物相容性的生物信号响应性介孔硅靶向药物递送系统,使其特异性的靶向肿瘤病灶,在肿瘤

微环境特有生物信号的刺激下,原位递送化疗药物特异性地杀伤肿瘤,在提高药物利用率的同时减少对正常组织的副作用;2.如何设计构建有良好生物相容性和刺激响应性的可降解聚合物胶束靶向药物递送系统,实现对肿瘤的特异性靶向及提高肿瘤细胞对载体的摄取效率,使其被摄取后能够有效地从溶酶体逃逸到胞浆,并且响应性的触发载体降解和化疗药物/功能性治疗分子的释放机制,对肿瘤组织高效杀伤。基于以上问题,本文设计合成了三种纳米介孔硅及三种可降解聚合物胶束,通过多功能化修饰手段整合生物信号刺激响应性释放/降解机制以及引入肿瘤靶向基元,共构建了六种硅纳米颗粒/聚合物胶束药物递送系统,较系统地研究了各体系体内外刺激响应性药物释放特性、细胞靶向、生物成像、免疫响应、肿瘤抑制及相关分子机制,为研发靶向药物递送系统提供科学依据。 本文的主要研究内容和结论如下:一、基于纳米介孔硅颗粒响应性药物递送系统的构建及抗肿瘤研究1.还原响应性介孔硅/肝素药物递送系统构建及抗肝 肿瘤评价本章构建了以MSN为纳米储存器,二硫键为分子开关、肝素作为纳米塞、乳糖酸作为靶向基元的还原响应性靶向药物递送系统(MSNs-S-S-HP-LA)。透射电镜、热重、Zeta电位、红外光谱和比表面及孔隙度表征证实已成功构建 MSNs-S-S-HP-LA靶向药物递送系统。 药物控释实验证实该体系有还原敏感的控释特性。细胞毒性实验表明该体系有良好的生物相容性。 激光共聚焦、流式细胞仪、细胞透射及凝胶电泳DNA片段测定实验表明该靶向药物递送系统可以被肝肿瘤细胞HepG2特异性识别并摄取。在肿瘤细胞内高浓度GSH的刺激下,释放装载的抗肿瘤药物阿霉素DOX,有效地杀伤肿瘤细胞。 体内实验证实该体系可以有效抑制肿瘤生长并减少化疗药物的毒副作用。

白细胞介素12及其抗肿瘤作用综述

人重组白细胞介素12肿瘤免疫新药 一、丰原药业受让中科大人重组白细胞介素12新药事项 2015年7月25日,丰原药业(000153)与中国科学技术大学就抗癌新药人重组白细胞介素-12药物技术转让及后继合作事宜正式签订《关于白介素-12新药技术成果转让的备忘录》。备忘录主要内容如下: 1、双方同意中国科学技术大学向公司转让人重组白细胞介素-12药物的科技成果,转让价格约5000万元(最终价格以资产评估结果为准),具体转让过程、价格及付款方式,将于评估结果出来后1个月内另行签订转让合同。 2、双方同意以合作的方式完成后续包括临床实验研究和获得新药证书和生产证书的相关研究,具体内容和方式将另行签订技术服务合同。 3、双方同意在合适的时候,在中国科学技术大学先进技术研究院成立联合实验室,共同推进相关新药研究和开发工作。 二、中科大研究白细胞介素12肿瘤免疫领军核心人物 (一)魏海明:教授,博士生导师。籍贯:安徽。山东大学医学院免疫学专业博士毕业。现为中国科学技术大学生命科学学院教授、博士生导师; 中国科学技术大学生命学院实验动物中心主任,中国免疫学会英文会刊Cellular & Molecular Immunology编辑部主任。中国免疫学会终身会

员、理事,中国免疫学会基础免疫学专业委员会副主任,中国抗癌协会肿瘤生物治疗专业委员会委员,安徽省免疫学会副理事长。2002年以来为首承担参加了9项科研项目,其中国家863课题2项,国家973课题2项,国家自然科学基金项目重点项目1项、面上项目2项,国家新药创制重大专项1项,国家杰出青年科学基金B类1项(国内负责人)。近5年在J Immunol,Plos Pathogens, J Allergy Clin Immunol,Hepatology,PNAS,J Hepatol等杂志发表SCI论文35篇。《介导肝脏免疫损伤与再生的天然免疫识别及其调控机制》分别于2007年获中华医学科技一等奖,2008年获国家自然科学二等奖。 主要研究兴趣:1. NK细胞亚群与重要疾病发生发展的关系:研究组织居留NK细胞(ThNK)与肝炎、哮喘、自身免疫病等疾病的发生发展;研究ThNK与肿瘤免疫逃逸及肿瘤免疫治疗的关系。 2. 基于天然免疫的肿瘤生物治疗技术:研究以“预存免疫”为基础的抗肿瘤“免疫化疗”方案及抗肿瘤药物白细胞介素12的研制。 (二)田志刚:中国科技大学生命科学学院教授,博士生导师。中国科学院“百人计划”获得者、国家杰出青年科学基金获得者、国家基金委创新研究群体学术带头人。

抗肿瘤多级纳米药物递送系统的研究

抗肿瘤多级纳米药物递送系统的研究 基于聚合物的纳米药物递送系统用于增强化疗药物抗肿瘤治疗具有重要的研究与应用价值。然而,纳米药物进入体内后会面临血液、肿瘤等形成的多重生理障碍。 因此,如何通过改变纳米药物载体纳米特性,克服体内多重生物屏障,实现靶部位有效药物输送仍旧面临多种挑战。本论文主要集中于设计整合多种纳米特性药物递送系统,针对性克服纳米药物体内输送多重障碍,增强药物抗肿瘤作用。 本论文的研究内容主要分为两个部分:1、发展了一种基于肿瘤组织微酸性环境刺激响应性集束化纳米药物载体以协同克服多重药物递送障碍。该纳米载体通过肿瘤组织微酸环境响应化学键桥连的聚己内酯-树枝状大分子聚酰胺胺(PCL-CDM-PAMAM)和聚乙二醇-聚己内酯(PEG-b-PCL)以及聚己内酯(PCL)共组装而成,同时将铂类抗肿瘤药物键合于树枝状大分子PAMAM上。 PEG-b-PCL在纳米载体表面形成PEG层以避免其在血液中快速清除,PCL用于调控颗粒的尺度以及稳定性。集束化纳米药物载体可以在体内药物输送中的血液环境,肿瘤微环境以及肿瘤细胞内环境中各自发挥其功能。 在生理环境下,集束化纳米载体保持约100 nm的尺度,具有良好的血液长循环效应,从而通过肿瘤组织不完整的血管溢出,增强药物在肿瘤部位的富集;当集束化纳米药物进入肿瘤组织后,在微酸性肿瘤环境下(pHe,~6.5-7.2)触发小尺寸颗粒(PAMAM)的释放,携载药物进一步穿透整个肿瘤组织,与更多的肿瘤细胞接触,进而促进肿瘤细胞对药物的摄取。当进入到肿瘤细胞内部,键合的顺铂前药在细胞内部的还原环境下转变为顺铂并杀伤肿瘤细胞。 研究结果表明这种多级的纳米药物输送策略能够有效增强抗肿瘤药物在肿

抗肿瘤药物分类

抗肿瘤药物的分类和临床应用 抗肿瘤药物的分类和临床应用 1.根据药物的化学结构和来源分:烷化剂、抗代谢药物、抗肿瘤抗生素、抗肿瘤植物药、激素和杂类。 2.根据抗肿瘤作用的生化机制分:干扰核酸生物合成的药物、直接影响DNA结构与功能的药物、干扰转录过程和阻止RNA合成的药物、干扰蛋白质合成与功能的芗、影响激素平衡的药物和其他。 3.根据药物作用的周期或时相特异性分:细胞周期非特异性药物和细胞周期(时相)特异性药物。 恶性肿瘤是危害人类健康的最危险的疾病之一,肿瘤的治疗强调综合治疗的原则,化疗是其中的一个重要手段。近年来抗肿瘤药物的研究取得了飞速发展,出现了一些新型的抗肿瘤药物,作用于肿瘤发生和转移的不同环节和新靶点。按照抗肿瘤药物的传统分类和研究进展,将抗肿瘤药物分为细胞毒药物;影响激素平衡的药物;其他抗肿瘤药物,包括生物反应调节剂和新型分子靶向药物等;抗肿瘤辅助用药。 一、细胞毒药物 1.破坏DNA结构和功能的药物 氮芥烷化剂类的代表药物,高度活泼,在中性或弱碱条件下迅速与多种有机物质的亲核基团结合,作用强但缺乏选择性。进入血中后水解或与细胞的某些成分结合,在血中停留的时间只有几分钟,作用短暂而迅速。G1期及M期细胞对氮芥的作用最敏感,大剂量时对各周期的细胞和非增殖细胞均有杀伤作用。主要用于恶性淋巴瘤及癌性胸膜、心包及腹腔积液。目前已很少用于其他肿瘤。不良反应包括消化道反应、骨髓抑制脱发、注射于血管外可引起溃疡。 环磷酰胺周期非特异性药,作用机制与氮芥相同。在体外无活性,主要通过肝p450酶水解成醛磷酰胺再形成磷酰胺氮芥发挥作用。抗瘤谱广,对白血病和实体瘤都有效。环磷酰胺口服后易被吸收,约1小时后血浆浓度达最高峰,在体内t1/2 4—6小时,约50%由肾脏排出,对泌尿道有毒性。大部分不能透过血脑屏障。环磷酰胺临床广泛应用,对恶性淋巴瘤、白血病、多发性骨髓瘤均有效,

智能抗肿瘤药物递送系统的设计及体外评估

智能抗肿瘤药物递送系统的设计及体外评估近年来,基于肿瘤微环境与正常组织微环境之间的差异来设计抗肿瘤药物递送系统,在肿瘤治疗过程中占据着越来越重要的地位。由于纳米抗肿瘤药物递送系统能改善目前所用化疗药物的安全性及提高治疗效果,因此纳米抗肿瘤药物递送系统的研究和应用引起了广泛的关注。 此外,为了进一步增强治疗效果,这些纳米抗肿瘤药物递送系统被设计为基于内部刺激的纳米药物递送系统,即pH敏感药物递送系统,还原敏感纳米药物递送系统,及基于外部刺激的纳米药物递送系统,例如光辐射纳米药物递送系统。基于此,为了改善化疗药物的安全性及提高治疗效果,本论文基于不同的材料(譬如天然聚电解质、可控合成的嵌段共聚物及氧化石墨烯)构建具有不同结构的抗肿瘤药物递送系统,而且不同的相互作用(譬如静电相互作用、疏水相互作用及π-π相互作用)被用来有效地负载抗肿瘤药物阿霉素。 此外,这些抗肿瘤药物递送系统具有如pH、还原及光响应特性,而且集靶向性、低细胞毒性、可降解性及分子成像特性与一身。本论文主要包括以下几个部分。 首先,我们通过层层自组装方法将FITC功能化壳聚糖及透明质酸钠(分别作为聚阳离子及聚阴离子)包覆在磺化聚苯乙烯微球模板上,最后一层控制为乳糖酸功能化壳聚糖,再刻蚀去除磺化聚苯乙烯模板从而制备了该具有pH敏感荧光肝靶向功能的聚电解质空心微球(CSFITC/HA)4/GC。其粒径约为260 nm,且动态光散射分析表明其具有pH及离子强度双重响应特性。 经实验表明,该聚电解质空心微球具有pH敏感荧光、肝靶向功能及低细胞毒性。在此基础上,为了简化实验步骤,缩短实验周期,通过聚电解质共沉淀法将乳

中药抗肿瘤作用研究进展

西南大学网络与继续教育学院 毕业论文 论文题目: 中药抗肿瘤作用研究进展 学生姓名 学号 类型网络教育 专业 层次 指导教师 日期

目录 摘要 (3) 一、绪论 (4) 二、胃癌 (4) (一)大蒜素 (4) (二)白英 (4) 三、肝癌 (5) (一)大蒜素 (5) (二)苦参碱 (6) 四、胰腺癌 (7) 五、其他 (7) 六、结论 (8) 附录 (8) 参考文献 (9) 致谢 (11)

中药抗肿瘤作用研究进展 摘要 肿瘤是临床上一种常见的疾病,其存在严重影响到人类的健康。从现代医学的角度看,基本上多是采用西医疗法对患者进行治疗。而随着中医药的逐渐发展,在治疗肿瘤领域,中医药的治疗优势越发凸显。经过长时间的临床研究证实,在研究抗癌药物时,从不同的植物当中萃取天然的抗肿瘤活性物质是其中一个非常重要的方式。采用我国传统的中医疗法对癌症进行治疗时,增效减毒的作用尤为明显。特别是最近几年,通过一系列研究发现,将癌细胞进行体外培养之后,以中药对其进行试验可以发现具有很强的一直肿瘤生长的作用,同时能够帮助患者提高其机体棉衣功能,并且对细胞周期和凋亡等都会产生一定的影响。为此,本文主要以胃癌、肝癌、胰腺癌以及其他肿瘤疾病等为例对中药抗肿瘤作用的研究进展进行了分析。 关键词:中药;抗肿瘤;研究进展

一、绪论 肿瘤是全球疾病致死的重要元凶之一,癌症则是属于恶性肿瘤。目前治疗肿瘤的手段主要是西医治疗,包括手术、放射治疗和化学药物治疗等等。但放化疗的不良反应大,长期应用易产生耐药性;中医中药作为我国的传统医学,具有多靶点、多环节、多效应的作用特点。大量实验研究和临床实践表明,中医中药的治疗手段是调动机体免疫功能和整体抗病能力的新的全身治疗方法,越来越多的中药天然有效成分及其提取物被发现有助于治疗肿瘤等疾病,不良反应少,不易产生抗药性,有效缓解患者的痛苦,干预性好[1]。本文以胃癌、肝癌、胰腺癌等疾病为例,综述了中药抗肿瘤作用的研究进展。 二、胃癌 在临床消化道肿瘤当中,胃癌是其中一种最为常见的肿瘤,并且在所有恶性肿瘤当中,其发病率居于首位,因此也对人类的健康形成了极大的威胁。这种肿瘤的发病原因有多种,地域环境、癌前病变、饮食习惯、基因、遗传甚至幽门螺杆菌感染等都有可能导致胃癌的产生。 (一)大蒜素 大蒜可以对胃癌细胞直接产生抑制迁移、抑制增殖的作用,同时还能对胃癌细胞进行诱导,从而使其不断凋亡。此外,大蒜还能防止致癌因子的形成,这也能够帮助人们有效减少胃癌的发生。我国一些学者充分借助MTT、Western blot 以及RT-PCR等方式对胃癌细胞的形态进行观察,并且对P38和Caspase-3蛋白和基因的表达进行观察[2]。研究表明,大蒜素能够有效抑制胃癌细胞SGC-7901的生长,这一现象的产生则很可能是因为在大蒜素的作用下,P38的表达量以及Caspase-3表达量的增加,从而对胃癌细胞产生了一定的抑制作用。 此外,还有部分学者在对胃癌细胞SGC-7901的迁移变化情况进行研究时,主要借助的是划痕伤口愈合法。要想对大蒜素对胃癌细胞SGC-7901的作用机制进行观察,可以充分借助MTT方法完成。试验证实,大蒜素可以有效抑制胃癌

环境敏感型纳米抗肿瘤药物传递系统的研究

环境敏感型纳米抗肿瘤药物传递系统的研究 专业:药物化学姓名:学号:201622267 摘要:目的;综述环境敏感型纳米抗肿瘤药物传输系统的研究进展。方法;参考近年来国内外相关文献,对环境敏感型纳米抗肿瘤药物传输系统分类以及研究进展进行综述。结果;基于聚合物的纳米给药系统具有可多功能化的特点,增加了化疗药物的给药方式,其分子质量大小可调,延长了药物在肿瘤部位的停留时间等。结论;环境敏感型药物传输系统在未来的抗肿瘤领域具有巨大潜在的应用价值。 关键词:纳米粒子;环境敏感;抗肿瘤药物;药物传递系统 针对临床肿瘤治疗的迫切需要,以生物材料为基础的药物可控释放系统应运而生,可望克服临床小分子药物的毒副作用大、抗肿瘤效率低以及多疗程使用导致多药耐药性(multiple drug resistance,MDR)等不足。随着近几十年来纳米技术的飞速发展,纳米技术已被广泛地应用于抗肿瘤药物载体的研究[1]。纳米药物控释系统具有被动靶向的特点,能有效改善化疗药物给药途径,提高抗肿瘤效率。前期研究表明,纳米药物传递系统一般在5~250 nm,适中的尺寸有效帮助克服体内多种生物学屏障,能明显提高药物的吸收和利用度。此外,纳米粒子高度分散,大大延长了药物在体内循环时间,提高抗肿瘤药物在肿瘤细胞/ 组织的高富集,增加了治疗效果,降低药物的毒副作用[2]。迄今为止,在众多的纳米给药系统中,基于聚合物的纳米给药系统表现出了可观的应用前景。聚合物具有可多功能化的特点,增加了化疗药物的给药方式,其分子质量大小可调,延长了药物在肿瘤部位的停留时间。药物可以通过物理包埋或化学键合两种方式结合或键合到聚合物纳米粒子中。载有药物的聚合物纳米粒子到达肿瘤部位后,药物能通过扩散、聚合物自身的降解或从聚合物上的断裂来达到缓释的效果。尽管聚合物纳米粒子为肿瘤的药物治疗开辟了新的方法和途径,人们依然在临床试验中发现,给药系统中负载的药物面临着缺乏理想的可控性,缺乏足够的肿瘤部位药物累积等问题。前期研究表明,大多数聚合物纳米粒子给药系统被注射进入体内后,大部分药物在到达肿瘤部位之前就已经在体内循环的过程中释放,只有少部分药物

项目名称:新型抗肿瘤递送系统的治疗效应与作用机制

项目名称:新型抗肿瘤递送系统的治疗效应与作用机制 推荐单位:北京大学 项目简介: 恶性肿瘤死亡率高、治愈率低,严重危害人类健康与生命。由于肿瘤的复杂性,如何提高药物对肿瘤细胞的选择性(靶向性),发展多靶标、多功能的肿瘤治疗体系,一直是科学家们面临的重大科学问题。本课题(属于北京大学“分子药剂学与释药系统北京市重点实验室”)集中研究新型抗肿瘤递送系统的治疗效应与作用机制,主要研究内容包括以下四个方面:新型受体介导的抗肿瘤分子靶向递送系统研究;新型抗肿瘤双分子靶向递送系统研究;新型抗肿瘤光声诊疗递送系统研究;新型抗肿瘤干细胞递送系统研究。 重要科学发现如下:1)以新生血管和肿瘤细胞高表达的生物标志物整合素等为分子靶标,证实新一代受体提导的抗肿瘤分子递送系统的有效性和作用机理;首次提出并验证了提高抗癌药细胞内摄取以增强化疗效果的新策略,提出并证明被动靶向结合主动靶向的优势;2)在成功发展新型受体介导分子靶向递送系统的基础上,创制了全新的双靶头分子修饰的抗肿瘤双分子靶向递送系统,以一种递送系统实现对两个重要靶标(如血脑屏障和脑癌细胞)的双重递送功能,获得了更好疗效,阐明了双分子靶向递送系统的分子机制;3)在双分子靶向递送的基础上,创制了全新的肿瘤诊断治疗一体化的双功能体系,设计并验证了全新的金纳米壳包覆高分子微泡,获得了良好的超声成像和光热治疗效应;设计并验证用单一聚吡咯纳米粒同时实现光声成像和光热治疗的双重功能;4)在双分子靶向递送的基础上,创制了全新的抗肿瘤干细胞靶向联合治疗体系,包括抗癌细胞和肿瘤干细胞两种递送系统,分别载带抗癌药和肿瘤干细胞治疗剂,实现杀灭癌细胞和肿瘤干细胞的双重功能,改善了疗效,阐明了抗肿瘤干细胞递送系统的作用机制。 本研究创新的思路和理念等,对药剂学科特别是分子药剂学的发展发挥了重要推动作用,具有重要科学价值;研究发展了抗癌药递送与治疗的新策略和新方法,对靶向递送系统的研究和转化产生了积极的引领作用,具有重要临床价值。研究成果在本领域权威学术杂志Advanced Materials(IF=18.17)、Angew Chem Int Ed(12.06)、Biomaterials(9.31)、JCR(8.10)等发表主要论文20篇,SCI他引1111次;8篇代表性论文SCI他引583次;被影响因子排名第一的CA Cancer J Clin(115.8)以及Science(35.2)、Nature Materials (35.7,亮点报导)、Chem Soc Rev(36.0)等顶级杂志引用和高度评价;4篇论文引用超过100次;3篇论文成为SCI高被引用论文并被ESI列为前沿研究领域;课题成员作为第一完成人在本领域研究中获得5项省部级一等奖,包括4项自然科学奖一等奖和1项科学技术奖一等奖;基于本研究成果的一种新型抗肿瘤递送系统(静脉注射用自乳化抗肿瘤递送系统)获得重要进展,目前已完成全部临床前研究,获得CFDA的临床批件,并完成I期临床试验;培养了973首席科学家2人次,973课题负责人4人次,国家杰出青年1人次。总之,本研究为肿瘤治疗开辟了新的研究领域和方向,为抗肿瘤递送系统的发展做出了重要贡献。 主要完成人情况表(公示姓名、排名、技术职称、工作单位、完成单位、对本项目技术创造性贡献、曾获国家科技奖励情况。) 姓名:张强; 排名:1; 技术职称:教授; 工作单位:北京大学; 完成单位:北京大学; 对本项目技术创造性贡献:本人对《重要科学发现》中所列第一项科学发现(新型受体介导的分子靶向递送系统研究)和第四项科学发现(新型抗肿瘤干细胞靶向递送系统研究)做出了创造性贡献;对《重要科学发现》中所列第二项科学发现(新型抗肿瘤双分子靶向递送系

常用抗肿瘤药物配置方法一览表(2)

常用抗肿瘤药物配置方法一览表(2) 序名称储藏溶解溶解后稀释使用方法及注意事项 23长春地辛遮光,0.9% NaCI6h内使用5%GS 或0.9%NaCI只可静脉注射(缓慢)及静滴(6~12小时),不能肌注、皮下及鞘内注射。 (西艾克,2~10C500~1000ml静注时如果外漏,立即停止用药,用大量生理盐水冲洗,1%普鲁卡因局部VDS) 封闭,温湿敷或冷敷。 24长春瑞宾遮光,5% GS 或0.9% 5%GS 或0.9%NaCI24 h内室温下储存。 (诺维本,2~8C NaCI125ml,浓度为可静注(6~10分钟内)或静滴(15~20分钟内);给药后用至少75~125ml NVB) 浓度为0.5~2.0 mg/ml0.9%NS、GNS、GS、林格氏液等冲洗:禁止鞘内注射。 1.5~3.0mg /ml静注时如果外漏,立即停止给药并在另一静脉重新开始将剩下的药品注射 完毕。 不可使用碱性药物稀释本品,以免产生沉淀。 25羟基喜树碱遮光0.9 %NaCl可静注(缓慢)、肝动脉给药、动脉滴注、膀胱灌注。 (HCPT)本品不宜用GS等酸性药液溶解。 26伊立替康遮光40mg/2ml12h室温5%GS 或0.9%NaCI静滴(30~90分钟内完成)。 (开普拓)24h冷藏250ml 27拓扑替康遮光1mg/ml注射用5%GS 或0.9%NaCI24h内室温下储存,静滴(不少于30分钟)。 (和美新)水 28足叶乙甙遮光注射用水、0.9%静滴(不少于30分钟):不宜胸腔、腹腔注射或鞘内注射,不能肌注,静 (依托泊苷,NaCI,浓度为滴时注意不能外漏。 VP-16) 10~20mg/L (在与阿糖胞苷、环磷酰胺、卡氮芥有协冋作用。 5%GS中不稳定) 29替尼泊苷50mg/5ml0.9 % NaCI静滴(1.5~2小时),不能静注。 (鬼臼噻吩浓度为0.5~1mg/ml5%GS稀释后容易产生沉淀,有沉淀不能使用。 苷,卫萌,与肝素配伍禁忌。

【CN109718381A】一种亚细胞靶向的纳米药物递送系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910177112.7 (22)申请日 2019.03.08 (71)申请人 山东大学 地址 250100 山东省济南市历城区山大南 路27号 (72)发明人 姜玮 王磊 丁胜勇 徐晓文  (74)专利代理机构 济南圣达知识产权代理有限 公司 37221 代理人 张晓鹏 (51)Int.Cl. A61K 47/54(2017.01) A61K 47/69(2017.01) A61K 9/51(2006.01) A61K 31/337(2006.01) A61K 38/12(2006.01) A61P 35/00(2006.01) (54)发明名称 一种亚细胞靶向的纳米药物递送系统 (57)摘要 本公开属于纳米药物递送系统技术领域,具 体涉及一种亚细胞靶向的纳米药物递送系统。 针对现有技术中抗肿瘤药物协同递送系统难以实 现亚细胞靶向的问题,本公开提供了一种细胞内 组件可拆卸的MSN协同递送纳米载体,用于亚细 胞靶向的药物递送,该载体为核-壳-钩结构,采 用MSN作为核材料用于携载PTX ;聚合的多酚 (EGCg)作为壳材料用于封装MSN(MSN@EGCg)中的 药物中并为钩提供修饰位点;适体AS1411连接的 双链DNA(dsDNA -Apt)作为钩用于结合核仁素和 携载Dox。该纳米载体能够分别递送Dox和PTX至 细胞核和细胞质,提高药物递送的细胞内靶向能 力,应用于抗肿瘤药物的开发, 具有可观前景。权利要求书1页 说明书8页序列表1页 附图6页CN 109718381 A 2019.05.07 C N 109718381 A

抗肿瘤药

第七章抗肿瘤药 1.单项选择题 1)下列药物中不具酸性的是 A.维生素C B.氨苄西林 C.磺胺甲基嘧啶 D.盐酸氮芥 E.阿斯匹林 D 2)环磷酰胺主要用于 A.解热镇痛 B.心绞痛的缓解和预防 C.淋巴肉瘤,何杰金氏病 D.治疗胃溃疡 E.抗寄生虫 C 3)环磷酰胺的商品名为 A.乐疾宁 B.癌得星 C.氮甲 D.白血宁 E.争光霉素 B 4)环磷酰胺为白色结晶粉末,2%的水溶液pH为 A.1-2 B.3-4 C.4-6 D.10-12 E.12-14 C 5)下列哪一个药物是烷化剂 A.氟尿嘧啶 B.巯嘌呤 C.甲氨蝶呤 D.噻替哌 E.喜树碱 D 6)环磷酰胺作为烷化剂的结构特征是 A.N,N-(β-氯乙基) B.氧氮磷六环 C.胺 D.环上的磷氧代 E.N,N-(β-氯乙基)胺 E

7)白消安属哪一类抗癌药 A.抗生素 B.烷化剂 C.生物碱 D.抗代谢类 E.金属络合物 B 8)环磷酰胺做成一水合物的原因是 A.易于溶解 B.不易分解 C.可成白色结晶 D.成油状物 E.提高生物利用度 C 9)烷化剂的临床作用是 A.解热镇痛 B.抗癫痫 C.降血脂 D.抗肿瘤 E.抗病毒 D 10)氟脲嘧啶的特征定性反应是 A.异羟肟酸铁盐反应 B.使溴褪色 C.紫脲酸胺反应 D.成苦味酸盐 E.硝酸银反应 B 11)氟脲嘧啶是 A.喹啉衍生物 B.吲哚衍生物 C.烟酸衍生物 D.嘧啶衍生物 E.吡啶衍生物 D 12)抗肿瘤药氟脲嘧啶属于 A.氮芥类抗肿瘤药物 B.烷化剂 C.抗代谢抗肿瘤药物 D.抗生素类抗肿瘤药物 E.金属络合类抗肿瘤药物 C 13)属于抗代谢类药物的是

抗肿瘤药分类

抗肿瘤药分类 1 烷化剂抗肿瘤药 环磷酰胺Cyclophosphamide 塞替派Thiotepa 司莫司汀Semustine 盐酸氮芥Chlormethine Hydrochloride 白消安(马利兰)Busulfan 苯丁酸氮芥Chlorambucil 氮甲Formylmerphalan 卡莫司汀Carmustine 六甲蜜胺Altretamine 洛莫司汀Lomustine 苯丙氨酸氮芥DL-Phenylalanine Mustard 硝卡芥Nitrocaphane 异环磷酰胺Ifosfamide 二溴甘露醇Mitobronitol 2 抗代谢类抗肿瘤药 阿糖胞苷Cytarabine 氟尿嘧啶Fluorouracil 甲氨蝶呤Methotrexate 羟基脲Hydroxycarbamide 替加氟Tegafur 甲异靛Meisoindigotin 巯嘌呤Mercaptopurine 3抗生素类抗肿瘤药 放线菌素D(更生霉素) Dactinomycin 丝裂霉素Mitomycin 盐酸阿霉素Doxorubicin Hydrochloride 盐酸平阳霉素Bleomycin A5 Hydrochloride 盐酸表柔比星Epirubicin Hydrochloride 盐酸吡柔比星Pirarubicin Hydrochloride 盐酸柔红霉素Daunorubicin Hydrochloride 4天然来源抗肿瘤药 高三尖杉酯碱Homoharringtonine 硫酸长春新碱(醛基长春碱) Vincristine Sulfate 羟喜树碱Hydroxycamptothecin 依托泊苷Etoposide 硫酸长春地辛Vindesine Sulfate 硫酸长春碱Vinblastine Sulfate 重酒石酸长春瑞宾Vinorelbine Bitartrate 紫杉醇Paclitaxel 长春质碱转移因子长春瑞宾碱多烯紫杉醇莪术油 人参多糖秋水仙碱9-氨基喜树碱7-乙基喜树碱榄香烯 5激素类抗肿瘤药 氨鲁米特Aminoglutethimide 他莫昔芬Tamoxifen 氟他胺Flutamide 戈那瑞林Gonadorelin 醋酸亮丙瑞林Leuprorelin Acetate 来曲唑Lelrozol 6其他 卡铂Carboplatin 盐酸丙卡巴肼(甲基巴肼) Procarbazine Hydrochloride 安吖啶Amsacrine 枸橼酸达卡巴嗪Dacarbazine Citrate 门冬酰胺酶(L-门冬酰胺酶) Asparaginase 顺铂Cisplatin 盐酸米托蒽醌Mitoxantrone Hydrochloride 烷化剂抗肿瘤药的部分药物简介 (1) 环磷酰胺是一种直接作用于肿瘤细胞的药物,对增殖细胞群的各期均有杀伤作用。进入人体后肝脏或肿瘤组织内存在的过量磷酰胺酶或磷酸酶水解,释放出氮芥基而杀伤肿瘤细胞抑制其生长的作用。异环磷酰胺在体外无抗癌活性,进入体内被肝脏或肿瘤内存在的磷酰胺酶或磷酸酶水解,变为活化作用型的磷酰胺氮芥而起作用。其作用机制为与DNA发生交叉联结,抑制DNA的合成,也可干扰RNA的功能,属细胞周期非特异性药物。本品抗瘤谱广,对多种肿瘤有抑制作用。 (2) 硝卡介Nitrocaphane化学名称为:2-[双(β-氯乙基)胺甲基]-5-硝基苯丙氨酸,为细胞周期非特异性

雄黄抗肿瘤作用机制研究进展

山东中医杂志2010 年8 月第29 卷第8 期 雄黄抗肿瘤作用机制研究进展 张春敏1,孟双荣2,齐元富3 ·579· (1.山东中医药大学2007 年级博士研究生,山东济南250355;2.山东中医药大学2007 硕士研究生,山东济南250355;3.山东中医药大学附属医院肿瘤科,山东济南250012) [摘要]综述了雄黄近年来的临床应用及其抗肿瘤机制,认为雄黄具有抗肿瘤作用;并认为应用纳米技术,可使雄黄在抗肿瘤方面有望开展大规模实验和临床研究,使雄黄在肿瘤治疗方面有广阔的应用前景,更好的应用于临床。参考文献29 篇。 [关键词]雄黄;肿瘤;综述 [中图分类号]R257.21 [文献标识码]B [文章编号]0257-358X(2010)08-0579-03 中药雄黄在祖国传统医学中有悠久的历史,其主要成分为As2S2 或As4S4 并夹杂少量As2O3 和其他重金属盐。中医认为雄黄辛温有毒,归心、肝、胃经,具有解毒杀虫、燥湿祛痰、化瘀消积等功效,用于治疗痈肿疗疮、蛇虫咬伤、虫积腹痛、惊痫和疟疾等。现代医学研究表明,雄黄具有抗肿瘤作用。目前有关雄黄抗肿瘤作用的临床应用和作用机理研究的文献越来越多。本文就雄黄在抗肿瘤治疗中的应用及研究进展作一综述。 1临床应用 大量文献报道了雄黄对恶性血液病的治疗研究,临床实践显示,雄黄治疗急性早幼粒细胞白血病(A P L)、慢性粒细胞白血病(C M L)等缓解率较高,且具有不良反应少、无骨髓抑制和交叉耐药性、不易并发DIC 等优点。张国珍等[1]用其喷涂治疗早期子宫颈癌2 例,均获痊愈。对71 例宫颈核异质患者逆转治疗,逆转为巴氏1 级者11 例,逆转为巴氏2 级者60 例,总逆转率为100%。将雄黄与轻粉、冰片、硼砂相配治疗13 例皮肤癌患者,总有效率达76.9%。近几年,临床用安宫牛黄丸治疗脑、肺、纵隔等部位的肿瘤,取得了一定疗效。陆道培[2]以高纯度的As4S4 治疗110 例14 岁以上的APL 患者,完全缓解(C R)率为100%,且As4S4 的纯度越高,药物的不良反应越小。其后他又总结了经维甲酸(AT R A)治疗CR 后以巩固维持治疗的103 例APL 患者疗效,1~6年无病生存率为96.7%~87.4%,表明单用As4S4 可以巩固维持治疗APL 患者。此外,雄黄还能有效治疗ATRA 耐药的APL 患者,并改善出血倾向[3],为A- TRA 治疗后复发的患者找到了新的治疗手段。王梦昌等[4]在原用羟基脲(HU)的基础上,使用雄黄3.0~3.75 g/d,分次服用,治疗CML7 例,结果7 例中CR6 例,部分缓解(P R)1例,并证明雄黄对初发及耐药病例均有效。他们也使用雄黄治疗多发性骨髓瘤[收稿日期]2010-02-23(MM),在联合化疗基础上加用雄黄1.0~1.25 g/d,8例MM 中91 d 内获得CR 5 例,未缓解(N R)3例,CR 率达62%,所需时间30~91 d。高学熙等[5]用雄黄治疗骨髓增生异常综合症(M DS)10例,剂量为3 g/d,C R率60%,总有效率71.4%。大量文献表明适当的应用雄黄,虽然剂量比药典中的限定量大数十倍,甚至数百倍(2005 版《中华人民共和国药典》中规定雄黄内服用量为0.05~0.1 g/d),也未见明显中毒反应,雄黄的合理内服用量,应该远在药典的限定额之上。 2抗肿瘤机制研究 2.1诱导肿瘤细胞凋亡雄黄对急性早幼粒细胞白血病有显著的治疗效果。黄晓军等[6]研究发现,砷不仅能降解急性早幼粒细胞白血病特异性融合蛋白,而且还能诱导白血病细胞株体外产生凋亡。陈文雪等[7]发现雄黄能诱导荷瘤裸小鼠的肿瘤细胞凋亡,流式细胞检测结果显示随着细胞凋亡率的上升,细胞增殖(P I)指数下降,表明细胞的DNA 合成被抑制,细胞被阻滞在G0/G1 期,而S 和G2/M 期的细胞减少,从而抑制了肿瘤的生长。雄黄可能还通过下调STAT 蛋白而干扰J AK-STAT途径,减弱甚至阻断B cr-A bl恶性信号的转导,或在mRNA 水平上增加细胞膜HSP70 蛋白的表达,或激活ca s pa s e-3信号转导途径而促进细胞凋亡[8-10]。应用基因芯片技术检测雄黄作用于NB4 细胞前后基因表达的调控,发现P SM C2、P SM D1、ABC50、P NAS-2基因和周期素G2 在雄黄诱导NB4 细胞凋亡中发挥重要作用[11-12]。在对急性单核细胞白血病细胞株U937 基因表达谱芯片研究中发现,细胞骨架和细胞信号转导的改变可能参与雄黄促进U937 细胞凋亡的过程[13]。戴锡孟等[14]研究发现,六神丸(主要成分为雄黄)诱导白血病细胞HL-60凋亡与C-myc、bcl-2和bax 都有关,其可能机制是六神丸降低C-myc活性,使细胞对凋亡的敏感性提高,同时使凋亡抑制基因bcl-2表达下降,并升高促凋亡基因ba x,使bcl-2/ba x比例下

相关主题
文本预览
相关文档 最新文档