当前位置:文档之家› 第18章第03节光电效应教案01人教版

第18章第03节光电效应教案01人教版

第18章第03节光电效应教案01人教版
第18章第03节光电效应教案01人教版

第16单元:光电效应

教学目的:1、了解光电效应产生的条件、特点和规律,及在科学技术上的应用。

2、光子的量子性、光的光子说及其建立过程。会运用爱因斯坦光电方程解释光电效应现象。

3、培养学生运用新的物理模型。分析研究微观粒子行为规律,从而对宏观实验加以解释的能力。

教学过程:一、导入新课

1、光电效应。

光的电磁说,使光的理论发展到相当完美的地步,取得了巨大成就,但是并不能解释所有的光现象,光电效应现象的出现,光的电磁说遇到了不可克服的困难。演示光电效应实验:锌板被光照后,验电器带正电, 说明从锌板表面上发射出电子

在光(包括不可见光)照射下

从物体发射出电子(光子)的现象叫做光电效应。

对光电效应的研究,得出如下结论

(1)任何一种金属,都有一个极限频率,入射光频率必须大于这个极限频率才能产生光电效应

(2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大(线性关系)

(3)入射光照到金属上时,光电子的发射几乎是瞬时的(t < 10-9秒)

(4)当入射光频率大于极限频率时,光电流的强度与入射光强度成正比。这就是光电效应的规律。

金属中的自由电子,由于受到晶格正离子的吸引,必须从外部获得足够能量才能从金属中逸出

按照波动理论,光的能量是由光的强度决定的,而光的强度又是由光波的振幅决定的,跟频率无关。因此无论光的频率如何,只要光的强度足够大或照射时间足够长, 都能使电子获得足够的能量产生光电效应。然而这跟实验结果是直接矛盾的,所以无法用经典的波动理论来解释光电效应

2、光子说

1900年德国物理学家普朗克在研究“电磁场辐射的能量分布”时发现,只有认为电磁波的发

射和吸收不是连续的,而是一份一份地进行的,每一份的能量等于hr,理

论计算的结果才能跟实验事实完全符合。

普朗克恒量h=6.63 x 10-34焦耳.秒

爱因斯坦在上述学说的启发下,于1905年提出光的光子说,在空间传播的光也不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量与频率成正比.E=hr 光子说对光电效应的解释:当光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收能量足

够大,能克服金属内部的引力做功,离开金属表面逃逸出来,成为光电子? 根据能量守恒定律:

mV/2=hr-W(光电方程)

mv/2_ 光电子最大初动能

W金属的逸出功

3、光电管

光电管是利用光电效应把光信号转化为电信号的器件构造原理:

应用:自动化装置、有声电影、无线

电传真和光纤通信技术中

巩固练习:

1、用可见光照射锌板,能否产生光电效应?

2、用一红光照射铯材料,不产生光电效应,如果用一个凸透镜将红光聚焦到此金属上,并经

历相当长时间,能否产生光电效应?为什么?

3、有两束强度相同的光,以不同的入射角,分别入射到两块相同的金属板上, 在相

同的时间内,从金属板逸出的电子数目是否相等?

4、在图中,直线PQ 表示光电子的最大初动能与入射光频率 r 的变化关

图中哪一个值可确定普朗克恒量 h 。

图中哪一个线段表示极限频率r o 的值。

图中哪一个线段相当于金属的逸出功 W (1) ⑵ (3)

18届高考物理一轮复习专题光电效应波粒二象性导学案2

光电效应波粒二象性 知识梳理 知识点一、光电效应 1.定义 照射到金属表面的光,能使金属中的电子从表面逸出的现象。 2.光电子 光电效应中发射出来的电子。 3.研究光电效应的电路图(如图1): 图1 其中A是阳极。K是阴极。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过10-9s。 (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 知识点二、爱因斯坦光电效应方程 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34J·s。(称为普朗克常量) 2.逸出功W0 使电子脱离某种金属所做功的最小值。 3.最大初动能 发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c 。 (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。 5.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。 (2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用 来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。 知识点三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性。 (2)光电效应说明光具有粒子性。 (3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 2.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。 (2)物质波 任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p ,p 为运动物体的动量,h 为普朗克常量。 考点精练 考点一 光电效应现象和光电效应方程的应用 1.对光电效应的四点提醒 (1)能否发生光电效应,不取决于光的强度而取决于光的频率。 (2)光电效应中的“光”不是特指可见光,也包括不可见光。 (3)逸出功的大小由金属本身决定,与入射光无关。 (4)光电子不是光子,而是电子。 2.两条对应关系 (1)光强大→光子数目多→发射光电子多→光电流大;

内外光电效应

光照射到某些物质上,引起物质的电性质发生变化,这类光致电变的现象统称为光电效应。光电效应一般分为外光电效应和内光电效应。内光电效应是被光激发所产生的载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象。外光电效应是被光激发产生的电子逸出物质表面,形成真空中的电子的现象。 一、外光电效应在光线的作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应。向外发射的电子叫做光电子。基于外光电效应的光电器件有光电管、光电倍增管等。 光子是具有能量的粒子,每个光子的能量:E=hvh—普朗克常数,6.626×10-34J·s;ν—光的频率(s-1)根据爱因斯坦假设,一个电子只能接受一个光子的能量,所以要使一个电子从物体表面逸出,必须使光子的能量大于该物体的表面逸出功,超过部分的能量表现为逸出电子的动能。外光电效应多发生于金属和金属氧化物,从光开始照射至金属释放电子所需时间不超过10-9s。 根据能量守恒定理 E=hv-W 该方程称为爱因斯坦光电效应方程。 二、内光电效应当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。分为光电导效应和光生伏特效应(光伏效应)。 1 光电导效应在光线作用下,电子吸收光子能量从键合状态过度到自由状态,而引起材料电导率的变化。当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大。基于这种效应的光电器件有光敏电阻。 2 光生伏特效应在光作用下能使物体产生一定方向电动势的现象。基于该效应的器件有光电池和光敏二极管、三极管。 ①垒效应(结光电效应)光照射PN结时,若hf≧Eg,使价带中的电子跃迁到导 带,而产生电子空穴对,在阻挡层内电场的作用下,电子偏向N区外侧,空穴 偏向P区外侧,使P区带正电,N区带负电,形成光生电动势。 ②侧向光电效应(丹培效应)当半导体光电器件受光照不均匀时,光照部分产生 电子空穴对,载流子浓度比未受光照部分的大,出现了载流子浓度梯度,引起 载流子扩散,如果电子比空穴扩散得快,导致光照部分带正电,未照部分带负 电,从而产生电动势,即为侧向光电效应。 ③光电磁效应半导体受强光照射并在光照垂直方向外加磁场时,垂直于光和磁场 的半导体两端面之间产生电势的现象称为光电磁效应,可视之为光扩散电流的 霍尔效应。④贝克勒耳效应是指液体中的光生伏特效应。当光照射浸在电解液 中的两个同样电极中的一个电极时,在两个电极间产生电势的现象称为贝克勒 耳效应。感光电池的工作原理基于此效应。 三、应用 1制造光电倍增管 光电倍增管能将一次次闪光转换成一个个放大了的电脉冲,然后送到电子线路去,记录下来。算式在以爱因斯坦方式量化分析光电效应时使用以下算式: 光子能量 = 移出一个电子所需的能量+ 被发射的电子的动能代数形式: hf=φ +Em φ=hf0 Em=(1/2)mv^2 其中 h是普朗克常数,h = 6.63 ×10^-34 J·s, f是

最新光电效应练习题(含答案)

光电效应规律和光电效应方程 一、选择题 1.下列关于光电效应实验结论的说法正确的是() A.对于某种金属,无论光强多强,只要光的频率小于极限频率就不能产生光电效应 B.对于某种金属,无论光的频率多低,只要光照时间足够长就能产生光电效应 C.对于某种金属,超过极限频率的入射光强度越大,所产生的光电子的最大初动能就越大 D.对于某种金属,发生光电效应所产生的光电子,最大初动能与入射光的频率成正比 【解析】选A. 发生光电效应的条件是入射光的频率大于金属的极限频率,与入射光的强度、光照时间无关,所以光的频率小于极限频率就不能产生光电效应,故A正确,B错误.根据光电效应方程E k=hν-W0,可知入射光的频率大于极限频率时,频率越高,光电子的最大初动能越大,与入射光强度无关,故C错误.根据光电效应方程E k=hν-W0,可知光电子的最大初动能与入射光的频率是一次函数关系,故D错误. 2.在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是() A.增大入射光的强度,光电流增大 B.减小入射光的强度,光电效应现象消失 C.改用频率小于ν的光照射,一定不发生光电效应 D.改用频率大于ν的光照射,光电子的最大初动能变大 【解析】选AD.增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C错误;根据hν-W0= 2 1 mv2可知,增加照射光频率,光电子的最大初动能也增大,故选项D正确. 3.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开了一个角度,如图所示,这时() A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电 精品文档

光电效应的图像问题

光电效应图像专题 限频率.从图中可以确定的是( bed ) A. E km 与入射光强度成正比 B. 图中直线的斜率与昔朗克常量有关 C. 光电子的逸出功与入射光频率 v 无关 D. 当v v v o 时,无论入射光强度多大都不会逸出光电子 E. 当v v v o 时,只要入射光强度足够强也会逸出光电子 3某金属在光的照射下发生光电效应,光电子的最大初动能 E k 与入射光频率v 的关系如 图所示,试求: ① 普朗克常量h (用图中字母表示); ② 入射光的频率为3V C 时,产生的光电子的最大处动能 氐. ② 普朗克常量为 ②入射光的频率为3V C 时,产生的光电子的最大处动能 2E. 4某金属逸出的光电子的最大初动能和入射光的频率 v 变化的 关系图象如图所示,直线与横轴的交点坐标为 4.29 X 1014H Z , 与纵轴交点坐标为0.5eV ?则下列说法正确的是( ) 盘4电 / (1) Z A Ml, (T 2某种金属逸出光电子的虽大初动能 E 与入射光频率 v 的关系如图所示,其中比为极 该金属的逸出功 该金属的极限频率 单位时间内逸出的光电子数 普朗克恒量 1在做光电效应实验中,某金属被光照射发生了光电效应,实验测出了光电子的最大初 动能日与入射光的频率v 的关系如图所示,由实验图象可求出( ) B. C. D.

A. 该金属的逸出功为0.5eV B. 该金属的极限频率为4.29 X 1014H Z C. 当入射光频率为5.5 X 1014H Z时,光的强度越大 D. 直线的斜率表示普朗克常量h E. 该图说明了光电子的最大初动能与入射光的频率成正比 5用不同频率光照射某一金属发生光电效应时,光电子逸出最大初动能随入射光频率变化的图象如图所示,则图中横、纵轴截距及斜率的物理意义为() A. 斜率为普朗克常数的倒数 B. 纵轴截距为逸出功的倒数 C. 横轴截距为极限频率 D. 横轴截距为极限波长 6美国物理学家密里根在研究光电效应现象时,通过实验的方法测出金属遏止电压Uc,进而得到光电子的最大初动能E k,再结合入射光的频率v,可以算出普朗克常量h,并与普朗克根据黑体辐射得出的h相比较,以检验爱因斯坦光电效应方程的正确性. 图是按照密里根的方法,进行实验得到的某种金属的光电子最大初动能H与入射光的频率v 的图线.由图可知,这种金属的截止频率为 _____________________________ H z,普朗克常量为Js . 在某次光电实验中,所用金属逸出光电子的最大初动能与入射光频率的关系如图所 B. 入射光的频率v> V0时,就会逸出光电子 C. 光电子的最大初动能与入射光的强度成正比 D. 入射光的频率恒定时,光电流的大小与入射的强度成正比 欢迎下载3

高中物理《光电效应》优质课教案、教学设计

【教学设计】光电效应_物理 1、引入:幻灯片展示光电效应的三个诺贝尔物理学奖项。(得主照片与简介) 光电效应最先由赫兹发现,他的学生勒纳德对光电效应的研究卓有成效并获1905 年诺贝尔物理学奖,爱因斯坦提出光子说从理论上成功解决光电效应面临的难题并因此获1921年诺贝尔物理学奖,美国物理学家密立根通过精确实验验证了爱因斯坦理论,并获1923年诺贝尔物理学奖。光电效应的科学之光经众多物理学奖前赴后继,三十年努力求索,在物理学史上成为绚丽夺目的篇章……(通过展示光电效应的三个物理学奖项引起学生对光电效应一探究竟的学习动机)(2’) 2、视频演示实验: X 光照射锌板演示光电效应现象。观察现象,通过阶梯形、逻辑性提问引发思考。提问如下: 1 :这个是什么仪器?(指着验电器问) 2 :这个仪器有什么用? 3 :现在验电器金属箔张开说明了什么? 4:那么验电器为什么带电呢? 与之前弧光灯不照射金属箔不张开对比,引导学生分析出正是因为弧光灯的照射,锌板发射出电子自身带上了正电。(此处可设问这种现象与静电感应有何区别?) 引导学生用自己的话描述光电效应现象,从而引出光电效应概念:物体在光的照射下发射电 子的现象叫光电效应,发射出来的电子叫光电子。(学生将了解并可以识别光电效应)光电 效应是一个奇特的现象,有很多科学家对这个现象进行了研究,包括上面三位诺贝尔物理 学奖得主,那么,如果是你,你会怎么去探究光电效应的规律呢?(5’) 提问:我们从初中开始以及高中三年学过的实验探究的方法有哪些?(控制变量法,对比试验,转化法等) 引导学生分析,要探究光电效应,首先需要让光电效应再生,也就是需要光电效应的发生装置(比如上述弧光灯照射锌板就是一个发生装置,但要定量探究还须改进)——>光电效应 现象看不到摸不着,必须转化为可测量的量去研究它(转化法)——>光电效应既然有电子发射出来,那么可以从电子的角度去研究,与电子有关的量有什么呢,比如电流,如果要研究电流, 就必须要有一个电路。好了,这是我们的推断,那么接下来我们去看看由于对光电效应卓有成效

《光电效应》教案

光电效应 教案示例 一、教学目标: (一)知识目标: 1、了解光电效应的产生条件、规律及光子学说. 2、了解光的量子性,会用光子说解释光电效应现象. (二)能力目标: 1、培养学生观察能力、分析能力,对实验事实加以解释的能力. (三)情感目标: 1、引导学生探索知识之间的联系,渗透了“当理论与新的实验事实不相符时,要根据事实建立新的理论”——即实践是检验真理的唯一标准的科学思想. 二、教学用具:光电效应演示器,应急灯,紫外线灯,X射线管,感应圈,灵敏检流计. 三、教学重点和难点:从实验现象总结出光电效应的规律,经典理论在解释光电效应遇到的困难. 四、课堂总体设计: 发挥教师的主导作用,以演示实验为基础,逐步引导学生通过对演示现象的观察,得出光电效应的规律.通过对经典波动理论无法解释光电效应的分析,培养学生运用已知知识分析新的事验事实的能力,让学生进一步体会到实践是检验真理的唯一标准. 五、教学过程: (一)课题引入 前几节课我们了解了人们在研究光的本性过程提出的几种有代表性的学说.(由于前面几节内容已经涉及了光的微粒说和波动说的发展过程,可以简单回顾)自从麦克斯韦提出光的电磁说,赫兹又用实验证实了麦克斯韦的理论后,光的波动理论发展到了完善的地步.可是,光电效应的发现又给光的波动理论带来了前所未有的困难.今天我们就来通过实验研究光电效应的规律,并且通过分析光电效应的规律弄清为什么波动理论无法解释光电效应现象. (二)新课进行. 1、介绍实验装置——演示实验——观察分析实验现象

这一阶段介绍什么是光电效应.从演示入手,引导学生观察并分析实验现象,为下面的研究光电效应规律作准备. 介绍一下光电效应实验装置.(分别介绍锌板、铜网、高压电源、检流装置,一边介绍,一边在黑板上画出整个装置的示意图) 介绍装置后画出装置示意图——将具体的较复杂的实验装置变为简明的板画,突出了原理,有助于后面对实验事实的进一步分析. 问题1:把高压电源接通,检流装置接上,为什么检流计不发生偏转? (电路还处于断开状态.锌板和铜网之间.中间是空气,不能导电.) 问题2:现在让我们用紫外线照射锌板,(介绍紫外线灯,用紫外照射锌板,检流计指针偏转).观察用紫外线照射锌板时,看到了什么现象?为什么会出现这种现象? (看到检流计指针发生了偏转,说明电路中出现了电流.) 问题3:分析电流可能是哪种原因产生的? (可能是紫外线使空气电离,也可能是紫外线使锌板飞出了电子.) 教师用铜板代替锌板,则指针不会发生偏转,这样,排除排除了空气被电离的可能性. 通过实验现象总结:锌板在紫外线的照射下,飞出了电子,这种物体在光照下有电子飞出的现象叫光电效应;在光照下从物体中飞出的电子叫光电子,电路中的电流叫光电流. (板书:光电效应,光电子,光电流)(板画:光电效应的形成过程) 2、研究光电效应的规律 用应急灯的可见光照射锌板,而后用X射线照射锌板,由于用可见光照射时无电流,用X 射线照射时有电流.指出:可见光频率较低,不能发生光电效应,X射线频率较高,可以发生光电效应.

五年高考真题精编——专题52光电效应

专题52光电效应 1、(2011福建卷)爱因斯坦因提出光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖。某种金属逸出光电子的最大初动能E km与入射光频率v的关系如图所示,其中v为极限频率。从图中可以 确定的是(填选项前的字母) C ?当v =0田寸会逸出光电子D。图中直线斜率与普朗克常量有关 【答案】D 【解析】谨出功与旳有关「选顷A错误;E込与入^光频率有关,与入射光强度无关,选项B错误;当炜 时入射光光子7覆等于逸出功,不会逸出光电子,选项C错误』由爱因斯坦光电败应方程可知,團中亶线 斜率与普朗克常量有关'选项D正确■ 2、(2011广东卷)(多选题)光电效应实验中,下列表述正确的是 A?光照时间越长光电流越大B?入射光足够强就可以有光电流 C. 遏止电压与入射光的频率有关 D.入射光频率大于极限频率才能产生光电子 【答案】CD 【解析】光电流的大“占光照时间无逬,与光的强度育关.故A错误;岌生光电效应的条件是入^光频率 大于极限频率,入射光强,不一定能发宦光电效应.故B错误』根協光电效应方= 知遏止电压与入射光的频率有关”故C正确j发生光电效应的条件是入^光频率大于极限频率.故D正确. 3、(2011上海卷)用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是 (A)改用频率更小的紫外线照射(B)改用X射线照射 (C)改用强度更大的原紫外线照射(D)延长原紫外线的照射时间 【答案】B 【解析】静一f申金属对应一个极限频率,低于极限頻率的光,无论照射时间有多长,光的强度有参大,都 不能使金属产生光电效应,只奏照射光的频率犬于或者等于极限頻率』就能产生光电效应'因為XJJ於餐的 频率高于紫^陣圭的频率,所以改用x射线照射能发生光电效应,E正确 4、(2013北京卷)以往我们认识的光电效应是单光子光电效应,即一个电子极短时间内能吸收到一个光子 而从金属表面逸出。强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度 极大,一个电子在短时间内吸收多个光子成为可能,从而形成多光子电效应,这已被实验证实。光电效应 实验装置示意如图。用频率为v的普通光源照射阴极k,没有发生光电效应,换同样频率为v的强激光照射阴极k,则发生了光电效应;此时,若加上反向电压U,即将阴极k接电源正极,阳极A接电源负极,在k、 A之间就形成了使光电子减速的电场,逐渐增大U,光电流会逐渐减小;当光电流恰好减小到零时,所加反 向电压U可能是下列的(其中W为逸出功,h为普朗克常量,e为电子电量) A .逸出功与v有关B。 E km与入射光强度成正比

高中物理第四章波粒二象性光电效应与光量子假说导学案教科选修

2 光电效应与光量子假说 [目标定位] 1.知道光电效应现象,能说出光电效应的实验规律.2.能用爱因斯坦光电效应方程对光电效应作出解释,会用光电效应方程解决一些简单的问题. 一、光电效应 1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出的现象. 2.光电子:光电效应中发射出来的电子. 3.光电效应的实验规律 (1)对于给定的光电阴极材料,都存在一个截止频率ν0,只有超过截止频率ν0的光,才能引起光电效应. (2)光电流的大小由光强决定,光强愈大,光电流愈大. (3)光电子的最大初动能与入射光的频率成线性关系. (4)光电效应具有瞬时性:光电效应中产生电流的时间不超过10-9 s. 想一想 紫外线灯照射锌板,为什么与锌板相连的验电器指针张开一个角度? 答案 紫外线灯照射锌板,发生光电效应现象,锌板上的电子飞出锌板,使锌板带正电,与锌板相连的验电器也会因而带正电,使得验电器指针张开一个角度. 二、爱因斯坦的光电效应方程 1.光子说:光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光子,频率为ν的光的能量子为hν. 2.爱因斯坦光电效应方程的表达式:hν=12mv 2 +A.其中A 为电子从金属内逸出表面时所需做的功. 想一想 怎样从能量守恒角度理解爱因斯坦光电效应方程? 答案 爱因斯坦光电效应方程中的hν是入射光子的能量,逸出功A 是光子飞出金属表面消耗的能量,12mv 2 是光子的最大初动能,因此爱因斯坦光电效应方程符合能量的转化与守恒定律. 预习完成后,请把你疑惑的问题记录在下面的表格中 问题1 问题2 问题3 一、光电效应现象 1.光电效应的实质:光现象――→转化为 电现象. 2.光电效应中的光包括不可见光和可见光. 3.光电子:光电效应中发射出来的光电子,其本质还是电子.

光电效应习题(有答案)..

黑体辐射和能量子的理解 一、基础知识 1、能量子 (1)普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值£叫做能量子. ⑵能量子的大小:£= h v ,其中v是电磁波的频率,h称为 普朗克常量.h = 6.63 x 10 -34 J ? S. 2、光子说: (1)定义:爱因斯坦提出的大胆假设。内容是:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为£= h V,其中h是普朗克常量,其值为6.63 x 10-34 J ? S. 二、练习 1、下列可以被电场加速的是( B ) A. 光子 B .光电子C. X射线 D.无线电波 2、关于光的本性,下列说法中不正确的是( B ) A. 光电效应反映光的粒子性

B. 光子的能量由光的强度所决定 C. 光子的能量与光的频率成正比 D. 光在空间传播时,是不连续的,是一份一份的,每一份 叫做一个光子 对光电效应实验的理解 一、基础知识(用光电管研究光电效应的规律) 1、常见电路(如图所示) 2、两条线索 (1) 通过频率分析:光子频率高-光子能量大-产生光电子的 最大初动能大. (2) 通过光的强度分析:入射光强度大-光子数目多-产生的

光电子多-光电流大. 3、遏止电压与截止频率

(1)遏止电压:使光电流减小到零的反向电压. ⑵截止频率:能使某种金属发生光电效应的最小频率叫做该种 金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. ⑶逸出功:电子从金属中逸出所需做功的最小值,叫做该金属 的逸出功. 二、练习 1、如图所示,当开关S断开时,用光子能量为2.5的一束 光照射阴极 P,发现电流表读数不为零. 合上开关,调节滑动变 阻器,发现当电压表读数小于0.60 V时,电流表读数仍 不为零;当电压表读数大于或等于0.60 V时,电流表读数为零. (1)求此时光电子的最大初动能的大小; (2)求该阴极材料的逸出功. 答案(1)0.6 (2)1.9 解析设用光子能量为2.5的光照射时,光电子的最大初动 能为,阴极材料逸出功为W 当反向电压达到U0= 0.60 V以后,具有最大初动能的光电 子达不到阳极,因此0 = 由光电效应方程知=h V -W 由以上二式得=0.6 , W J= 1.9 .

2020届全国卷高三物理全真模拟单元预测专题41 光电效应(原卷版)

2020届全国卷高三物理全真模拟单元预测试题 (四十一)光电效应 1.(2018·高考全国卷Ⅱ)用波长为300 nm的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10- 19 J.已知普朗克常量为6.63×10-34 J·s,真空中的光速为3.00×108 m·s-1.能使锌产生光电效应的单色光的最 低频率约为() A.1×1014 Hz B.8×1014 Hz C.2×1015 Hz D.8×1015 Hz 2.(2019·山东泰安检测)如图所示是光电管的原理图,已知当有波长为λ0的光照到阴极K上时,电 路中有光电流,则() A.若增加电路中电源电压,电路中光电流一定增大 B.若将电源极性反接,电路中一定没有光电流产生 C.若换用波长为λ1(λ1>λ0)的光照射阴极K时,电路中一定没有光电流 D.若换用波长为λ2(λ2<λ0)的光照射阴极K时,电路中一定有光电流 3.(2017·高考全国卷Ⅲ)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上, 测得相应的遏止电压分别为Ua和Ub、光电子的最大初动能分别为Eka和Ekb.h为普朗克常量.下列说法正确的是() A.若νa>νb,则一定有Uaνb,则一定有Eka>Ekb C.若Uaνb,则一定有hνa-Eka>hνb-Ekb 4.(2019·南平市检测)用如图甲所示的装置研究光电效应现象.闭合电键S,用频率为ν的光照射光电管时发生了光电效应.图乙是该光电管发生光电效应时光电子的最大初动能Ek与入射光频率ν的关系图象,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b),下列说法中正确的是()

导学案模板(教师版)

第四单元 第11课物理学的重大进展 班级:姓名:学号:小组评价: 【课前导学】 一、学习目标 1.课标要求:﹙1﹚了解伽利略、牛顿对建立经典力学所做的贡献 ﹙2﹚了解爱因斯坦创立相对论、普朗克提出量子论 ﹙3﹚理解相对论、量子论提出的意义 2.重点:伽利略对物理学发展的重大贡献;经典力学的建立;相对论的提出;量子论的诞生。 3.难点:物理学各阶段发展的原因;对科学发展创新性的理解。 二、自主学习 1、经典力学 (1)伽利略(意大利科学家)——标志着物理学的真正开端 发现自由落体定律,开创了以实验事实为根据并具有严密逻辑体系的近代科学,为经典力学的创立和发展奠定了基础。自制望远镜发现许多肉眼看不见的星体,证明“日心说”的正确性。 (2)牛顿(英国科学家)——标志着近代科学的形成: 经典力学建立标志:《自然哲学的数学原理》,提出三大定律和万有引力定律。牛顿力学体系(经典力学体系)最显著特征:以实验为基础、以数学为表达形式。这一体系对解释和预见物理现象具有决定性意义。根据定律,人们发现了海王星等。 2、相对论的创立 内容:20世纪初,爱因斯坦提出相对论,包括狭义相对论和广义相对论。 ①狭义相对论认为,物体运动时,质量会随着物体运动速度增大而增加,同时空间和时间也会随着物体运动速度的变化而变化,即会 发生尺缩效应和钟慢效应。 ②广义相对论认为,空间和时间的性质不权取决于物质的运动情况,也取决于物质的分布状态。 意义: ①打破了传统的牛顿力学体系的。 ②发展了牛顿力学,把物理学由近代推进到现代阶段。 3、量子论的诞生与发展 ①诞生:1900年,物理学家普朗克提出了量子假说。 ②发展:丹麦物理学家波尔提出了有关原子的理论;爱因斯坦利用量子论成功的解释了光电效应(E=MC2) ③意义: a. 量子论使人类对微观世界世界的基本认识取得革命性的进步,成为20世纪最

2020年高考回归复习—光学选择之光电效应 包含答案

高考回归复习—光学选择之光电效应 1.爱因斯坦对于光电效应的解释使人类对于光的本性的认识更加透彻,下列关于光电效应的说法中正确的是( ) A .在光电效应中,光电子的最大初动能与入射光强度成正比 B .入射光光子能量小于金属逸出功时也可能发生光电效应的 C .对于某种金属,只要入射光强度足够大,照射时间足够长,就会发生光电效应 D .用频率大于金属的极限频率的入射光照射金属时,光越强,饱和电流越大 2.在某次实验中,用频率为ν的一束绿光照射极限频率(也称“截止频率”)为 0ν金属时发生了光电效应现象,则下列说法正确的是( ) A .该金属的逸出功为W h ν= B .若改用红光来照射,则一定不能发生光电效应 C .若把这束绿光遮住一半,则逸出的光电子最大初动能将减小一半 D .在本实验中,调节反向电压可使光电流恰好为零,此电压大小()c 0h U e νν= - 3.在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示。则可判断出( ) A .甲光的频率大于乙光的频率 B .乙光的波长大于丙光的波长 C .乙光对应的截止频率大于丙光的截止频率 D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能 4.如图所示,分别用频率为ν、2ν的光照射某光电管,对应的遏止电压之比为1:3,普朗克常量用h 表示,则( )

A.用频率为1 3 ν的光照射该光电管时有光电子逸出 B.该光电管的逸出功为1 2 hν C.用2ν的光照射时逸出光电子的初动能一定大 D.加正向电压时,用2ν的光照射时饱和光电流一定大 5.关于光电效应,下列说法正确的是() A.光电子的动能越大,光电子形成的电流强度就越大 B.光电子的最大初动能与入射光的频率成正比 C.对于任何一种金属,都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应D.用不可见光照射金属一定比用可见光照射同种金属逸出的光电子的初动能大 6.关于光电效应,下列说法正确的是() A.光电效应是原子核吸收光子向外释放电子的现象 B.饱和光电流的强度与入射光的强度有关,且随入射光强度的增强而减弱 C.金属的逸出功与入射光的频率成正比 D.用不可见光照射某金属,不一定比用可见光照射同种金属产生的光电子的最大初动能大 7.如图所示,是研究光电效应的电路图,对于某金属用绿光照射时,电流表指针发生偏转.则以下说法正确的是() A.将滑动变阻器滑动片向右移动,电流表的示数一定增大 B.如果改用紫光照射该金属时,电流表无示数 C.将K极换成逸出功小的金属板,仍用相同的绿光照射时,电流表的示数一定增大 D.将电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑动片向右移动一些,电流表的读数可能不为零 8.频率为ν的入射光照射某金属时发生光电效应现象。已知该金属的逸出功为W,普朗克常量为h,电子电荷量大小为e,下列说法正确的是()

2021高考物理一轮复习第15章波粒二象性原子与原子核第1讲光电效应波粒二象性学案.doc

第十五章波粒二象性原子与原子核 考情分析高考对本章的考查主要以选择题形式出现,经常结合经典物理理论和最新科技成果考查,难度不会太大。 重要考点波粒 二象 性 1.光电效应(Ⅰ) 2.爱因斯坦光电效应方程 (Ⅰ) 考 点 解 读 1.理解光电效应现象,掌握光电效应 方程的应用。高考中常以选择题形式 呈现。 2.理解玻尔理论对氢原子光谱的解 释,掌握氢原子的能级公式并能灵活 应用,用氢原子能级图求解原子的能 级跃迁问题是高考的热点。 3.原子核式结构的发现、原子核的组 成、放射性、半衰期等仍会是高考命 题的重点。 4.了解放射性同位素的应用,了解核 力的特点。 5.书写核反应方程,区分核反应的种 类并根据质能方程求解核能问题在高 考中命题率较高。 6.裂变反应、聚变反应的应用,射线 的危害和应用等知识与现代科技联系 密切。 原子 结构 1.氢原子光谱(Ⅰ) 2.氢原子的能级结构、能级 公式(Ⅰ) 原子 核 1.原子核的组成、放射性、原 子核的衰变、半衰期(Ⅰ) 2.放射性同位素(Ⅰ) 3.核力、核反应方程(Ⅰ) 4.结合能、质量亏损(Ⅰ) 5.裂变反应和聚变反应、裂 变反应堆(Ⅰ) 6.射线的危害和防护(Ⅰ) 主干梳理对点激活 知识点光电效应及其规律Ⅰ 1.定义 01电子从表面逸出的现象。 2.光电子 02光电效应中发射出来的电子。 3.光电效应规律 (1)存在饱和光电流:光照条件不变,当正向电压增大时,光电流趋于一个饱和值,即一定的光照条件下单位时间发出的光电子数目是一定的。实验表明,光的频率一定时,入射光

越强,饱和光电流03越大,单位时间内发射的光电子数04越多。 (2)存在遏止电压:使光电流减小到0的反向电压U c 称为遏止电压。遏止电压的存在意味着光电子的初动能有最大值E km =12m e v 2 c =eU c ,称为光电子的最大初动能。实验表明,遏止电压 (或光电子的最大初动能)与入射光的05强度无关,只随入射光频率的增大而06增大。 (3)存在截止频率:每种金属都有一个极限频率或截止频率νc ,入射光的频率必须07大于等于这个极限频率才能产生光电效应,低于这个频率的光不能产生光电效应。 (4)光电效应具有瞬时性:当入射光的频率超过截止频率νc 时,无论入射光怎样微弱,光电效应的发生几乎是瞬时的,一般不超过10-9 s 。 知识点 爱因斯坦光电效应方程 Ⅰ 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子, 光子的能量ε01hν。其中h =6.63×10-34 J·s(称为普朗克常量)。 2.逸出功W 0 02最小值。 3.最大初动能 03电子吸收光子后,除了要克服金属的逸出功外,有时还要克服原子的其他束缚而做功,这时光电子的初动能就比较小;当逸出过程只克服金属的逸出功而逸出时,光电子的初动能称为最大初动能。 4.爱因斯坦光电效应方程 (1)表达式:E k 04hν-W 0。 (2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来05逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k 0612 m e v 2 。 5.对光电效应规律的解释 对应规律 对规律的产生的解释 存在截止频率νc 电子从金属表面逸出,必须克服金属的逸出功W 0,则入射光子的能量不 能小于W 0,对应的频率必须不小于νc =07 W 0 h ,即截止频率 光电子的最大初动能随着入射光频率的增大而增大,与 电子吸收光子能量后,一部分克服阻碍作用做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能,对于确定的金属,W 0是一定的,故光电子的最大初动能只随入射光频率的

光电效应及其应用论文

光电效应及其应用 摘要:本文介绍了光电效应的概念、实验规律以及一些在近代中的应用,并且简单明了的讲解了一些光电效应的基本原理。 关键词:内光电效应;外光电效应;波粒二象性;光电器件; 引言:光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。 1、光电效应的概念 光照射到某些物质上,有电子从物质表面发射出来的现象称之为光电效应(Photoelectric effect)。这一现象最早是1887年赫兹在实验研究麦克斯韦电磁理论时偶然发现的。之后霍尔瓦克斯、J·J·汤姆孙、勒纳德分别对这种现象进行了系统研究,命名为光电效应,并得出一些实验规律。 1905年,爱因斯坦在《关于光的产生和转化的一个启发性观点》一文中,用光量子理论对光电效应进行了全面的解释。1916年,美国科学家密立根通过精密的定量实验证明了爱因斯坦的理论解释,从而也证明了光量子理论,使其逐渐地被人们所接受。 2、内、外光电效应 光电效应分为:内光电效应和外光电效应。光电效应中多数金属中的光电子只能从靠近金属表面内的浅层(小于m )逸出,不能从金属内深层逸出的结论。光波能量进入金属表面后不到1μm的距离就基本被吸收完了。 外光电效应是被光激发产生的电子逸出物质表面,形成真空中的电子的现象。内光电效应是被光激发所产生的载流子(自由电子或空穴)仍在物质内部运动,使物质的电导率发生变化或产生光生伏特的现象。分为光电导效应和光生伏特效应。 外光电效应:当光照射某种物质时,若入射的光子能量足够大,它和物质中的电子相互作用,致使电子逸出物质表面,这就是外光电效应,逸出物质表面的电子叫做光电子。 利用光电子发射材料可以制成各种光电器件。光电倍增管(Photomultiplier Tube)是一种建立在外光电效应、二次电子效应和电子光学理论基础上的,把微弱入射光转换成光电子并获倍增的真空光电发射器件。 内光电效应:现代很多光电探测器都是基于内光电效应,其中光激载流子(电子和空穴)保留在材料内部。最重要的内光电效应是光电导,本征光电导体吸收一个光子,就会从价带激发到导带,产生一个自由电子,同时在价带产生一个

光电效应习题(有答案)..

黑体辐射和能量子的理解 一、基础知识 1能量子 (1) 普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整^_ 倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值 £叫做能量子. —34 ⑵能量子的大小: 尸h v,其中v 是电磁波的频率,h 称为普朗克常量.h = 6.63X 10 J s : 2、光子说: 空间传播的光的能量是不连续的,是一份一 £= h v 其中h 是普朗克常量,其值为 6.63X 10 二、练习 1、下列可以被电场加速的是 (B A .光子 B .光电子 2、关于光的本性,下列说法中不正确的是( A .光电效应反映光的粒子性 B. 光子的能量由光的强度所决定 C. 光子的能量与光的频率成正比 ) C . X 射线 D .无线电波 B ) D. 光在空间传播时,是不连续的,是一份一份的,每一份叫做一个光子 (1)定义:爱因斯坦 提出的大胆假设。内容是: 份的,每一份叫做一个光子.光子的能量为 —34 J S :

对光电效应实验的理解 、基础知识(用光电管研究光电效应的规律) 1常见电路(如图所示) 2、两条线索 (1) 通过频率分析:光子频率高T光子能量大T产生光电子的最大初动能大. (2) 通过光的强度分析:入射光强度大T光子数目多T产生的光电子多T光电流大. 3、遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c. ⑵截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极 限频率).不同的金属对应着不同的极限频率. (3) 逸出功:电子从金属中逸出所需做功的最小值,叫做该金属的逸出功. 二、练习 1、如图所示,当开关S断开时,用光子能量为2.5 eV的一束光照射阴极 P,发现电流表读数不为零.合上开关,调节滑动变阻器,发现当电压表 读数小于0.60 V时,电流表读数仍不为零;当电压表读数大于或等于0.60 V时,电流表读数为零. (1)求此时光电子的最大初动能的大小; ⑵求该阴极材料的逸出功. 答案(1)0.6 eV (2)1.9 eV 解析设用光子能量为2.5 eV的光照射时,光电子的最大初动能为E km,阴极材料逸出功为W o 当反向电压达到U°= 0.60 V以后,具有最大初动能的光电子达不到阳极,因此eU°= E km 1> - —

光电效应(教学设计)

光电效应 一、基本知识点 1、热辐射:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (1)、物体在任何温度下都会辐射电磁波,温度不同,所辐射电磁波的频率、强度也不同。当物体温度较低时,热辐射的主要成分是波长较长的电磁波(在红外线区域),不能引起人的视觉;当温度升高时,热辐射中较短波长的成分越来越强,可见光所占份额增大,如燃烧的炭块会发出醒目的红光。 (2)、绝对黑体:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一个物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。 (3)、黑体辐射的实验规律 ①、对于一般材料物体,辐射的电磁波除与温度 有关外,还与材料的种类及表面状况有关; ②、黑体辐射电磁波的强度按波长的分布只与黑 体温度有关; ③、随着温度的升高,一方面黑体辐射各种波长 的电磁波的本领增加; ④、另一方面辐射强度的极大值向波长较短的方 向移动。 (3)、普朗克能量量子化假设 ①、能量子:黑体的空腔壁是由大量振子组成的;其能量只能是某一最小能量值ε的整数倍。 ②、当振子辐射或吸收能量时,也是以这个最小能量值为单位一份一份进行。这个不可再分的最小能量值ε叫做能量子,νεh =,其中ν是电磁波的频率,h 为普朗克常量(s J h ??=-341063.6) (4)、能量量子化:在微观世界里,能量不能连续变化只能取分立值,这种现象叫能量量子化。 (5)、普朗克的能量子假说的意义:传统电磁理论认为光是一种电磁波,能量是连续的,能量大小决定于波的振幅和光照时间。普朗克为了克服经典物理学对黑体辐射现象解释的困难而提出了能量子假说,使人类对微观世界的本质有了新的认识,对现代物理学的发展产生了革命性的影响。 2、光电效应 (1)、光电效应现象: ①、赫兹最早发现了光电效应现象; ②、定义:在光的照射下物体发射电子的现象, 叫做光电效应,发射出来的电子叫光电子。 ③、光电效应实质:光现象 电现象 定义中的光包括不可见光和可见光 ④、使锌板发射出电子的光是弧光灯中紫外线。

光电效应的图像问题

光电效应图像专题 1在做光电效应实验中,某金属被光照射发生了光电效应,实验测出了光电子的最大初动能E K与入射光的频率v的关系如图所示,由实验图象可求出() (1) (2) A.该金属的逸出功 B.该金属的极限频率 C.单位时间内逸出的光电子数 D.普朗克恒量 2某种金属逸出光电子的虽大初动能E.与入射光频率v的关系如图所示,其中№为极限频率.从图中可以确定的是(bcd ) A.E km与入射光强度成正比 B.图中直线的斜率与昔朗克常量有关 C.光电子的逸出功与入射光频率v无关 D.当v<v0时,无论入射光强度多大都不会逸出光电子 E.当v<v0时,只要入射光强度足够强也会逸出光电子 3某金属在光的照射下发生光电效应,光电子的最大初动能E k与入射光频率v的关系如图所示,试求: ①普朗克常量h(用图中字母表示); ②入射光的频率为3V c时,产生的光电子的最大处动能E k′.

普朗克常量为; ②入射光的频率为3V c时,产生的光电子的最大处动能2E. 4某金属逸出的光电子的最大初动能和入射光的频率v变化的关系图象如图所示,直线与横轴的交点坐标为4.29×1014Hz,与纵轴交点坐标为0.5eV.则下列说法正确的是() A.该金属的逸出功为0.5eV B.该金属的极限频率为4.29×1014Hz C.当入射光频率为5.5×1014Hz时,光的强度越大 D.直线的斜率表示普朗克常量h E.该图说明了光电子的最大初动能与入射光的频率成正比 5用不同频率光照射某一金属发生光电效应时,光电子逸出最大初动能随入射光频率变化的图象如图所示,则图中横、纵轴截距及斜率的物理意义为() A.斜率为普朗克常数的倒数 B.纵轴截距为逸出功的倒数 C.横轴截距为极限频率 D.横轴截距为极限波长 6美国物理学家密里根在研究光电效应现象时,通过实验的方法测出金属遏止电压Uc,

光电子考试简答题答案 (2)

作业1 三、简答题: 1、简述激光产生的条件、激光器的组成及各组成部分的作用。 [答]:必要条件:粒子数反转分布和减少振荡模式数。 充分条件:起振——阈值条件:激光在谐振腔内的增益要大于损耗。 稳定振荡条件——增益饱和效应(形成稳定激光) 。 组成:工作物质、泵浦源、谐振腔。 作用:工作物质:在这种介质中可以实现粒子数反转。 泵浦源(激励源) :将粒子从低能级抽运到高能级态的装置。 谐振腔:(1) 使激光具有极好的方向性( 沿轴线) (2) 增强光放大作用( 延长了工作物质 ) (3) 使激光具有极好的单色性( 选频 ) 2、简述光子的基本特性。 [答]:光是一种以光速运动的光子流,光子和其它基本粒子一样,具有能量、动 量和质量。 它的粒子属性(能量、动量、质量等)和波动属性(频率、波矢、偏振等)之间的关系满足: (1)E=hv= ω (2)m= 2 2 c hv c E =,光子具有运动质量,但静止质量为零; (3)k P =; (4)、光子具有两种可能的独立偏振态,对应于光波场的两个独立偏振方向; (5)、光子具有自旋,并且自旋量子数为整数,是玻色子。 作业2 判断题中的第5小题: 在电光调制器中,为了得到线性调制,在调制器中插入一个λ/4波片,波片的轴向如何设置最好?若旋转λ/4波片,它所提供的直流偏置有何变化? 答:在电光调制器中,为了得到线性调制,在调制器中插入一个?/4波片, 波片的轴向取向为快慢轴与晶体的主轴x 成45°角时最好,从而使 E x′ 和 E y′ 两个分量之间产生π/2 的固定相位差。若旋转λ/4波片,它所提供的直流偏置 ,得到直流偏值随偏振改变而改变。 三 简答题 1、何为大气窗口,试分析光谱位于大气窗口内的光辐射的大气衰减因素。 答:对某些特定的波长,大气呈现出极为强烈的吸收。光波几乎无法通过。根据大气的这种选择吸收特性,一般把近红外区分成八个区段,将透过率较高的波段称为大气窗口。 光谱位于大气窗口内的光辐射的大气衰减因素主要有:大气分子的吸收,大气分子散射 ,大气气溶胶的衰减。 2. 何为大气湍流效应,大气湍流对光束的传播产生哪些影响? 答:是一种无规则的漩涡流动,流体质点的运动轨迹十分复杂,既有横向运动,又有纵向 运动, 空间每一点的运动速度围绕某一平均值随机起伏。 这种湍流状态将使激光辐射在传播 过程中随机地改变其光波参量, 使光束质量受到严重影响, 出现所谓光束截面内的强度闪烁、 光束的弯曲和漂移(亦称方向抖动)、光束弥散畸变以及空间相干性退化等现象,统称为大气湍流效应。

相关主题
文本预览
相关文档 最新文档