当前位置:文档之家› 例说行列式在初等几何中的应用

例说行列式在初等几何中的应用

例说行列式在初等几何中的应用
例说行列式在初等几何中的应用

行列式的应用讲解

摘要 行列式是数学研究中一类重要的工具之一,行列式最早出现在16世纪,用于解决线性方程组的求解问题。现在,行列式经过几世纪的发展已经形成了一整套完备的理论,并且在数学这门学科中占有很重要的位置。本论文通过对行列式理论和行列式在线性方程组和中学数学中的应用展开研究。首先论述了行列式的历史意义,其次展示了行列式在线性方程组中的应用以及在中学数学中的应用,重点论述了行列式在中学代数领域以及中学几何领域的应用。论文以求解线性方程组和解中学几何与代数问题为例,论述了行列式在实际中的应用。主要通过文献研究的方法对行列式的应用进行研究,充分阐释了行列式在不同方面的应用。 关键词:行列式,线性方程组,中学代数,中学几何

The Application of The Determinant Abstract The determinant is one of a kind of important tools in mathematical research, determinant first appeared in the 16th century, used to solve linear equations to solve the problem. now, the determinant after centuries of development has formed a set of complete theory, and the mathematics occupies very important position in the subject. This paper based on the theory and determinant determinant in the system of linear equations and the application of the middle school mathematics study. First discusses the historical significance of determinant, the second shows the determinant in the application of linear equations, and the middle school mathematics, the application of the determinant is emphasized in the field of high school algebra and applied in the field of high school geometry. Paper to solve the linear system of equations and middle school geometry and algebra problem as an example, this paper discusses the determinant in the actual application. Mainly through the literature research methods to study the application of the determinant, fully illustrates the application of determinant in different aspects. Key words: determinant, system of linear equations, algebraic secondary school, high school geometry

线性方程组解的几何意义

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解 这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,0 11111:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

华南理工大学 线性代数与解析几何 习题答案 (6)

《线性代数与解析几何》勘误表 第1章:行列式 p.13, 例题 4.1: 解的第二个等号后,应加一个负号。 p.15,第三行(等号后):去掉; p.17, 第7-8行: (t=1,2,…, j-1,j+1,…,n) p.19,倒数第4-5行:假设对于n-1阶范德蒙行列式V_{n-1}结论成立,… p .20,第2行: D_{n-1}改为V_{n-1} p.20, 第6行,定理5.2中: 去掉“若”字 p.21, 倒数第3行: …展开代入而得, p.24,倒数第1行: (-1)的指数应为“1+2+…+k +1+2+…+k ” 习题1: 第1题(2)答案有误:应为sin2x-cosx^2. 第6题(3)答案有误:(3) n(3n-1)/2, 当n=4k 或者n=4k+3时为偶数,当n=4k+1或4k+2时为奇数. 第10题(4)(5)答案有误:(4)(-1)^{(n-2)(n-1)/2};(5)(-1)^{n-1}a_n 第11题(6)答案有误: ….,当a\neq 0时,D=(-1)^{n(n-1)/2}a^{n-2}[a^2-(n-1)x^2] p.26, 第12题(2):改为: (33333) 3222 222111 111=+++++++++y x x z z y y x x z z y y x x z z y (3): …= ;)1](2 )2)(1([1--+-+ n a n n a (4): …=.0 ∑=-n i i n i b a p.27, 第14题(4):(此题较难,可以去掉!) 答案有误,应为: n x n )2 )(1( n +=,当yz x 42=。 第15题答案有误:为60(11-2) p .27, 第16题:去掉条件“若x_1+x_2+x_3+x_4=1,则” 第二章:矩阵 p.32, 第7行: 称其为n 阶对角矩阵,….. p.35, 第5-6行: b_21和b_12互换位置(两处) p.36, 第7行: 去掉“设 A ,B ,C 分别为….矩阵,”在第10行后增加: 当然,这里假定了矩阵运算是有意义的. p.39, 第4行: 就得到一个2*2的分块矩阵。 p.46,第2行: 去掉 ′(3个) p .46,倒数 4-6行:… 为满秩的(或非奇异的,非退化的),…为降秩的(或奇异的,退化的),… p.47,倒数第6-7行: 去掉 “,n α”(3处 ),另: 本页的 ”T j T i αα,”均改

几种特殊行列式的巧算

几种特殊行列式的巧算 摘要:在高等代数课程中,n阶行列式的计算问题非常重要,它是行列式理论 的重要组成部分。计算n阶行列式的一般方法有:按行(列)展开,化三角行列式法,降阶法等。对于这些解法,高等代数课本已做了详细介绍,本文重点探索关于三对角,爪型等具有一定特征的行列式的计算,跟几种具有特殊解法的行列式(如范德蒙行列式)计算,突出一个“巧”字,从而提高解题速度。 关键词:“三对角”行列式分离线性因子法“爪型”行列式范德蒙行列式等. 引言: n阶行列式

11121212221 2 n n n n nn a a a a a a a a a 是所有取自不同行、不同列的n 个元素的乘积1212n j j nj a a a 的代数和,其中12 n j j j 是一 个n 阶排列,每个项1212n j j nj a a a 前面带有正负号.当12n j j j 是偶排列时, 项1212n j j nj a a a 前面带有正号,当12 n j j j 是奇排列时,项12 12n j j nj a a a 前面带有负号.即 11 121212221 2 n n n n nn a a a a a a a a a = 121212 () 12() (1) .n n n j j j j j nj j j j a a a τ-∑ 这里 12 () n j j j ∑ 表示对所有的n 阶排行求和. 行列式的计算是高等代数的一个重要内容,同时也是在工程应用中具有很高价值的数学工具,本文针对行列式的几种特殊类型,给出了每一种类型特殊的计算方法,具体如下: 一 三对角行列式的计算 形如 b a b a b a b a b a b a b a b a D n +++++= 0000000000000的行列式称为“三对角”行列式.该 类行列式的计算方法有:猜想法, 递推法, 差分法.下面我们首先用猜想法来解一下这个行 列式. 当b a ≠时 b a b a b a b a b a b a b a b D b a D n n ++++-+=- 000000000000)(1 =21 )(---+n n abD D b a . 即有递推关系式21)(---+=n n n abD D b a D ,为了得到n D 的表达式,可先设b a ≠,采用

行列式在几何中的应用(黄洁定稿) (1)

上饶师范学院 本科毕业论文 论文题目:行列式在解析几何中的应用专业:数学与应用数学 班级:09级数计学院(2)班学号:09010213 学生姓名:黄洁 指导教师姓名:谭海女 上饶师范学院数学与计算机科学学院 2013 年 4 月 行列式在解析几何中的应用

摘要 行列式在数学中,是由解线性方程组产生的一种算式。作为基本的数学工具,无论是几何、线性代数、多项式理论,还是在微积分学中,它都有着重要的应用。本文根据行列式在解析几何中的应用进行相关讨论与探究,介绍了行列式应用产生的背景,特点,以及行列式在解析几何中应用的优点。 关键词 行列式;解析几何;代数。

目录 一.预备知识 引言 .......................................................................................1 §1.1一些定义和基本定理............................................................1 二.运用行列式解决解析几何问题的几个结果及证明 (2) 1 12 21 11 x y y y =0是经过不同两点P 1 (1x ,y 1),P 2(2,2x y )的直线的方程………2 §2.2 三顶点为A (1x ,y 1),B (2,2x y ),C 3,3()x y 的三角形的面积S=1 2 1 12 23 3111 x y x y x y 的绝对值 (3) §2.3 平面上三点(1x ,y 1),(2,2x y ),3,3()x y 共线的充要条件是1 12 23 31 11 x y x y x y =0……4 §2.4 方程1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=表示三直线共点 的必要条件是1 11 2 223 3 3 a b c a b c a b c =0.....................................................................5 三. 行列式在解析几何中应用的意义......................................................6 四.结语..........................................................................................6 五.致谢..........................................................................................6 参考文献 (7)

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

华南理工大学 线性代数与解析几何 试卷

,考试作弊将带来严重后果! 华南理工大学期末考试(A 卷) 《 2007线性代数 》试卷 20分) (1) 设A 是n m ?矩阵,B 是m 维列向量,则方程组B AX =无解的充分必要条件 是: (2) 已知可逆矩阵P 使得1cos sin sin cos P AP θθθ θ-??= ?-?? ,则12007 P A P -= (3) 若向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3)的秩为2,则t= (4) 若A 为2n 阶正交矩阵,*A 为A 的伴随矩阵, 则*A = (5) 设A 为n 阶方阵,12,,,n λλλ??????是A 的n 个特征根,则1n i i E A λ=-∑ = 选择题(共20分) (1) 将矩阵n m A ?的第i 列乘C 加到第j 列相当于对A : A , 乘一个m 阶初等矩阵, B ,右乘一个m 阶初等矩阵

C,左乘一个n阶初等矩阵,D,右乘一个n阶初等矩阵 (2)若A为m×n 矩阵,B是m维非零列向量,()min{,} r A r m n =<。集合{:,}n M X AX B X R ==∈则 A,M是m维向量空间,B,M是n-r维向量空间 C,M是m-r维向量空间,D,A,B,C都不对 (3)若n阶方阵A,B满足,22 A B =,则以下命题哪一个成立 A,A B =±,B,()() r A r B = C,det det A B =±,D,()() r A B r A B n ++-≤ (4)若A是n阶正交矩阵,则以下命题那一个成立: A,矩阵1A-为正交矩阵,B,矩阵-1A-为正交矩阵 C,矩阵*A为正交矩阵,D,矩阵-*A为正交矩阵 (5)4n阶行列式 111 110 100 -???-- -???- ?????? -??? 的值为: A,1,B,-1 C,n D,-n 三、解下列各题(共30分) 1.求向量 5 1 3 β ?? ? =- ? ? ?? ,在基 123 111 0,1,1 101 ααα ?????? ? ? ? === ? ? ? ? ? ? ?????? 下的坐标。

浅谈行列式的计算方法x

浅 一、 特殊行列式法 1.定义法 当行列式中含零元较多时,定义法可行. 例1 计算n 级行列式 α β βαβαβα000000 0000 00 =D . 解:按定义,易见121,2,,,n j j j n === 或 1212,3,,,1n n j j j n j -==== . 得 11(1)n n n D αβ-+=+- 2.三角形行列式法 利用行列式性质,把行列式化成三角形行列式. nn a a a a a a 000n 222n 11211=nn n n a a a a a a 212212110 0112233nn a a a a = 例2 计算n 级行列式1231 131 211 2 3 1 n n x n D x n x +=++ 解: 将n D 的第(2,3,,)i i n = 行减去第一行化为三角形行列式,则 1230 1000 0200 1 (1)(2)(1) n n x D x x n x x x n -=--+=---+

3.爪形行列式法 例3 计算行列式 0121 1 220 0000n n n a b b b c a D c a c a = ()0,1,2,,i a i n ≠= 解: 将D 的第i +1列乘以(i i a c - )都加到第1列()n i ,2,1=,得 10 12 120000000 00n i i n i i n bc a b b b a a D a a - =∑= =011()n n i i i i i i b c a a a ==-∑∏ 4. 范德蒙行列式法 1 2 3 2 2221 2 3 11111 2 3 1111n n n n n n n a a a a D a a a a a a a a ----= 1()i j j i n a a ≤<≤= -∏ 例4 计算n 级行列式 2 2221233 333 1 2 3 12 3 11 1 1 n n n n n n n x x x x D x x x x x x x x = 解:利用D 构造一个1n +阶范德蒙行列式 12222 212121111()n n n n n n n x x x x g x x x x x x x x x = 多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,即 1 ()() n i i g x x x ==-∏∏≤<≤-n i j j i x x 1)(

行列式的若干应用 毕业论文

行列式的若干应用 The Number of Applications of The Determinants 专业: 数学与应用数学 作者: 指导老师:

摘要 行列式是数学研究中的一类重要的工具之一, 它的应用非常广泛. 本文从以下三个方面对行列式的应用进行了论述: 探讨了行列式与线性方程组的关系以及在解线性方程组中的应用; 举例说明了行列式在初等代数中的应用, 如在因式分解中应用, 证明不等式以及恒等式; 最后综述了行列式在解析几何中的若干应用. 关键词: 行列式; 矩阵; 线性方程组; 秩; 因式分解; 平面组; 点组

Abstract Determinant is a kind of important tools in the mathematical study, it is a very wide range of applications. In this paper, we have been to discuss from the following three aspects of the applications of the determinants: To explore the relationship between the determinant and linear equations and the application in the solution of linear equations; examples of the application of the determinant in algebra, such as the application of factorization, to prove that inequality and identity; in the final, we have made overview of the number of applications of the determinants in analytic geometry. Keywords:Determinant; Matrix; Linear equations; Rank; Factorization; Plane group; Point group

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

行列式的计算技巧与方法总结(同名4612)

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式0 004003002001000. 解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故 004003002001000=() () 241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a K ΛM O M M M K K K 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a K Λ M O M M M K K K 22113 2133323122211100 0000=. 例2 计算行列式n n n n b a a a a a b a a a a ++= +K M O M M M K K 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 121n 11210000D 000n n n a a a b b b b b += =K K M M M O M K . 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

几种特殊类型行列式及其计算

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品. 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版.同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅. 本毕业论文内容不涉及国家机密. 论文题目:几种特殊类型行列式及其计算 作者单位:数学与信息科学系 作者签名: 2012年5月31 日

目录 摘要 (1) 引言 (2) 1行列式的定义及性质 (3) 1.1 定义 (3) 1.2 性质 (3) 2行列式的分类及其计算方法 (4) 2.1 箭形(爪形)行列式 (4) 2.2 两三角型行列式 (4) 2.3 两条线型行列式 (7) 2.4 Hessenberg型行列式 (9) 2.5 三对角型行列式 (10) 2.6 各行(列)元素和相等的行列式 (11) 2.7 相邻两行(列)对应元素相差1的行列式 (12) 2.8 范德蒙德型行列式 (13) 结束语 (14) 参考文献 (15) 致谢 ······································································································································错误!未定义书签。

几种特殊类型行列式及其计算 摘要:行列式的计算是一个普遍的难题.在一些文献中我们已经了解了一些解决它的基本方法,例如:化为上下三角形法,降阶法,加边法,拆项法,递推法,数学归纳法.本文是对几种特殊类型的行列式给以归纳,再根据不同类型给出相应的计算方法.这使得绝大多数行列式能够被归为这其中的某一种,从而能快速简洁的计算出这些行列式. 关键词:行列式;爪形;两三角型;两条线型;范德蒙德型 Several Special Types of Determinants and Its Calculation Abstract: The n-th determinant calculation is a common difficult problem for students. We have already knew some ways in some documents to solve it, for example: the making definition, changing into triangle (upper and low), decreasing the degree, adding the margin, splitting some items, recursive algorithm and induction. This article aims to conclude some special kinds of determinants firstly and then gives the relevant calculation methods.That made most of the determinants can be attributed to one of that kinds,then it can be calculated more quickly and pithily. Key Words: Determinant; Claw; “Two-triangle”type; “Two-wire”type; “Vandermonde”type 1

特殊行列式的计算 guotao

特殊行列式的计算 摘 要: 运用行列式的定理、性质及推论对一些复杂、特殊行列式进行化简,总结出了一些特殊行列式的计算方法及公式,改变了以往遇到行列式总是通过初等变化按其某行(或某列)展开进行逐次降阶化成阶梯型行列式或依据Laplace 定理进行行列式计算的方法;使行列式的计算更为简洁、灵活,并使得特殊行列式的计算公式化. 关键词: 行列式;行列式的计算;特殊可列阶行列式 1 预备知识 面对一些复杂而又特殊行列式的计算我们往往会不知所措、无从下手,更不知道应该用什么方法去进行化简或计算,就像一只无头的苍蝇只能用各种方法去进行试探.为此我们多么希望一些特殊的可列阶行列式的计算能像一元二次方程一般有其计算公式和特殊的化简方法,从而提高特殊、复杂的行列式的计算效率,简化其计算步骤,改变其算法的冗长性,使之公式化、方法化.现就有关知识做以预习. 定理1.1(Laplace 定理) 设在行列式D 中任意取定了)11(-≤≤n k k 个行,由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D . 性质1.1 行列式与其转置行列式相等. 性质1.2 交换行列式的某两行(或某两列)行列式改变符号. 性质1.3 把行列式某一行(或某一列)的所有元素都乘以一个数k ,等于以k 乘以该行列式. 性质1.4 把行列式的某一行(或某一列)的所有元素乘以同一个数k 后加到另一行或另一列的对应元素上行列式值不变. 性质1.5 如果行列式中有两行(或两列)元素相同,行列式值为0. 性质1.6 行列式中某一行(或某一列)中所有元素的公因子可以提到行列式的外边. 性质1.7 行列式中如果有一行(或一列)的元素全为零,则行列式为0. 性质1.8 如果行列式中有两行(或两列)的元素对应成比例,则行列式等于0. 引理1.1 行列式的任一个子式M 与它的代数余子式A 的乘积中的每一项都是行列式D 的展开式中的项,而且符号也一致. 2 特殊行列式的计算 2.1 二条线型行列式的计算 定义2.1.1 形如1D =n n n a c b a b a b a 11 22 11 -- (或2D = c a a b a b a b n n n 1 12 2 1 1-- )的行

线性代数与空间解析几何总结

线性代数与空间解析几何总结 线性代数和空间解析几何是非数学专业的一门基础课程,可以看做是高等代数和解析几何的简化版。其内容大概分为八章,以线性代数内容为主,穿插少量解析几何知识。全书逻辑严谨,内容关联性强,但是缺乏直观性,对于没有基础的大一新生,不免显得生硬。 第一章主要讲述行列式相关内容,直接给出了行列式的定义。这一章的重点内容是根据行列式的定义推出一些性质,利用定义推导出行列式运算的一些性质,并且根据这些性质灵活的化简计算具体的行列式。其实行列式的计算相当繁琐,我们只需要掌握最基本的一些方法,如构造三角行列式(这种方法很重要,矩阵初等变换也要用)、加边法、递推法等等,还有一个重要的范德蒙行列式需要掌握。在章末,给出了克莱姆法则及其在解方程组时的应用,这本来是线性方程组理论内容,为了强化行列式的应用,放在了第一章介绍。 第二章讲述矩阵的基本内容,这是全书的核心,而矩阵理论也是整个线性代数体系的核心内容之一。这一章内容很多,而且联系复杂,但以矩阵的逆和秩为中心内容。首先,介绍的是矩阵的基本概念,基本分类和基本运算,对于矩阵的运算,比较重要的是矩阵与矩阵之间的乘法,这是个新运算,要多加练习,在此基础上,还引出了方阵的幂的概念。然后就开始通过单位矩阵和1的类比,引出矩阵的逆的概念,给出了矩阵逆的性质,给出了判别矩阵是否可逆的充要条件(以后还有很多补充)和求逆矩阵的伴随矩阵法。接着通过解线性方程组的一般解法,引出矩阵的初等变换,给出了行阶梯型矩阵、行最简型矩阵和标准型矩阵的概念。给出了矩阵秩的定义(显然,一个方阵是否可逆与其是否满秩是等价的),指出初等行变换不会改变矩阵的秩,并给出了求矩阵秩的方法——化矩阵为行阶梯型矩阵。接着,又给出了初等矩阵的定义,并且将矩阵初等变换和矩阵与一个初等矩阵相乘建立起一一对应的关系,用初等变换将矩阵化为标准型,显然,根据初等变换不该变矩阵的秩,则初等变换不改变矩阵可逆性,由于我们可以很容易地观察出标准型矩阵的秩和行列式,所以若一个方阵可逆,它的标准型必然是一个单位阵。于是,每个可逆矩阵都可以写成N个初等矩阵的乘积,且初等矩阵都是可逆的,并且都有其明确的变换意义,我们便利用这个结论给出了求可逆矩阵的一般方法——初等变换法(很重要)。最后一部分介绍的是关于分块矩阵的一些知识,其实这些内容是矩阵内容的推广,把矩阵中的元素由数换成了矩阵,内容可以类比于矩阵进行学习,但要注意由于矩阵并不是数,所以比如说行列式运算与一般矩阵的运算法则不同,这种问题最好还是化为一般矩阵处理,以免超范围使用性质,造成不必要的错误。值得一提的是,分块矩阵的秩的性质很重要,在书的后续内容中有着广泛的应用。 第三章是空间向量,属于向量理论范畴,这是线性代数体系的另一个核心内容,它与线性方程组理论和解析几何有着紧密的联系。本章主要介绍基本的空间几何即三维向量知识,为学习更深一层向量理论给出一个直观印象,这是本书中空间解析几何部分的内容。首先给出三维向量的直观概念,空间中既有大小又有方向的量,然后给出了一些性质;建立坐标系,向量线性运算转化为坐标运算,这些都可以类比于平面向量学习。下面介绍空间中的平面和直线的知识,这是本章的重点。给出了平面在空间直角坐标系中的方程,利用两个平面的交线是直线这一结论给出直线方程的一般形式,根据方程解的情况讨论空间平面和直线的位置关系。空间中主要解决距离和角度两个问题,通过引入的向量积和平面法向量,给出了一系列相关求解公式,当然,理解这些公式的推导是更重要的,这能大大简化问题的求解。最后,书中还给出了平面束和投影的概念,求解直线在某一平面上的投影方程的方法要掌握。

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

行列式及其应用论文

目录 1.引言 (2) 2.行列式的概念 (2) 2.1排列与逆序 (2) 2.2 n阶行列式的定义 (2) 2.3 行列式的基本性质 (3) 2.4 行列式按行(列)展开定理 (4) 2.5 重要公式与结论 (5) 2.6 范德蒙德行列式的性质 (6) 3.行列式的若干应用 (6) 3.1行列式在线性方程组中的一个应用(克拉默法则的应用) (6) 3.2行列式在初等代数中的几个应用 (7) 3.2.1用行列式分解因式 (8) 3.2.2用行列式证明不等式和恒等式 (8) 3.3.行列式在解析几何中的几个应用 (8) 3.3.1用行列式表示公式(泰勒公式的行列式表示法) (8) 3.3.2用行列式表示三角形面积 (8) 3.3.3用行列式表示直线方程 (9) 4.范德蒙德行列式的若干应用 (10) 4.1范德蒙德行列式在行列式计算中的应用 (10) 4.2范德蒙德行列式在微积分中的应用 (11) 4.3范德蒙德行列式在向量空间理论中的应用 (12) 4.4范德蒙德行列式在线性变换理论中的应用. (13) 结论 (14) 致谢 (14)

行列式及其应用 任兰兰,数学计算机科学学院 摘要:行列式是线性代数一个重要的基本工具.本文首先对行列式的相关概念做了介绍,包括行列式的定义,性质,常见公式及结论等,然后通过例题详细介绍了行列式在线性方程组,初等代数以及解析几何中的应用,以及范德蒙行列式在微积分以及向量空间等方面的应用等.文章最后对行列式及其应用做了总结. 关键词:行列式;范德蒙德行列式;克拉默法则 The Determinants and Their Applications Abstract:The determinant is one of the elementary tools in linear algebra. We first introduce the corresponding conceptions of the determinants, such as the definition, the properties, the ordinary formulas and conclusions, then we discuss in detail the applications of the determinants in linear equations, elementary algebra, and analytic geometry and so on, we also discuss the applications of the Vandermonde determinant in calculus and vector space. Finally we summarize the advantages of the determinants. Key words:Determinant; Vandermonde determinant; Cramer rule

矩阵行列式的概念与运算(标准答案)

矩阵、行列式的概念与运算 知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:111213111211122122 2321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ? ?????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如1 11 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列式; 算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式展开的 对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解

相关主题
文本预览
相关文档 最新文档