当前位置:文档之家› 行列式的应用

行列式的应用

行列式的应用
行列式的应用

行列式的计算方法及应用

本科生毕业论文 题目: 行列式的计算方法及应用专业代码: 070102 作者姓名: 李延雪 学号: 2007200676 单位: 2007 级 1 班 指导教师: 孙守斌 2011年 5 月20 日

原创性声明 本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证明书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任. 学位论文作者签名: 日期 指导教师签名: 日期

目录 前言 (1) 1.行列式的定义及其表示 (1) 1.1 行列式的定义 (1) 1.2 行列式的表示 (3) 2.行列式的性质 (4) 3.行列式的计算方法 (6) 3.1加边法 (6) 3.2利用已知公式 (7) 3.3数学归纳法 (10) 3.4递推法 (11) 3.5构造法 (12) 3.6拆项法 (13) 4.行列式的应用 (13) 4.1行列式在证明微分中值定理中的应用 (13) 4.2 行列式在求逆矩阵中的应用 (15) 4.3行列式在多项式理论中的应用 (15) 4.4 行列式在解析几何中的应用 (16) 结语 (17) 参考文献 (18) 致谢 (19)

摘要 行列式是研究高等代数的一个重要工具.在对行列式的定义及其性质研究的基础上,总结了计算行列式的几种常见方法:加边法、构造法、递推法、拆项法、数学归纳法等.另外,归纳了二条线性行列式、“两岸”行列式、上(下)三角形行列式、二条线叉型行列式及箭型行列式几类特殊行列式的计算公式.利用行列式证明明微分中值定理;并通过一些具体的实例介绍了行列式在求逆矩阵、求解几何图形方程和计算图形面积体积等多个方面的实际应用. 关键词:行列式;计算方法;行列式的应用

行列式的应用讲解

摘要 行列式是数学研究中一类重要的工具之一,行列式最早出现在16世纪,用于解决线性方程组的求解问题。现在,行列式经过几世纪的发展已经形成了一整套完备的理论,并且在数学这门学科中占有很重要的位置。本论文通过对行列式理论和行列式在线性方程组和中学数学中的应用展开研究。首先论述了行列式的历史意义,其次展示了行列式在线性方程组中的应用以及在中学数学中的应用,重点论述了行列式在中学代数领域以及中学几何领域的应用。论文以求解线性方程组和解中学几何与代数问题为例,论述了行列式在实际中的应用。主要通过文献研究的方法对行列式的应用进行研究,充分阐释了行列式在不同方面的应用。 关键词:行列式,线性方程组,中学代数,中学几何

The Application of The Determinant Abstract The determinant is one of a kind of important tools in mathematical research, determinant first appeared in the 16th century, used to solve linear equations to solve the problem. now, the determinant after centuries of development has formed a set of complete theory, and the mathematics occupies very important position in the subject. This paper based on the theory and determinant determinant in the system of linear equations and the application of the middle school mathematics study. First discusses the historical significance of determinant, the second shows the determinant in the application of linear equations, and the middle school mathematics, the application of the determinant is emphasized in the field of high school algebra and applied in the field of high school geometry. Paper to solve the linear system of equations and middle school geometry and algebra problem as an example, this paper discusses the determinant in the actual application. Mainly through the literature research methods to study the application of the determinant, fully illustrates the application of determinant in different aspects. Key words: determinant, system of linear equations, algebraic secondary school, high school geometry

行列式的计算及应用毕业论文

行列式的计算及应用毕业论文 目录 1. 行列式的定义及性质 (1) 1.1 行列式的定义 (1) 1.1.1 排列 (1) 1.1.2 定义 (1) 1.2 行列式的相关性质 (1) 2. 行列式的计算方法 (5) 2.1 几种特殊行列式的结果 (5) 2.1.1 三角行列式 (5) 2.1.2 对角行列式 (5) 2.2 定义法 (5) 2.3 利用行列式的性质计算 (5) 2.4 降阶法 (6) 2.5 归纳法 (7) 2.6 递推法 (8) 2.7 拆项法 (9) 2.8 用德蒙德行列式计算 (10) 2.9 化三角形法 (10) 2.10 加边法 (11) 2.11 拉普拉斯定理的运用 (12) 2.12 行列式计算的Matlab实验 (13) 3. 行列式的应用 (15) 3.1 行列式应用在解析几何中 (15) 3.2 用行列式表示的三角形面积 (15) 3.3 应用行列式分解因式 (16) 3.4 利用行列式解代数不等式 (17) 3.5 利用行列式来证明拉格朗日中值定理 (17) 3.6 行列式在实际中的应用 (18) 总结 (20) 参考文献 (21) 附录1 (22) 附录2 (22)

附录3 (23) 谢辞 (24)

1. 行列式的定义及性质 1.1 行列式的定义 1.1.1 排列[1] 在任意一个排列中,若前面的数大于后面的数,则它们就叫做一个逆序,在任意一个排列中,逆序的总数就叫做这个排列的逆序数. 1.1.2 定义[1] n 阶行列式 nn n n n n a a a a a a a a a D 21 22221 11211 = 就相当于全部不同行、列的n 个元素的乘积 n nj j j a a a 2121 (1-1-1) 的代数和,这里n j j j 21是n ,,2,1 的一个排列,每一项(1-1-1)都按下列规则带有符号:当n j j j 21是偶排列时,(1-1-1)是正值,当n j j j 21是奇排列时,(1-1-1)是负值.这一定义可以表述为 n n n nj j j j j j j j j nn n n n n a a a a a a a a a a a a D 21212121) (21 22221 11211 )1(∑-= = τ , (1-1-2) 这里 ∑ n j j j 21表示对所有n 级排列求和. 由于行列指标的地位是对称的,所以为了决定每一项的符号,我们也可以把每一项按照列指标排起来,所以定义又可以表述为 n i i i i i i i i i nn n n n n n n a a a a a a a a a a a a D 21)(21 22221 11211 212121)1(∑-== τ. (1-1-3) 1.2 行列式的相关性质 记 nn n n n n a a a a a a a a a D 21 22221 112 11 = ,nn n n n n a a a a a a a a a D 212 2212 12111 '=,

行列式经典例题及计算方法

行列式的例题 1.已知方程 01125208 42111111154115 21211111154113 21111113 23232=+ + -x x x x x x x x x ,求x 。 解:由行列式的加法性质,原方程可化为 32321 12520842111111154118 4211111x x x x x x + 3 232 2781941321111112793184 211111x x x x x x = = =(2-1)(3-1)(3-2)(x-1)(x-2)(x-3)=0 得x=1或x=2或x=3。 2.计算:(化三角形法) 3.拆行列法 42031 2852 51873 121D =

行列式的计算 (四)升级法(加边法) 112122 1212 ,0 n n n n n n a b a a a a b a D b b b a a a b ++= ≠+ 1 21121221 21 1000n n n n n n n a a a a b a a D a a b a a a a b ++=++ 解:1) 1 21121 1 00(2,31)10010 0n i n a a a b r r i n b b --=+-- 121 (1).n i n i i a b b b b ==+∑ 111 11100 (1,21)00 n i n i i i i n a a a b c b c i n b b =+++ =+∑ 行列式的计算 (二)箭形行列式 0121112 2,0,1,2,3. n n i n n a b b b c a D a i n c a c a +=≠= 解:把所有的第列的倍加到(1,,)i n = i i c a -1i +第1列,得: 11201()n i i n n i i b c D a a a a a +==-∑

行列式的性质及应用

题目 (1) 摘要 (1) 正文 (1) 一.问题的提出 (1) 二.排列 (1) 三.行列式 (1) 四.n阶行列式具有的性质 (2) 五.行列式的计算 (3) (一)数字型行列式的计算 (3) (二)行列式的概念与性质的例题 (6) (三)抽象行列式的计算 (6) (四)含参数行列式的计算 (7) A 的证明 (7) (五)关于0 (六)特殊行列式的解法 (8) (七)拉普拉斯定理 (9) 参考文献 (10) 致谢 (11) 外文页 (12) 行列式的性质及计算

王峰 摘 要 在线性代数中,行列式是一个重要的基本工具,直接计算行列式往往是困难和繁琐的,特别当行列式的元素是字母时更加明显,因此熟练地掌握行列式的计算方法是非常重要的。行列式的重点是计算,应当在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶,四阶行列式,也会计算简单的n 阶行列式的值.计算行列式的基本方法是:按行(列)展开公式,通过降阶来实现。但在展开之前往往先通过对行列式的恒等变形,以期新的行列式中能构造出较多的零或有公因式,从而可简化计算,行列式计算的常用技巧有,三角化法,递推法,数学归纳法,公式法。 关键词 三角化法 递推法 数学归纳法 公式法 一.问题的提出 在实践中存在许多解n 元一次方程组的问题,如 ①11112212112222 a x a x b a x a x b +=??+=? ②11112211121222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 对于①我们可以解出,但对于②,我们有什么方法解出呢?我想可以用行列式的知识。 二.排列 定义1 由1.2……n 组成的一个有序数组称为一个n 级排列。n 级排列的总数为 (1)(2)21!n n n n ?-?-?= (n 的阶乘个)。 定义2 在一个排列中,如果一队数的前后位置与大小顺序相反,即前面的大于后面的数,那么它 们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。 定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列。 例1 决定以下9级排列的逆序数,从而决定它们的奇偶性 134782695 解 逆序数为10,是偶排列。 三.行列式: 定义(设为n 阶):n 阶行列式 是取自不同行不同列的n 个元素的乘 积的代数和,它由n !项组成,其中带正号与带负号的项各占一半,12()n j j j τ 表示排列 12n j j j 的 12121211 12121222()121 2(1)n n n n n j j j j j nj j j j n n nn a a a a a a A a a a a a a τ= = -∑

行列式计算及应用

行列式的计算及应用 毕晟 100220120 数字印刷一班 【摘要】通过了一年的线性代数学习,行列式是学习的重点,因而我对行列式的计算和应用进行总结性的说明,并借此对行列式进行复习。 【关键字】行列式 引言:行列式在本册书中极为重要,并且与其他的章节知识点比如矩阵求逆、向量组、方程等有紧密的联系,所以学好行列式是很重要的,通过这次论文,也可以对期末考试中的行列式问题进行必要的复习。 一. 行列式的计算 1. 定义法 根据定义公式解行列式。 例如: 二阶行列式中 2 521 = 85221-=?-? 三阶行列式中 4 213212 51=215644158531132221221135421=---++=??-??-??-??+??+?? 2.化成三角形行列式法 例求D =3 1 1 1的值 1 3 1 1 1 1 3 1 1 1 1 3 解D =3 1 1 1=6 1 1 1 1 3 1 1 6 3 1 1 1 1 3 1 6 1 3 1 1 1 1 3 6 1 1 3 =1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 =1 1 1 1=48 0 2 0 0 0 0 2 0 0 0 0 2 3. 分解行列法 若行列式的某行(列)是两行(列)的和,则可将行列 式分解成两个行列式的和. 4.分离线性因子法 此法是把行列式看成含于其中的一个或一些字母的多项式,变换

它,若发现:它可被一些线性因子所整除,如果这些因子互素,它也可被 这些因子的积所整除,然后将行列式个别项与线性因子积的项比较,求 用这乘积除行列式的商,从而求得行列式的表达式。 5. 递推关系式法 此法是变换已知行列式,并按行或按列把它展开成较低阶的同类型 的行列式的表示式。所得到的等式为递推关系式。在递推关系是右端出 现几个低阶的行列式,然后就按行列式的一般形式计算几个低阶的行列 式。更高阶的行列式逐次由递推关系式算出,在表达n 阶行列式的递推 关系中,把在递推关系式中的n-1 换n 所得到的关于n-1 阶行列式的表 达式代入;其次,把n-2 阶行列式的类似表达式代入,依此类推,直到所 求n 阶行列式的一般表达式为止,递推关系式法是所研究的方法中最常 用的方法,它适用与较复杂的行列式。 6.拆分法 可以将行列式化简后,拆分为余子式进行计算。但计算量较大。 二. 行列式的应用 2.1 应用行列式解线性方程组(主要应用克莱姆法则,这里要注意应 用的条件) 2.2 雅可比行列式在隐函数组中的应用 2.3 非奇异矩阵的判别 2.4 计算矩阵的秩。求行列式的值 下面就我们学过的2.1和2.4进行解释说明: 用行列式解方程分为线性齐次方程和线性非齐次方程 例如2.1: 5 26421 43321321321=++=++=++x x x x x x x x x 于是可以用行列式表示: D=111642143 2156421411=D 1516221132=D 5 112421 433=D 所以 D D x 11= D D x 22= D D x 33= 2.4 A=0 141114 21 我们将其化简为最简阶梯型的行列式如:0 002102 01 则 R (A )=2 三. 总结 行列式在线性代数中很重要,而它的应用也很广泛,对此,我们深入学习,就可以开拓思维、拓宽视野。

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

行列式论文

行列式计算方法总结及简单应用 摘要:行列式的计算方法,并举例说明了它们的应用,同时对若干特殊例子进行推广。并举出了几种常见的行列式应用。 关键词:行列式;范德蒙行列式;矩阵;特征植;拉普拉斯定理;析因法;辅助行列式法;行列式的应用;方程组;平面几何。 Abstract: The formulation of the various calculation methods, and examples of theirapplications, and to promote a number of special cases Cited several common determinant applications . Keywords: determinant; Vandermonde determinant; matrix; characteristics of plants;Laplace theorem; factorial method; secondary determinant method Determinant of the application; equations; plane geometry 引言 计算方法变化多样,本科期间只能解决一些初等的基本的或者说是有规律的行列式。而其方法又分为简单和复杂。最复杂的情形就是:任何一个n阶行列式都可以由它的定义去计算其值。但由定义可知,n阶行列式的展开式有n!项,计算量很大,一般情况下不用此法。当然也有列外,假设行列式中有许多零元素,可考虑此法,但也只是考虑。特别需要注意的是:在应用定义法求非零元素乘积项时,不一定从第1行开始,哪行非零元素最少就从哪行开始。本论文要介绍的是有规律可循的行列式计算。 而在高代课本中行列式的应用包括了求解方程组,求矩阵的特征向量等等,本论文就不再赘述,本论文中给出的应用是我在做题过程中总结出的行列式考题中的一些常见的问题,以例题的形式给出,可以引发进一步的思考。

行列式练习题及答案

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0000000010 020001000 -= ( ). (A )! n (B )!)1(2) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913251323 2 213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 14 4312----- 2. d c b a 100 1100 11001--- 3.a b b b a b b b a D n =

行列式的若干应用 毕业论文

行列式的若干应用 The Number of Applications of The Determinants 专业: 数学与应用数学 作者: 指导老师:

摘要 行列式是数学研究中的一类重要的工具之一, 它的应用非常广泛. 本文从以下三个方面对行列式的应用进行了论述: 探讨了行列式与线性方程组的关系以及在解线性方程组中的应用; 举例说明了行列式在初等代数中的应用, 如在因式分解中应用, 证明不等式以及恒等式; 最后综述了行列式在解析几何中的若干应用. 关键词: 行列式; 矩阵; 线性方程组; 秩; 因式分解; 平面组; 点组

Abstract Determinant is a kind of important tools in the mathematical study, it is a very wide range of applications. In this paper, we have been to discuss from the following three aspects of the applications of the determinants: To explore the relationship between the determinant and linear equations and the application in the solution of linear equations; examples of the application of the determinant in algebra, such as the application of factorization, to prove that inequality and identity; in the final, we have made overview of the number of applications of the determinants in analytic geometry. Keywords:Determinant; Matrix; Linear equations; Rank; Factorization; Plane group; Point group

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展,它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,… ,n 组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123…n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3,数4与1,数4与2,数5与3,数5与1,数5与2,数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 8.什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。 答:逆序数为奇数的排列叫奇排列;逆序数为偶数的排列叫偶排列。例如:排列45312为偶排列。 10.对换一个排列中的任意两个数,该排列的奇偶性有什么变化?【知识点】:排列的对换对排列的奇偶性的影响。 答:对换一个排列中的任意两个数,奇排列就变成偶排列,偶排列就变成奇排列。例如:偶排列45312对换4与3,则变成排列35412,它的逆序数为7,排列35412是奇排列。 11.任一个n阶排列与标准排列可以互变吗?【知识点】:n阶排列与标准排列的关系。 答:可经过一系列对换互变。且所做对换的次数与排列具有相同的奇偶性。例如:排列32541的逆序数是6,因而是偶排列,它经过2次对换:3与1对换后变为12543,再对换5

线性代数行列式经典例题22998

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故 011102120 n n n D n n --= --L L M O L 1,1,,2 i i r r i n n --=-= L 0111111 1 1 n ----L L M O L 1,,1 j n c c j n +=-= L 121 1 021 (1)2(1)020 1 n n n n n n ------=----L L L L M O O L M L 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 011102120 n n n D n n --= --L L M O L 11,2,,1 111111120 i i r r i n n n +-=----= --L L L M O L 1 2,,1 0012 01231 j c c j n n n n +=---= ---L L L M O L =1 2(1) 2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察德蒙行列式: =

行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+K K M M M M K 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 11 11n x x x -----O O = x D 1-n + a n 由于 D 1= x + a 1,2 21 1x D a x a -= +,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n =L = x 1-n D 1+ a 2x 2-n +K + a 1-n x + a n =1 11n n n n x a x a x a --++++L 方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 2112 1010010000n n n n x x x a xa a a x a -----++K K K M M M M K 213 c x c += 3212 1231 010*********n n n n n n x x x a xa x a a a a x a --------+++K K K M M M M M K =L L = 11 1x f x ---O O O n r = 按展开 1(1)n f +-1 11 1n x x x ----O O = 111n n n n x a x a x a --++++L

范德蒙行列式的历史回顾与应用

范德蒙行列式的历史回顾与应用 摘要:行列式是高等代数的重要内容之一,它是线性方程组、矩阵、向量空间和线性变 换的基础。n 级范德蒙行列式是著名的行列式,它有广泛的应用,证明过程是行列式定理及数学归纳法的综合应用。本文将通过对n 级范德蒙行列式的历史发展进程与范德蒙行列式和类似范德蒙行列式的计算方法, 讨论它的各种位置变化规律, 介绍如何将类似范德蒙行列转换构造为标准的范德蒙行列式,并通过行列式的性质及定理,行列式的乘法规则,和行列式的加边法,来计算此类行列式,由此让人们能较为深入地了解到范德蒙行列式的魅力所在,同时也提高了分析、归纳与总结相关内容的能力,掌握解决此类问题的方法与技巧。 关键词:行列式,范德蒙行列式,行列式的性质,乘法规则,加边法,拉普拉斯定理, 子式,代数余子式,克莱姆法则,重根,充要条件,线性方程组。 1 .引言 行列式 11312 1 1223222 13 2 1 1111----=n n n n n n n a a a a a a a a a a a a d 称为n 级的范德蒙行列式。(见文献[1]) 我们来证明,对任意的n (n ≥2),n 级范德蒙行列式等于n a a a ,,,21 这n 个数的所有可能的差j i a a -(1≤j <i ≤n )的乘积,即 ∏≤<≤-n i j j i a a 1)(。 我们可以将范德蒙行列式或类似范德蒙行列式的行列式,用行列式的性质、乘法规则、加边法,计算出结果。 2.1.预备知识

性质1 行列互换,行列式不变,即 nn n n n n nn n n n n a a a a a a a a a a a a a a a a a a 212 221212111212222111211= 。 在行列式中行与列的地位是对称的,因之凡是有关行的性质,对列也同样成立。 性质2 nn n n in i i n nn n n in i i n a a a a a a a a a k a a a ka ka ka a a a 21 21 112112 1 2111211=。 这就是说,一行的公因子可以提出去,或者说以一数乘行列式的一行就相当于用这个数乘此行列式。 性质3 nn n n n n nn n n n n nn n n n n n a a a c c c a a a a a a b b b a a a a a a c b c b c b a a a 2 12 1 11211212 1112112 1 221111211+=+++。 这就是说,如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个行列式除这一行以外与原来行列式的对应的行一样。 性质4 如果行列式中有两行相同,那么行列式为零。所谓相同就是说两行的对应元素都相等。 性质5 如果行列式中两行成比例,那么行列式为零。 性质6 把一行的倍数加到另一行,行列式不变。

行列式的运算与应用

,. 行列式的运算与应用 实验目的: 1. 学习数据的输入及用syms语句先定义变量再输入的两种方式. 2. 掌握利用Matlab软件计算n阶行列式的方法(包括含参数的行列式) 3. 熟悉Matlab软件中关于矩阵运算的各种语句. 4. 掌握对已知矩阵如何进行修改其中的数据,以及如何构建对应的行(列)子矩阵及扩展矩阵. 5. 掌握矩阵初等变换的每个步骤 实验内容: 1.计算12阶行列式 x a a a x a a a x - -- L L L L L L L 并赋值x=2,4,-1;a=0,2,4时,求行列式的 值。 解syms x % syms语句定义变量x syms a % syms语句定义变量a A=[x a a a a a a a a a a a; % 输入矩阵A -a x a a a a a a a a a a; -a -a x a a a a a a a a a; -a -a -a x a a a a a a a a; -a -a -a -a x a a a a a a a; -a -a -a -a -a x a a a a a a; -a -a -a -a -a -a x a a a a a;

,. -a -a -a -a -a -a -a x a a a a; -a -a -a -a -a -a -a -a x a a a; -a -a -a -a -a -a -a -a -a x a a; -a -a -a -a -a -a -a -a -a -a x a; -a -a -a -a -a -a -a -a -a -a -a x] D=det(A) %计算行列式A X=(2,4,0) B1=subs(D,x) subs(B1,a,0) B2=subs(D,x,4) subs(B2,a,2) B3=subs(D,x,-1) subs(B3,a,4) 2.计算10阶行列式 000 00 000 000 000 a b b a a b b a a b b a b b a a b + + + + + L L L L L L L L L L 解:syms a % syms语句定义变量a syms b % syms语句定义变量b A=[a+b b 0 0 0 0 0 0 0 0; % 输入矩阵A a a+ b b 0 0 0 0 0 0 0; 0 a a+b b 0 0 0 0 0 0; 0 0 a a+b b 0 0 0 0 0;

行列式的例题

行列式的例题 一.直接用行列式的性质计算行列式 1.试证明 2 2 2 111 2 22 22 21111112c b a c b a c b a b a a c c b b a a c c b b a a c c b =+++++++++证明:先用行列式的加法性质拆第一列,再用初等变换化简得 2 22 22 11111 2 22 22 11111 b a a c c b a a c c b a a c c b a a c b b a a c b b a a c b +++++++++++++=左 2 22 2 1111 2 2 22 1111 b a a c b a a c b a a c a a c b a a c b a a c b +++++++= 222111 222111 b a c b a c b a c a c b a c b a c b += 22 2 111 2 2 2 111 a c b a c b a c b a c b a c b a c b += 2 2 2 1112a c b a c b a c b ==右 2.计算n 阶行列式 n n n n n n n b a b a b a b a b a b a b a b a b a D +++++++++= Λ ΛΛΛ Λ21222121211 1 解:当n=1时,D 1=a 1+b 1 , 当n=2时,D 2=(a 1+b 1)(a 2+b 2)-(a 1+b 2)(a 2+b 1) =(a 1-a 2)(b 1-b 2) 当n≥3时,将第一行乘(-1)加到其余各行后,可得这些行对应成比例,即 01 111313131 2121212111=---------+++=a a a a a a a a a a a a a a a a a a b a b a b a D n n n n n Λ M M M Λ ΛΛ 综上所述

行列式起源

线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意, 而且写了成千篇关于这两个课题的文章。向量的概念, 从数学的观点来看不过是有序三元数组的一个集合, 然而它以力或速度作为直接的物理意义, 并且数学上用它能立刻写出物理上所说的事情。向量用于梯度, 散度, 旋度就更有说服力。同样, 行列式和矩阵如导数一样(虽然dy/dx 在数学上不过是一个符号, 表示包括△y/△x 的极限的长式子, 但导数本身是一个强有力的概念, 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,意思是“ 解行列式问题的方法” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz ,1693 年)。1750 年克莱姆(Cramer )在他的《线性代数分析导言》(Introduction d l'analyse des lignescourbesalge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer 克莱姆法则)。1764 年, Bezout把确定行列式每一项的符号的手续系统化了。对给定了含n 个未知量的n 个齐次线性方程, Bezout证明了系数行列式等于零是这方程组有非零解的条件。Vandermonde是第一个对行列式理论进行系统的阐述( 即把行列' 式理论与线性方程组求解相分离) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。Laplace 在1772 年的论文《对积分和世界体系的探讨》中, 证明了Vandermonde 的一些规则, 并推广了他的展开行列式的方法, 用r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。德国数学家雅可比(Jacobi )也于1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家柯西(Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了laplace的展开定理。相对而言,最早利用矩阵概念的是拉格朗日(Lagrange )在1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯(Gauss )大约在1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯- 约当消去法则最初是出现在由Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家Camille Jordan 误认为是“高斯- 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。1848 年英格兰的J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。1855 年矩阵代数得到了Arthur Cayley的工作培育。Cayley研究了线性

相关主题
文本预览
相关文档 最新文档