当前位置:文档之家› 行列式在高中几何中的应用

行列式在高中几何中的应用

行列式在高中几何中的应用
行列式在高中几何中的应用

行列式的应用讲解

摘要 行列式是数学研究中一类重要的工具之一,行列式最早出现在16世纪,用于解决线性方程组的求解问题。现在,行列式经过几世纪的发展已经形成了一整套完备的理论,并且在数学这门学科中占有很重要的位置。本论文通过对行列式理论和行列式在线性方程组和中学数学中的应用展开研究。首先论述了行列式的历史意义,其次展示了行列式在线性方程组中的应用以及在中学数学中的应用,重点论述了行列式在中学代数领域以及中学几何领域的应用。论文以求解线性方程组和解中学几何与代数问题为例,论述了行列式在实际中的应用。主要通过文献研究的方法对行列式的应用进行研究,充分阐释了行列式在不同方面的应用。 关键词:行列式,线性方程组,中学代数,中学几何

The Application of The Determinant Abstract The determinant is one of a kind of important tools in mathematical research, determinant first appeared in the 16th century, used to solve linear equations to solve the problem. now, the determinant after centuries of development has formed a set of complete theory, and the mathematics occupies very important position in the subject. This paper based on the theory and determinant determinant in the system of linear equations and the application of the middle school mathematics study. First discusses the historical significance of determinant, the second shows the determinant in the application of linear equations, and the middle school mathematics, the application of the determinant is emphasized in the field of high school algebra and applied in the field of high school geometry. Paper to solve the linear system of equations and middle school geometry and algebra problem as an example, this paper discusses the determinant in the actual application. Mainly through the literature research methods to study the application of the determinant, fully illustrates the application of determinant in different aspects. Key words: determinant, system of linear equations, algebraic secondary school, high school geometry

行列式的计算方法及应用

本科生毕业论文 题目: 行列式的计算方法及应用专业代码: 070102 作者姓名: 李延雪 学号: 2007200676 单位: 2007 级 1 班 指导教师: 孙守斌 2011年 5 月20 日

原创性声明 本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证明书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任. 学位论文作者签名: 日期 指导教师签名: 日期

目录 前言 (1) 1.行列式的定义及其表示 (1) 1.1 行列式的定义 (1) 1.2 行列式的表示 (3) 2.行列式的性质 (4) 3.行列式的计算方法 (6) 3.1加边法 (6) 3.2利用已知公式 (7) 3.3数学归纳法 (10) 3.4递推法 (11) 3.5构造法 (12) 3.6拆项法 (13) 4.行列式的应用 (13) 4.1行列式在证明微分中值定理中的应用 (13) 4.2 行列式在求逆矩阵中的应用 (15) 4.3行列式在多项式理论中的应用 (15) 4.4 行列式在解析几何中的应用 (16) 结语 (17) 参考文献 (18) 致谢 (19)

摘要 行列式是研究高等代数的一个重要工具.在对行列式的定义及其性质研究的基础上,总结了计算行列式的几种常见方法:加边法、构造法、递推法、拆项法、数学归纳法等.另外,归纳了二条线性行列式、“两岸”行列式、上(下)三角形行列式、二条线叉型行列式及箭型行列式几类特殊行列式的计算公式.利用行列式证明明微分中值定理;并通过一些具体的实例介绍了行列式在求逆矩阵、求解几何图形方程和计算图形面积体积等多个方面的实际应用. 关键词:行列式;计算方法;行列式的应用

线性方程组解的几何意义

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解 这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,0 11111:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

华南理工大学 线性代数与解析几何 习题答案 (6)

《线性代数与解析几何》勘误表 第1章:行列式 p.13, 例题 4.1: 解的第二个等号后,应加一个负号。 p.15,第三行(等号后):去掉; p.17, 第7-8行: (t=1,2,…, j-1,j+1,…,n) p.19,倒数第4-5行:假设对于n-1阶范德蒙行列式V_{n-1}结论成立,… p .20,第2行: D_{n-1}改为V_{n-1} p.20, 第6行,定理5.2中: 去掉“若”字 p.21, 倒数第3行: …展开代入而得, p.24,倒数第1行: (-1)的指数应为“1+2+…+k +1+2+…+k ” 习题1: 第1题(2)答案有误:应为sin2x-cosx^2. 第6题(3)答案有误:(3) n(3n-1)/2, 当n=4k 或者n=4k+3时为偶数,当n=4k+1或4k+2时为奇数. 第10题(4)(5)答案有误:(4)(-1)^{(n-2)(n-1)/2};(5)(-1)^{n-1}a_n 第11题(6)答案有误: ….,当a\neq 0时,D=(-1)^{n(n-1)/2}a^{n-2}[a^2-(n-1)x^2] p.26, 第12题(2):改为: (33333) 3222 222111 111=+++++++++y x x z z y y x x z z y y x x z z y (3): …= ;)1](2 )2)(1([1--+-+ n a n n a (4): …=.0 ∑=-n i i n i b a p.27, 第14题(4):(此题较难,可以去掉!) 答案有误,应为: n x n )2 )(1( n +=,当yz x 42=。 第15题答案有误:为60(11-2) p .27, 第16题:去掉条件“若x_1+x_2+x_3+x_4=1,则” 第二章:矩阵 p.32, 第7行: 称其为n 阶对角矩阵,….. p.35, 第5-6行: b_21和b_12互换位置(两处) p.36, 第7行: 去掉“设 A ,B ,C 分别为….矩阵,”在第10行后增加: 当然,这里假定了矩阵运算是有意义的. p.39, 第4行: 就得到一个2*2的分块矩阵。 p.46,第2行: 去掉 ′(3个) p .46,倒数 4-6行:… 为满秩的(或非奇异的,非退化的),…为降秩的(或奇异的,退化的),… p.47,倒数第6-7行: 去掉 “,n α”(3处 ),另: 本页的 ”T j T i αα,”均改

行列式在几何中的应用(黄洁定稿) (1)

上饶师范学院 本科毕业论文 论文题目:行列式在解析几何中的应用专业:数学与应用数学 班级:09级数计学院(2)班学号:09010213 学生姓名:黄洁 指导教师姓名:谭海女 上饶师范学院数学与计算机科学学院 2013 年 4 月 行列式在解析几何中的应用

摘要 行列式在数学中,是由解线性方程组产生的一种算式。作为基本的数学工具,无论是几何、线性代数、多项式理论,还是在微积分学中,它都有着重要的应用。本文根据行列式在解析几何中的应用进行相关讨论与探究,介绍了行列式应用产生的背景,特点,以及行列式在解析几何中应用的优点。 关键词 行列式;解析几何;代数。

目录 一.预备知识 引言 .......................................................................................1 §1.1一些定义和基本定理............................................................1 二.运用行列式解决解析几何问题的几个结果及证明 (2) 1 12 21 11 x y y y =0是经过不同两点P 1 (1x ,y 1),P 2(2,2x y )的直线的方程………2 §2.2 三顶点为A (1x ,y 1),B (2,2x y ),C 3,3()x y 的三角形的面积S=1 2 1 12 23 3111 x y x y x y 的绝对值 (3) §2.3 平面上三点(1x ,y 1),(2,2x y ),3,3()x y 共线的充要条件是1 12 23 31 11 x y x y x y =0……4 §2.4 方程1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=表示三直线共点 的必要条件是1 11 2 223 3 3 a b c a b c a b c =0.....................................................................5 三. 行列式在解析几何中应用的意义......................................................6 四.结语..........................................................................................6 五.致谢..........................................................................................6 参考文献 (7)

矩阵行列式的概念与运算

知识点总结: 一、矩阵的概念与运算 1、 矩阵1112 132122 23a a a a a a ?? ??? 中的行向量是()111213a a a a =r ,()2122 23b a a a =r ; 2、 如:1112131112111221222321222122,,c c c a a b b A B C c c c a a b b ?? ???? === ? ? ??????? ,那么 11111212111221212222212233,333a b a b a a A B A a b a b a a ++???? +== ? ? ++????, 1111122111121222 111312232111222121122222 21132223a c a c a c a c a c a c AC a c a c a c a c a c a c +++?? = ?+++?? 矩阵加法满足交换律和结合律,即如果,,A B C 是同阶的矩阵,那么有: ,()()A B B A A B C A B C +=+++=++。 同理如果矩阵,A B 是两个同阶矩阵,那么将它们对应位置上的元素相减所得到的矩阵C 叫做矩阵A 与B 的差,记作C A B =-。 实数与矩阵的乘法满足分配律:即()a A B aA aB +=+。 矩阵对乘法满足:()A B C AB AC +=+,()B C A BA CA +=+,()()()a AB aA B A aB == ()()AB C A BC = 3、 矩阵乘法不满足交换率,如111 11 11 122222222.a b c d c d a b a b c d c d a b ????????≠ ??? ??????????? 矩阵乘法能进行的条件是左边的矩阵A 的列数与右边矩阵B 的行数相等,而且矩阵的乘法不满足交换率,不满足消去律。 二、行列式概念及运算 1.用记号 2 2 11b a b a 表示算式1221b a b a -,即 2 2 11b a b a =1221b a b a -,其中 2 2 11b a b a 叫做二阶行列 式;算式1221b a b a -叫做二阶行列式的展开式;其计算结果叫做行列式的值;2121,,,b b a a 都叫做行列式的元素.利用对角线 2 2 11b a b a 可把二阶行式写成它的展开式,这种方法叫做二阶行列式 展开的对角线法则;即在展开时用主对角线元素的乘积减去副对角线元素的乘积. 2.二元一次方程组的解 二元一次方程组???=+=+222 1 11c y b x a c y b x a (其中2121,,,b b a a 不全为零);记 2 211b a b a 叫做方程组的系数

华南理工大学 线性代数与解析几何 试卷

,考试作弊将带来严重后果! 华南理工大学期末考试(A 卷) 《 2007线性代数 》试卷 20分) (1) 设A 是n m ?矩阵,B 是m 维列向量,则方程组B AX =无解的充分必要条件 是: (2) 已知可逆矩阵P 使得1cos sin sin cos P AP θθθ θ-??= ?-?? ,则12007 P A P -= (3) 若向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3)的秩为2,则t= (4) 若A 为2n 阶正交矩阵,*A 为A 的伴随矩阵, 则*A = (5) 设A 为n 阶方阵,12,,,n λλλ??????是A 的n 个特征根,则1n i i E A λ=-∑ = 选择题(共20分) (1) 将矩阵n m A ?的第i 列乘C 加到第j 列相当于对A : A , 乘一个m 阶初等矩阵, B ,右乘一个m 阶初等矩阵

C,左乘一个n阶初等矩阵,D,右乘一个n阶初等矩阵 (2)若A为m×n 矩阵,B是m维非零列向量,()min{,} r A r m n =<。集合{:,}n M X AX B X R ==∈则 A,M是m维向量空间,B,M是n-r维向量空间 C,M是m-r维向量空间,D,A,B,C都不对 (3)若n阶方阵A,B满足,22 A B =,则以下命题哪一个成立 A,A B =±,B,()() r A r B = C,det det A B =±,D,()() r A B r A B n ++-≤ (4)若A是n阶正交矩阵,则以下命题那一个成立: A,矩阵1A-为正交矩阵,B,矩阵-1A-为正交矩阵 C,矩阵*A为正交矩阵,D,矩阵-*A为正交矩阵 (5)4n阶行列式 111 110 100 -???-- -???- ?????? -??? 的值为: A,1,B,-1 C,n D,-n 三、解下列各题(共30分) 1.求向量 5 1 3 β ?? ? =- ? ? ?? ,在基 123 111 0,1,1 101 ααα ?????? ? ? ? === ? ? ? ? ? ? ?????? 下的坐标。

行列式的性质及应用

题目 (1) 摘要 (1) 正文 (1) 一.问题的提出 (1) 二.排列 (1) 三.行列式 (1) 四.n阶行列式具有的性质 (2) 五.行列式的计算 (3) (一)数字型行列式的计算 (3) (二)行列式的概念与性质的例题 (6) (三)抽象行列式的计算 (6) (四)含参数行列式的计算 (7) A 的证明 (7) (五)关于0 (六)特殊行列式的解法 (8) (七)拉普拉斯定理 (9) 参考文献 (10) 致谢 (11) 外文页 (12) 行列式的性质及计算

王峰 摘 要 在线性代数中,行列式是一个重要的基本工具,直接计算行列式往往是困难和繁琐的,特别当行列式的元素是字母时更加明显,因此熟练地掌握行列式的计算方法是非常重要的。行列式的重点是计算,应当在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶,四阶行列式,也会计算简单的n 阶行列式的值.计算行列式的基本方法是:按行(列)展开公式,通过降阶来实现。但在展开之前往往先通过对行列式的恒等变形,以期新的行列式中能构造出较多的零或有公因式,从而可简化计算,行列式计算的常用技巧有,三角化法,递推法,数学归纳法,公式法。 关键词 三角化法 递推法 数学归纳法 公式法 一.问题的提出 在实践中存在许多解n 元一次方程组的问题,如 ①11112212112222 a x a x b a x a x b +=??+=? ②11112211121222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 对于①我们可以解出,但对于②,我们有什么方法解出呢?我想可以用行列式的知识。 二.排列 定义1 由1.2……n 组成的一个有序数组称为一个n 级排列。n 级排列的总数为 (1)(2)21!n n n n ?-?-?= (n 的阶乘个)。 定义2 在一个排列中,如果一队数的前后位置与大小顺序相反,即前面的大于后面的数,那么它 们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。 定义3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列。 例1 决定以下9级排列的逆序数,从而决定它们的奇偶性 134782695 解 逆序数为10,是偶排列。 三.行列式: 定义(设为n 阶):n 阶行列式 是取自不同行不同列的n 个元素的乘 积的代数和,它由n !项组成,其中带正号与带负号的项各占一半,12()n j j j τ 表示排列 12n j j j 的 12121211 12121222()121 2(1)n n n n n j j j j j nj j j j n n nn a a a a a a A a a a a a a τ= = -∑

高中数学沪教版(上海)高二第一学期9.3二阶行列式_导学案

二阶行列式 【学习目标】 1.理解二阶矩阵的概念。 2.会利用对角线写出二阶行列式的展开式。 【学习重难点】 1.熟练掌握二元一次方程与二阶矩阵之间的转化。 2.会化简二阶矩阵。 【学习过程】 一、新课的概念 1.称为______________,算式_____________叫做此行列式的展开式,其计算结果叫做_____________,_____________叫做行列式的元素。 2.利用对角线可把二阶行列式写成它的展开式,这种方法叫做二阶行列式展开的_____________; 3.二元一次方程组???=+=+222 111c y b x a c y b x a (其中x ,y 未知数,2121,,,b b a a 是未知数的系数且不全为零,21,c c 是常数项)的系数行列式是D =________,Dx =________,Dy =________, 当0≠D 时,方程组的解可用二阶行列式表示为???==y x ________。 二、例题讲解 展开并化简下列行列式: (1)43 75; (2)3475 ; (3) cos sin sin cos θθθθ-。

2.若236 031x x -=+,求x 的值。 4.用行列式解下列二元一次方程组: (1)???=+=+-61548 115y x y x ; (2)???=+=01-20 5--3y x y x 。 三、练习: 1.二元一次方程组???=+=+37 23y x y x 的系数行列式是D =________, Dx =________,Dy = ________,则x =________,y =_______。 2.展开并化简下列行列式: (1)12 34--; (2 ;

行列式的若干应用 毕业论文

行列式的若干应用 The Number of Applications of The Determinants 专业: 数学与应用数学 作者: 指导老师:

摘要 行列式是数学研究中的一类重要的工具之一, 它的应用非常广泛. 本文从以下三个方面对行列式的应用进行了论述: 探讨了行列式与线性方程组的关系以及在解线性方程组中的应用; 举例说明了行列式在初等代数中的应用, 如在因式分解中应用, 证明不等式以及恒等式; 最后综述了行列式在解析几何中的若干应用. 关键词: 行列式; 矩阵; 线性方程组; 秩; 因式分解; 平面组; 点组

Abstract Determinant is a kind of important tools in the mathematical study, it is a very wide range of applications. In this paper, we have been to discuss from the following three aspects of the applications of the determinants: To explore the relationship between the determinant and linear equations and the application in the solution of linear equations; examples of the application of the determinant in algebra, such as the application of factorization, to prove that inequality and identity; in the final, we have made overview of the number of applications of the determinants in analytic geometry. Keywords:Determinant; Matrix; Linear equations; Rank; Factorization; Plane group; Point group

2020-2021年高二数学二阶行列式教案 上教版

2019-2020年高二数学二阶行列式教案上教版 【学习目标】 1.通过加减消元法解二元一次方程组理解行列式的定义 2.掌握二元一次方程组的行列式解法 【学习重点与难点】 用行列式解二元一次方程组 【教学过程】 1.自学指导 (1)回忆初中知识,想想我们是如何来解一个二元一次方程组的? (2)对于一个二元一次方程组(A)它的解是什么? (3)观察(A)的解你能发现其中的特征吗? (4)课本中行列式是怎么定义的?又是怎么引入的?它的本质是什么?什么是二阶行列式? (5)你能把方程组(A)的解用行列式的形式表示出来吗?通过这一步骤,你能体会到二元一次方程组的行列式解法吗?用行列式解二元一次方程组的时候,你觉得应该注意一些什么问题? (6)用行列式求二元一次方程组有哪些优越性? 2.自学效果检验、点评及拓展

(1) 一次方程称之为线性方程,一元方程组称之为线性方程组,则二元一次方程组即 二元线性方程组。 (2) 我们以前所学解二元线性方程组普遍应用的都是加减消元法,用加减消元法解得 二元一次方程组(A )的解为??? ????--=--=12212 12112211221b a b a a c c a y b a b a b c b c x ,通过观察可以发现,它的解的 分子、分母都是两数的乘积差。 (3) 为了简化,我们用记号(B ) 来表示算式,他的运算法则就是用主对角线两数 乘积减去副对角线两数乘积,即对角线法则。(B )就是行列式。 (4) 方程组(A )的解的分子部分用行列式()的表示方法、方程组(A )的解整体用 行列式的表示方法,要求学生给出。 (5) 行列式的实质是数(或式)的特定算式的一种记号。 (6) 附带介绍二阶行列式、展开式、行列式的值、行列式的元素、系数行列式的概念。 (7) 提示学生观察,行列式分别是由行列式D 做怎样的变化而来,便于学生记忆。 3. 例题自学检查学生用行列式解二元线性方程组的能力。提示学生解题过程中应该注 意的问题。 4. 学习效果检验 I . 必做题 ① 课本P7练习9.1(1)

行列式论文

行列式计算方法总结及简单应用 摘要:行列式的计算方法,并举例说明了它们的应用,同时对若干特殊例子进行推广。并举出了几种常见的行列式应用。 关键词:行列式;范德蒙行列式;矩阵;特征植;拉普拉斯定理;析因法;辅助行列式法;行列式的应用;方程组;平面几何。 Abstract: The formulation of the various calculation methods, and examples of theirapplications, and to promote a number of special cases Cited several common determinant applications . Keywords: determinant; Vandermonde determinant; matrix; characteristics of plants;Laplace theorem; factorial method; secondary determinant method Determinant of the application; equations; plane geometry 引言 计算方法变化多样,本科期间只能解决一些初等的基本的或者说是有规律的行列式。而其方法又分为简单和复杂。最复杂的情形就是:任何一个n阶行列式都可以由它的定义去计算其值。但由定义可知,n阶行列式的展开式有n!项,计算量很大,一般情况下不用此法。当然也有列外,假设行列式中有许多零元素,可考虑此法,但也只是考虑。特别需要注意的是:在应用定义法求非零元素乘积项时,不一定从第1行开始,哪行非零元素最少就从哪行开始。本论文要介绍的是有规律可循的行列式计算。 而在高代课本中行列式的应用包括了求解方程组,求矩阵的特征向量等等,本论文就不再赘述,本论文中给出的应用是我在做题过程中总结出的行列式考题中的一些常见的问题,以例题的形式给出,可以引发进一步的思考。

高考数学《矩阵与行列式》专题复习

高考数学《矩阵与行列式》专题复习 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1, ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A 2122212 11211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A-B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘积矩阵,记作:α A.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠. 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)?? ?=+=+2 221 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ???--=--=1221122112211221b a b a c a c a y b a b a b c b c x , 引入记号 21a a 2 1b b 表示算式1221b a b a -,即 21a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 21a a 2 1b b ,= x D 21c c 2 1b b ,= y D 21a a 2 1c c ,则: ①当= D 21a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==方程组(*)无穷组解; ③当D =0时,0≠x D 或0≠y D ,方程组(*)无解。 系数行列式11 22 a b D a b =也为二元一次方程组解的判别式。

高二数学上册 9.3《二阶行列式》教案(2) 沪教版

二阶行列式与二元一次方程组 教学目的:理解二阶行列式的定义; 掌握用二阶行列式解二元一次方程组; 用行列式判断二元一次方程组解的情况。 教学过程: 一、 设问:什么叫二阶行列式? (一)定义: 1、 我们用记号1 122a b a b 表示算式1221,a b a b - 即1 122a b a b = 1221,a b a b - 其中记号1 122a b a b 叫做行列式,因为它只有两行、两列,所以把它叫做二阶行列式。 2、 1221,a b a b -叫做行列式1 12 2a b a b 的展开式,其计算结果叫做行列式的值。 3、 1221,,,,a b a b 叫做行列式1 122a b a b 的元素。 (二)二阶行列式的展开满足:对角线法则 1 122a b a b 实线表示的对角线叫主对角线,虚线表示的对角线叫副对角线。 二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号. (三)例和练习: 例1、判断以下几项中哪些是二阶行列式?是的,求出值。 (1)1 11222 a b c a b c (2)sin cos cos sin α ααα

(3)12 3456 (4)sin cos sin cos sin cos a a a a a a -+ (5 )1212 3434 12242 363 -- 例2:将下列各式用行列式表示:——解唯一吗? (1)22 14;(2)5;(3)422b ac x y x x ---+ 二、 用二阶行列式解二元一次方程组 (四)设有二元一次方程组 111222,(1) ().(2)a x b y c A a x b y c +=??+=? 用加减消元法 得 1221122112211221(); ().a b a b x c b c b a b a b y a c a c -=--=- (1)当 12210a b a b -≠ 时,有(A )有唯一解,

行列式的运算与应用

,. 行列式的运算与应用 实验目的: 1. 学习数据的输入及用syms语句先定义变量再输入的两种方式. 2. 掌握利用Matlab软件计算n阶行列式的方法(包括含参数的行列式) 3. 熟悉Matlab软件中关于矩阵运算的各种语句. 4. 掌握对已知矩阵如何进行修改其中的数据,以及如何构建对应的行(列)子矩阵及扩展矩阵. 5. 掌握矩阵初等变换的每个步骤 实验内容: 1.计算12阶行列式 x a a a x a a a x - -- L L L L L L L 并赋值x=2,4,-1;a=0,2,4时,求行列式的 值。 解syms x % syms语句定义变量x syms a % syms语句定义变量a A=[x a a a a a a a a a a a; % 输入矩阵A -a x a a a a a a a a a a; -a -a x a a a a a a a a a; -a -a -a x a a a a a a a a; -a -a -a -a x a a a a a a a; -a -a -a -a -a x a a a a a a; -a -a -a -a -a -a x a a a a a;

,. -a -a -a -a -a -a -a x a a a a; -a -a -a -a -a -a -a -a x a a a; -a -a -a -a -a -a -a -a -a x a a; -a -a -a -a -a -a -a -a -a -a x a; -a -a -a -a -a -a -a -a -a -a -a x] D=det(A) %计算行列式A X=(2,4,0) B1=subs(D,x) subs(B1,a,0) B2=subs(D,x,4) subs(B2,a,2) B3=subs(D,x,-1) subs(B3,a,4) 2.计算10阶行列式 000 00 000 000 000 a b b a a b b a a b b a b b a a b + + + + + L L L L L L L L L L 解:syms a % syms语句定义变量a syms b % syms语句定义变量b A=[a+b b 0 0 0 0 0 0 0 0; % 输入矩阵A a a+ b b 0 0 0 0 0 0 0; 0 a a+b b 0 0 0 0 0 0; 0 0 a a+b b 0 0 0 0 0;

线性代数与空间解析几何总结

线性代数与空间解析几何总结 线性代数和空间解析几何是非数学专业的一门基础课程,可以看做是高等代数和解析几何的简化版。其内容大概分为八章,以线性代数内容为主,穿插少量解析几何知识。全书逻辑严谨,内容关联性强,但是缺乏直观性,对于没有基础的大一新生,不免显得生硬。 第一章主要讲述行列式相关内容,直接给出了行列式的定义。这一章的重点内容是根据行列式的定义推出一些性质,利用定义推导出行列式运算的一些性质,并且根据这些性质灵活的化简计算具体的行列式。其实行列式的计算相当繁琐,我们只需要掌握最基本的一些方法,如构造三角行列式(这种方法很重要,矩阵初等变换也要用)、加边法、递推法等等,还有一个重要的范德蒙行列式需要掌握。在章末,给出了克莱姆法则及其在解方程组时的应用,这本来是线性方程组理论内容,为了强化行列式的应用,放在了第一章介绍。 第二章讲述矩阵的基本内容,这是全书的核心,而矩阵理论也是整个线性代数体系的核心内容之一。这一章内容很多,而且联系复杂,但以矩阵的逆和秩为中心内容。首先,介绍的是矩阵的基本概念,基本分类和基本运算,对于矩阵的运算,比较重要的是矩阵与矩阵之间的乘法,这是个新运算,要多加练习,在此基础上,还引出了方阵的幂的概念。然后就开始通过单位矩阵和1的类比,引出矩阵的逆的概念,给出了矩阵逆的性质,给出了判别矩阵是否可逆的充要条件(以后还有很多补充)和求逆矩阵的伴随矩阵法。接着通过解线性方程组的一般解法,引出矩阵的初等变换,给出了行阶梯型矩阵、行最简型矩阵和标准型矩阵的概念。给出了矩阵秩的定义(显然,一个方阵是否可逆与其是否满秩是等价的),指出初等行变换不会改变矩阵的秩,并给出了求矩阵秩的方法——化矩阵为行阶梯型矩阵。接着,又给出了初等矩阵的定义,并且将矩阵初等变换和矩阵与一个初等矩阵相乘建立起一一对应的关系,用初等变换将矩阵化为标准型,显然,根据初等变换不该变矩阵的秩,则初等变换不改变矩阵可逆性,由于我们可以很容易地观察出标准型矩阵的秩和行列式,所以若一个方阵可逆,它的标准型必然是一个单位阵。于是,每个可逆矩阵都可以写成N个初等矩阵的乘积,且初等矩阵都是可逆的,并且都有其明确的变换意义,我们便利用这个结论给出了求可逆矩阵的一般方法——初等变换法(很重要)。最后一部分介绍的是关于分块矩阵的一些知识,其实这些内容是矩阵内容的推广,把矩阵中的元素由数换成了矩阵,内容可以类比于矩阵进行学习,但要注意由于矩阵并不是数,所以比如说行列式运算与一般矩阵的运算法则不同,这种问题最好还是化为一般矩阵处理,以免超范围使用性质,造成不必要的错误。值得一提的是,分块矩阵的秩的性质很重要,在书的后续内容中有着广泛的应用。 第三章是空间向量,属于向量理论范畴,这是线性代数体系的另一个核心内容,它与线性方程组理论和解析几何有着紧密的联系。本章主要介绍基本的空间几何即三维向量知识,为学习更深一层向量理论给出一个直观印象,这是本书中空间解析几何部分的内容。首先给出三维向量的直观概念,空间中既有大小又有方向的量,然后给出了一些性质;建立坐标系,向量线性运算转化为坐标运算,这些都可以类比于平面向量学习。下面介绍空间中的平面和直线的知识,这是本章的重点。给出了平面在空间直角坐标系中的方程,利用两个平面的交线是直线这一结论给出直线方程的一般形式,根据方程解的情况讨论空间平面和直线的位置关系。空间中主要解决距离和角度两个问题,通过引入的向量积和平面法向量,给出了一系列相关求解公式,当然,理解这些公式的推导是更重要的,这能大大简化问题的求解。最后,书中还给出了平面束和投影的概念,求解直线在某一平面上的投影方程的方法要掌握。

行列式及其应用论文

目录 1.引言 (2) 2.行列式的概念 (2) 2.1排列与逆序 (2) 2.2 n阶行列式的定义 (2) 2.3 行列式的基本性质 (3) 2.4 行列式按行(列)展开定理 (4) 2.5 重要公式与结论 (5) 2.6 范德蒙德行列式的性质 (6) 3.行列式的若干应用 (6) 3.1行列式在线性方程组中的一个应用(克拉默法则的应用) (6) 3.2行列式在初等代数中的几个应用 (7) 3.2.1用行列式分解因式 (8) 3.2.2用行列式证明不等式和恒等式 (8) 3.3.行列式在解析几何中的几个应用 (8) 3.3.1用行列式表示公式(泰勒公式的行列式表示法) (8) 3.3.2用行列式表示三角形面积 (8) 3.3.3用行列式表示直线方程 (9) 4.范德蒙德行列式的若干应用 (10) 4.1范德蒙德行列式在行列式计算中的应用 (10) 4.2范德蒙德行列式在微积分中的应用 (11) 4.3范德蒙德行列式在向量空间理论中的应用 (12) 4.4范德蒙德行列式在线性变换理论中的应用. (13) 结论 (14) 致谢 (14)

行列式及其应用 任兰兰,数学计算机科学学院 摘要:行列式是线性代数一个重要的基本工具.本文首先对行列式的相关概念做了介绍,包括行列式的定义,性质,常见公式及结论等,然后通过例题详细介绍了行列式在线性方程组,初等代数以及解析几何中的应用,以及范德蒙行列式在微积分以及向量空间等方面的应用等.文章最后对行列式及其应用做了总结. 关键词:行列式;范德蒙德行列式;克拉默法则 The Determinants and Their Applications Abstract:The determinant is one of the elementary tools in linear algebra. We first introduce the corresponding conceptions of the determinants, such as the definition, the properties, the ordinary formulas and conclusions, then we discuss in detail the applications of the determinants in linear equations, elementary algebra, and analytic geometry and so on, we also discuss the applications of the Vandermonde determinant in calculus and vector space. Finally we summarize the advantages of the determinants. Key words:Determinant; Vandermonde determinant; Cramer rule

相关主题
文本预览
相关文档 最新文档