当前位置:文档之家› 基于对流层散射的舰载超视距侦察技术分析

基于对流层散射的舰载超视距侦察技术分析

基于对流层散射的舰载超视距侦察技术分析
基于对流层散射的舰载超视距侦察技术分析

【图文并茂超详细】电视机最佳视距

电视机与最佳视距 不少的朋友们买了新房子,准备购买新的电视机,让自己爽一下,但是到底买多大的电视好比较好,有没有必要选择FullHD 呢,这成了一个很麻烦的问题。 对于这样的问题,并不能给出一个统一的标准答案,因为每个人的需求及个人情况都是不一样的,因此这篇文章的撰写是希望能够告诉大家该怎么选择一台适合自己的电视机。 一、电视机尺寸概述 电视的大小是以屏幕的对角线长度来衡量的,但是单位是英寸,1英寸=厘米。如42英寸的电视对角线长为厘米。 最佳视距的确定与电视机的高度有关,因此,下面以市面上常见的16:9屏幕的电视机尺寸计算为例说明屏幕高度和宽度的

计算方法。以37寸电视机为例:长边为英寸,约合厘米,短边为英寸,约合厘米。 具体计算公式为:372=(16x)2+(9x)2,x=,,×16×=(厘米),×9×=(厘米)。 16:9大屏幕显示设备尺寸换算表 但不包括屏幕的外框。 二、多大屏幕才够爽

影像要求高清,声音要求环绕音效,这两者都是为了同一个目的——接近真实。接近真实是一个比较通俗的说法,一般我们会用“临场感”这个词。一部影视作品要想打动观众,最重要的就是要让观众有一种所见所闻都如同亲历的感觉。对于家庭影院系统,一般人都比较看重清晰度、色彩表现和声音定位等方面,却没有注意到视角的问题。为什么在电影院看宽屏幕影片非常过瘾,仅仅是画面大吗在几十米外看电影银幕和在米的距离看42英寸的平板电视机究竟有什么区别呢要弄清楚这些问题,就要明白人眼的视角。这和选购电视机有关系吗,看起来不相关,但实际上是有的。 大画面会给我们非常震撼的感觉,这不是单纯的尺寸因素,实质上是画面所覆盖的视角更大。人眼的视角极限大约为垂直方向150度,水平方向230度,如果在这个视角范围内都是屏幕,那么就会给我们一种身临其境的感觉。但这个角度太大,通常只有环幕电影才能达到这种效果。实际上,人视觉在10度是敏感区,10~20度可以正确识别信息,20~30度对动态东西比较敏感,当图像的垂直方向视角为20度,水平方向的视角为36度时,就会有非常好的视觉临场感,而且也不因为频繁转动眼球造成疲倦。假设我们在的距离观看,最少要多大尺寸的电视机才能覆盖这样宽的视角呢通过简单的计算可以得到答案——约46英寸。当然,这个尺寸不是绝对的,比这个尺寸更大一些效果会更好。人的注视角度为垂直方向90度,水平方向110度,因此图像的水平视角为36度并不算大。电影画面的视角就远远大于36度,这就是为什么120英寸的投影看起来更像电影的原因。

用于超视距无线通信的数字平面角分集天线的制作流程

图片简介: 本技术涉及一种用于超视距无线通信的数字平面角分集天线,属于无线通信和天线技术领域。其包括M个天线子阵面、M个数字TR收发组件、中频采样处理模块、数字多波束形成处理模块、第一角分集波束传输通道、第二角分集波束传输通道以及角分集调制解调器。本技术天线可以采用源模块化的设计方式,可以按需组装,从而降低装车收藏高度。本技术的角分集倍率可灵活调整、角分集重数可以灵活扩展。此外,本技术采用有源调整方式将大功率收发信机的功率分解为多个小功率数字TR模块的合成,降低了收发信机的设计难度。 技术要求 1.一种用于超视距无线通信的数字平面角分集天线,其特征在于:包括网格框架、M个平面天线子阵面(3)、M个数字TR收发组件(4)、中频采样处理模块(5)、数字多波束形成处理模块(6)、第一角分集波束传输通道(7)、第二角分集波束传输通道(8)以及角分集调制解调器(9); 所述M个平面天线子阵面(3)通过矩形布阵组成阵列天线(14),每一平面天线子阵面(3)由多个矩形布阵的间隙波导天线单元组阵构成,所述平面天线子阵面(3)为矩形 平板天线结构,其馈电端口位于天线辐射口面的背面,且位于矩形平板天线的几何中心处;所述数字TR收发组件(4)为安装于平面天线子阵面(3)背面的矩形模块;所述平 面天线子阵面固定于网格框架的各网格中;

信号接收时,来自空间的电磁波信号通过平面天线子阵面(3)进行接收,接收后的信号传给后端的数字TR收发组件(4),数字TR收发组件(4)的接收通道对信号进行低噪声放大及下变频,输出中频信号;M路中频信号送入后端的中频采样处理模块(5)进行AD 采样处理,变成M路数字信号;中频采样处理模块(5)将M路数字信号送入后端的数字多波束形成处理模块(6)进行接收数字波束形成处理,形成第一角分集波束(1)和第二角分集波束(2);第一角分集波束(1)和第二角分集波束(2)分别经过第一角分集波束传输通道(7)和第二角分集波束传输通道(8)送入后端的角分集调制解调器(9)进行解调处理,从而完成通信解调; 信号发射时,来自角分集调制解调器(9)的调制信号分别经过第一角分集波束传输通道(7)和第二角分集波束传输通道(8)送入数字多波束形成处理模块(6)进行发射数字波束形成处理,每路输入信号在处理后均被分成M路输出信号,两组M路输出信号均分别送入中频采样处理模块(5)的M个通道进行DA发射信号处理,从而将每一对输入的数字信号变成一个输出的模拟中频信号;M个模拟中频信号再分别送入M个数字TR收发组件(4),数字TR收发组件(4)对信号进行上变频,并通过数字TR收发组件(4)中的发射通道对信号进行功率放大,最后将放大后的信号送到相应的平面天线子阵面(3),平面天线子阵面(3)将信号向空间发射出去。 2.根据权利要求1所述的一种用于超视距无线通信的数字平面角分集天线,其特征在于:所述数字TR收发组件(4)为有源数字TR收发组件,该组件的发射功率通过空间功率合成,使等效的发射效果提升M倍。 3.根据权利要求1所述的一种用于超视距无线通信的数字平面角分集天线,其特征在于:所述的第一角分集波束(1)与第二角分集波束(2)的夹角θ满足0.75~1倍的波束宽度关系。 4.根据权利要求1所述的一种用于超视距无线通信的数字平面角分集天线,其特征在于:所述第一角分集波束(1)的指向控制在阵面法线0°方向,所述第二角分集波束(2)的指向控制在偏离阵面法线0°方向的0.75~1波束宽度的方向上。

超短波超视距-终端产品版本-2018年版-180520

SPD-3000超视距无线自组网数字通信系统及终端产品 北京天立通信息技术有限公司 2018年5月28日 吴先生(负责人):

一、超视距数字通信系统技术简介 1、超视距通信是一种新型的数字通信技术,利用无线信号在对流层的反射、超折射的机理,创设超折射传输模式,采用混合数字编码技术,自适应低噪相干与非相干解调技术、信道频域均衡技术,优良的信道设计,在极微弱信号下获得足够的信噪比增益,数字语音时可用灵敏度高达-127dBm,实现全天候超视距无线通信。 超短波超视距数字通信是超短波通信领域的技术创新,突破了传统超短波视距通信的理念。超短波超视距传输的实现,解决各行业各部门在远距离、弱信号的情况下通信难的瓶颈,将通信距离提升到现有超短波通信产品的3倍以上,填补超短波超视距通信空白。该技术为天立通公司原始创新,实现技术突破,技术水平为国内外领先水平。已多次经有关部门组织,分别在我国北方、南方的大陆、海上不同的气候条件下进行了测试和验证,海上最大通信距离达400公里以上,陆地平坦地区可实现130公里多山地区可实现40-50公里以上的超视距通信,同时经过军方和武警相关多个部门的试用,超视距通信具有典型的电磁波折射翻越大山阻碍的功能。 2、基站无线自组网技术 无线自组网是一种先进的、灵活的新型组网方式。基于先进的无线数字通信技术,采用TDMA、FDMA相结合的多址技术,在空中接口协议上嵌入有互联信令,话路在语音通信的同时,亦可担当通信链路,而不影响正常的语音或数据通信。从而以基站与基站之间的无线信号相互覆盖构建网络的通信链路,可替代传统的基站与基站之间用有线网络或微波专用无线链路进行互联组网。如图1.1所示。

led显示屏的点间距和视距计算

屏的点间距和视距计算 青岛博航文化传播有限责任公司技术支持 1.点间距计算方法:每个像素点到每一个相邻像素点之间的中心距离;每个像素点可以是一颗LED灯[如:PH10(1R)]、两颗LED灯 [如:PH16(2R)]、三颗led灯[如:PH16(2R1G1B)],P16的点间距为:16MM; P20的点间距为:20MM; P12的点间距为:12MM... 2.长度和高度计算方法:点间距×点数=长/高 如:PH16长度=16点×1.6㎝=25.6㎝高度=8点×1.6㎝=12.8㎝ PH10长度=32点×1.0㎝=32㎝高度=16点×1.0㎝=16㎝ 3.屏体使用模组数计算方法:总面积÷模组长度÷模组高度=使用模组数 如:10个平方的PH16户外单色led显示屏使用模组数等于: 10平方米÷0.256米÷0.128米=305.17678≈305个 更加精确的计算方法:长度使用模组数×高度使用模组数=使用模组总数 如:长5米、高2米的PH16单色led显示屏使用模组数: 长使用模组数=5米÷0.256米=19.53125≈20个 高使用模组数=2米÷0.128米=15.625≈16个 使用模组总数目=20个×16个=320个 4.LED显示屏可视距离的计算方法: RGB颜色混合距离三色混合成为单一颜色的距离:LED全彩屏视距=像素点间距(mm)×500/1000 最小的观看距离能显示平滑图像的距离:LED显示屏可视距离=像素点间距(mm) ×1000/1000 最合适的观看距离观看者能看到高度清晰画面的距离:LED显示屏最佳视距=像素点间距(mm) × 3000/1000 最远的观看距离:LED显示屏最远视距=屏幕高度(米)×30(倍)

大气波导与微波超视距雷达

以大气电离层为“反射镜”,工作于高频(High Frequency, HF) 波段的OTH-B 天波超视距雷达的典型探测半径可达1800 海里(e.g. MD 空军的AN/FPS-118),但天线阵体型过于庞大,尺度以千米计,无法安装于机动式武器-传感器平台(如水面战舰) 之上。

MD 海军AN/TPS-71 ROTHR (Relocatable Over-the-Horizon Radar) “可再部署型” 天波超视距雷达。 地波超视距雷达的典型探测半径为180 海里(绿色),庞大的HF 天线阵同样无法应用于水面战舰等空间紧的机动平台。由于工作波长达数十米,高频超视距雷达的分辨率相当糟糕,且很难捕捉到小尺寸目标(如反舰导弹)。

高频超视距雷达的性能缺陷十分明显,空中预警平台成本则高昂,数量有限,且要伴随舰队长时间远洋活动须获得大型CATOBAR 航母的支持,舰载微波超视距雷达的吸引力不言而喻。无线电波在大气中传播的速度接近,但不等于其在真空中的传播速度。随着大气温度,湿度,压强的变化,无线电波传播速度相应改变,大气对无线电波的折射率也就发生变化。接近地球表面的大气折射率为 1.000250 至 1.000400,变化幅度看似微小,却足以引起无线电传播路径的弯曲。通常情况下大气折射率随着海拔升高而逐渐降低,造成无线电传播路径向下方弯曲(见上图)。理想大气条件下这一折射作用的效果是使雷达地平线/水天线的距离比光学地平线/水天线高出约1/6,但如果某一高度区间大气的温度和/或湿度迅速变化,则可导致其无线电传播路径的弯曲度超过地球曲率,令雷达波束折向地面/水面方向,从而实现超视距探索。 n = 大气折射率,数值为光速/大气中的无线电传播速度 p = 干燥空气压强 T = 大气绝对温度 es = 大气中的水蒸气分压 通常所谓利用大气散射实现微波雷达超视距探测的说法实际上是错误的。由大气构成不均一导致的对流散射(下) 虽能够有效地扩展微波通讯的覆盖半径,却因反射信号强度大幅度下降且传播路径无法确定而难以用于雷达探测(被动电子侦察手段却可利用散射信号推算发射源方位,不过这也是十分耗时费力的工作)。真正的微波超视距雷达所依赖的,是由折射率迅速变化的气层提供的大气波导通道(上)。

视距频段和非视距频段是如何划分的

视距频段和非视距频段是如何划分的? 10~66GHz 是视距,2~11GHz是非视距,这是根据什么划分的啊? 频率越高,波长越短,波的绕射能力就越弱,遇到障碍物的时候就很容易被阻隔,所以只能靠直线传播。以上是我的理 解 802.16d可以支持10GHz~66GHz的视距传播频段以及11GHz以下的非视距传播频段。根据不同频段的传播特性,其应用也有所不同。对于10GHz~66GHz的视距传播频段,由于终端需要有室外天线,其应用主要是为中小企业提供Backhaul 的无线传输。对于11GHz以下的非视距传播频段,由于能够实现室内覆盖,其应用将主要集中在为个人用户提供宽带数据业务。除此之外,802.16还可以实现企业Wi-Fi热点区域的后端传输功能,以及局域网互联、数据专线、窄带业务和基站互联等。 真正的非视距传输(True nLOS) 部署无线网络常会遇到非视距的问题,下面就让我们来了解一下什么是非视距,我们的设备是怎么实现非视距传输的,以及和其他非视距设备有何区别? 什么是非视距? (Non Light of Sight) 需要通信的两点视线受阻, 彼此看不到对方, 费涅尔区大于50%的范围被阻挡。 非视距传输的巨大挑战: 1、信号的大幅度衰减 2、周期性的衰落 3、多径传输造成的散射 OS Gemini 58xx的解决之道: 1、业内最佳的接收灵敏度 ---------- 服衰减 领先的-96dBm的接收灵敏度,是我们最接近的对手性能的3倍。 2、多波束的STC空间时间编码技术 ----------应对衰落 OS-Gemini/Spectra是一个具有多发射机、接收机和天线的多信道无线电台。与单波束相比,可以节省25dB的Fade Margin 余量。25 dB相当于:16倍的传输距离;高达8倍的建立链路的概率;克服路径上的其他障碍物。 3、智能的OFDM技术 ---------应对衰落和散射 多达1024个载波,而我们最接近的对手只有256个载波。 绕射 【绕射】见〖衍射〗 衍射:声波,光波等各种波在传播时,如果被一个大小近于或小于波长的物体阻挡,就绕过这个物体,继续进行,如果通过一个大小近于或小于波长的孔,则以孔为中心,形成环形波向前传播,这种现象叫衍射.旧称绕射. 在地球物理勘探中,绕射指一种波的散射现象。

超视距空战战法探讨

“霍克,三点钟方向,敌机两架。”接到E-3A预警机的目标信息通报,霍克上尉驾驶F-15C战斗机快速右转,紧接着,僚机格雷中尉也跟着右转。随着E—3A不断传来指令,霍克和格雷驾驶着F-15C 保持无线电静默隐密向敌机逼近。在距敌机约100公里处,霍克打开机载雷达对前方进行搜索。很快,雷达屏幕上出现两个亮点;为了慎重起见,霍克对目标又跟踪了几秒钟并由敌我识别器进行敌我识别,当确系为敌机后,霍克把雷达转为锁定状态,马上锁定一架敌机。与此同时,打开了武器发射开关。在距敌机约45公里时,霍克按动了导弹发射按钮。“砰”地了声,一枚AIM-120空空导弹离开挂架快速向目标扑去。数秒钟后,远处闪起一团火光,目标从雷达屏幕上消失;这时,格雷也用同样的方法打掉了另一架敌机...... 这并不是一场真实的战斗,而是美军经常进行的超视距空战演练。在海湾战争中,第一次出现了中距空空导弹击落的飞机数超过了近距格斗导弹击落的飞机数,它标志着一个空战时代——超视距空战时代的到来。如何对付超视距空战,成为世界各国空军都必须认真研究的问题。从目前的技术发展来看,不外乎以下几种方法. 打掉预警机 人们在谈论空战时,常常把焦点集中在战斗机身上,却往往忽视了预警机的作用。其实,对于超视距空战而言,预警机的作用在某种意义上讲是决定性的。因为在现代空战中,谁先发现对方,谁就掌握了空战的主动权。战斗机由于机体有限,不能容纳直径较大的雷达,搜索距离近,且存在很大的死角(只能对前方一定区域内的目标进行搜索),对所处空域的空情了解有限。而预警机则不同,其机体大,能载直径很大的雷达天线,且能360度搜索,不存在雷达盲区,对空情的掌握远远超过战斗机,如美E-3A预警机,能在9000米高空,据测到方圆400 公里以外低空飞行的战斗机;能同时处理600批目标。指挥100架战斗机进行空战。同时,大量的实战也说明有无预警机,空战结果大不一样。以叙贝卡谷地空战、海湾空战。北约与南联盟空战中,叙军、伊军、南联盟空军家的战斗机刚一起飞即被对方的预警机发现,往往还未发现对方即被击落。所以对超视距空战来说,打掉或致盲对方的预警机,就大大减弱了对方获取信息的能力。 才使对方战斗机与己方进行对等作战。由于预警机所载的雷达功率很强,对其进行电子干扰作用不大.最好是用远程、超远程空空导弹或地空反辐射导弹实施“硬杀”。目前,专门对付预警机的超远程空空导弹和地空反辐射导弹均已问世,虽未进行过实战,但预警机遇到了“克星”却是不争的事实。一旦这些导弹大量装备,预警机就再也不能像以前那样悠闲地信步空中了。 摆脱锁定 现代战斗机上所装的火控雷达,多为脉冲多普勒雷达,多普勒原理是利用地面速度为零的道理,将多普勒雷达频移为零的信号滤除。也就是说,脉冲多普勒雷达只能发现径向目标,如果目标的运动方向与机载雷达波束垂直时,则雷达往往就把目标当成杂波滤掉。因此,在超视距空战中全向告警雷达就成了必需的装备(现代机载全向告警雷达可对50公里左右的雷达信号产生响应),它可以帮助飞行员发现敌机载雷达的扫描方向。一旦发现敌机载雷达信号变为镇定状态时。飞行员应立即驾机倒转,转到与敌机载雷达波束垂直的方向,这样就会脱开敌雷达锁定。即便是正处于跟踪状态的雷达也会失去目标,必须等待光点再度出现后才能重新进行搜索和跟踪。 当然倒转的同时也意味着你在远离敌机,所以侧转摆脱敌机载雷达锁定后,仍然要转回来朝向敌机,这样又会在敌机载雷达上出现。怎么办?很简单,再进行一次倒转摆脱,这个战术就是大家熟悉的“蛇行机动”。在海湾战争中,伊拉克空军的米格一25战斗机就曾以超音速蛇行机动突入美军F-15战斗机的视距内;在澳大利亚和美军航空母舰编队进行的演习中,澳空军的F一111战斗机也曾以低空侧转闯入美F-14战斗机的封锁线。 运用蛇行机动战术,速度是关键。因为侧转争取的是短暂的脱锁,如果敌机改变方向,仍有可能重新搜索到你,所以你必须争取这短暂的空隙,抢占有利的位置;另外,速度还可以减少蛇行机动的次数,利于快速接敌。

电视最佳视距选择

CRT球面管是早期彩显使用的显像管,显像管的断面就是一个球面,显示屏内部和外部都呈球面,从外表看显示屏四个角都是带圆弧的。早期电视机都为球面显像管。这类曲面电视机采用隔行扫描模式,使图像失真较大、容易引起外部光线的反射、图像显示效果很低,闪烁感很强,最佳观看距离是屏面高度的5~6倍。现在真正的球面管显示器已经绝迹了。 CRT直角平面显像管,是在球面管基础上改进的管型。它的显示屏内外仍然有一定弧度,但曲率比球面管要小。直角平面显像管较球面管有很大的改进,边缘失真尤其是四个角部分大大得到改善。屏幕涂层技术在这一时期也有很大的发展,复合涂层使显像管有更好的图像表现力。减少光反射和眩光,还能防止有害的电磁辐射和静电。这类电视仍然沿用了隔行扫描模式,图像显示效果比球面管电视机提高不大,最佳视距参数与球面管电视机差不多。纯平面显像管是CRT显像管的一大进步,显示屏外表面是完全平面的,配合复合涂层可以最大限度地减少光反射,具有更宽的视角,普通的显示器视角约160度左右,而纯平显像管理论上可以达到180度。从理论上说,纯平面显像管电视机画面无扭曲,可以将图像的失真降到最低。这类电视目前大多都是数字机型,采用逐行扫描模式,画面基本上无闪烁,图像显示效果比球面管电视机清晰得多,最佳观看距离是屏面高度的5倍。 表一、4:3电视机的最佳视距

以液晶和等离子为代表的平板电视,无论在技术原理方面还是设计造型上都与CRT显像管截然不同。其共同的特点是轻薄、高清晰度,观感柔和。关于最佳视距,国际无线电咨询委员会(CCIR)的定义是,当观看距离为屏幕高度的三倍时,高清晰度电视系统显示效果应该等于或接近于一名正常视力者在观看原视景物或演示时的临场感觉。 表二,16:9电视机的最佳视距 需要注意的几个问题 前面笔者已经介绍了不同类型电视机的理论上的最佳观看视距,这是我们根据房间面积大小选择放置电视机的主要参考依据。除此之外,我们还需要注意以下几个问题。 有效视角。所谓有效视角是指人类肉眼能分辨出的两个点的最小视角。就人的视觉范围而言,10°以内是视力敏锐区,即中心视野,对图像的颜色及细节部分的分辨能力最强;20°以内能正确识别图形等信息,称为有效视野;20°~30°虽然视力及色辨别能力开始降低,但对活动信息比较敏感,30°之外视力就下降很低了。传统电视系统在最佳观看距离时的水平视角大约是10°,仅覆盖中心视野,给人的感觉是一种看照片的体验;而高清晰度数字电视要给人一种临场感,则必须要达到20°~30°的视角。

移动通信复习(自己总结,可能不是重点)

1、提高频谱利用率答:同频复用、多信道共用、小区制; 2、提高抗干扰能力答:分集、功率控制、跳频、DTX 3、GSM网络中DTX技术答:不连续收发,在语音间隙期间,发送SDI帧后关闭发射机,收端根据SDI自动合成舒适噪声。 语音间断传输及其优点:发送端在语音间隙,发送SDI寂静描述帧后关闭发射及,接收端在这一期间根据接收到的SDI自动合成舒适噪声;利用DTX技术,可降低干扰,可节省移动台耗电。 4、跳频及其作用:通信过程中,载频在几个频点上按照一定的序列变化,称为跳频;跳频可改善由多径衰落引起的误码特性。 跳频方式:按照跳变速率分:慢跳频和快跳频;按照基站跳变方式分:基带跳频和射频跳频。GSM采用慢跳频和基带跳频。 7、直扩系统两种形式: (1)发端用户数据信息首先进行地址调制,再与PN码相乘进行扩频调制; (2)发端用户数据直接与对应的PN码相乘,进行地址调制的同时又进行扩频调制。 前者需要多个地址码,一个PN码,后者需要多个正交性良好的PN码。 8、CDMA系统更软切换:更软切换发生在同一基站具有相同频率的不同扇区之间,由基站完成,并不通知MSC。 10、GSM帧结构:每一帧含8个时隙,时间4.62ms,包含数据156.25bit,51个26复帧或者26个51复帧组成一个超帧,2048个超帧构成一个超高帧。 11、小区制?为何小区制能满足用户数不断增大的需求? 答:小区制是将整个服务区划分为若干个小无线区,每个小区设置一个基站负责本区的移动通信的联络和控制,同时又在MSC的同一控制下,实现小区间移动通信的转接及其与PSTN网的联系。采用小区制,可很方便的利用同频复用,所以可满足不断增加的用户需求。 12、正六边形无线区群应满足什么样的条件? 答:无线区群数N=a*a+a*b+b*b (a,b分别为自然数且不同时为0),且: 1若干单位无线区群能彼此邻接;2相邻单位无线区群中的同频小区中心间隔距离相等。 13、多信道共用:网内大量用户共同享有若干无线信道; 14、话务量指在一个单位时间(1小时)呼叫次数与每次呼叫平均时间的乘积; 呼损率指一个通信系统里,造成呼叫失败的概率。 16、位置登记?为什么进行位置登记? 答:当移动台进入一个新的位置区LA时,由于位置信息的重要性,因此位置的变化一定要通知网络,这就是位置登记;进行位置登记,是为避免网络发生一起呼叫现象。 17、切换及其分类: 移动台在通信过程中,由一个小区进入相邻小区,为保持不间断通信所进行的控制技术; 分为:同一个MSC下不同BSC的切换;同一MSC下同一BSC的切换;不同MSC之间的切换。 不同MSC下的切换: MS要通过原BSC通知原MSC,请求切换,原MSC负责建立与新MSC建立链路,再发送切换命令,MS建立链路后,拆除原链路。 移动通信切换三步骤:1、MS发送测试报告;2、网络对测试报告做出分析后,发送切换指令;3、MS与新小区建立链路。 当移动台由同一基站的一个扇区进入另一个具有相同频率的扇区时会发生硬软切换; 当移动台由一个小区进入相同频率的另一个小区时会发生软切换; 当移动台穿越工作于不同频率的小区时则发生硬切换。 21、分集有2个含义:一是分散传输,使接收端能获得多个统计独立的、携带同一信息的数

电视最佳观看距离

电视机尺寸及最佳观看距离 2009-12-28 14:46:12| 分类:室内设计|字号大中小订阅 电视尺寸(英寸)大小(毫米)最佳观看距离 (米) 20529*393*99 2.13 2679*435*101 2.64 32929*558*208 3.25 37927*574*103 3.75 40 42 986*684*279 1115*675*98 4.05 461123*723*96 4.67 521262*823*115 5.28 551486*855*365 5.59 701824*1131*4227.11 平板电视最佳观看距离计算公式 我们看电影为什么首选电影院?那是因为电影院能给我们一种接近真实的感觉。接近真实是一个比较通俗的说法,一般我们会用“临场感”这个词。一部影视作品要想打动观众,最重要的就是要让观众有一种所见所闻都如同亲历的感觉。对于家庭

影院系统,一般人都比较看重清晰度、色彩表现和声音定位等方面,却没有注意到观赏的距离。大家都听过“摆放电视机的空间条件不同,收看的距离也不一样”这样的话,但是你要是问:怎样计算出宽阔的客厅可以摆50-66英寸的平板电视,而卧室、书房这样的小空间,就只能摆32英寸电视机?我相信大家都说不出个所以然来,今天笔者就来解释一下,如何利用科学的计算方法来计算出自家客厅最合适买哪种尺寸、分辨率的电视。 计算观赏距离的公式与换算表格 欧美计算显示器材最佳观赏距离、分辨率与屏幕画面高度三者的相关公式: 最佳观赏距离(公分)=屏幕高度÷垂直分辨率×3400 这个公式相当明确而好用,但是还是有不少人不太会算,于是有些专业人士干脆把公式代入各种尺寸、分辨率、制成表格提供给大家使用,并加入日本人惯用的 “3H、4H、5H”(画面高度的3、4、5倍)作对照,以下是此表格的相关说明。“不看不知道,一看吓一跳” 请你拿出卷尺,测量主要观赏位置至电视机的距离,取得距离数值之后,比对表格中“720级最佳观赏距离(公尺)”与“1080级最佳观赏距离(公尺)”下方的数值,找出最接近者。例如实际测量的距离是2.5公尺,“720级最佳观赏距离”对照的结果是42英寸,“1080级最佳观赏距离”则是65英寸。 作完以上的对照之后,你难免会怀疑:我家有必要装那么大的电视吗?要知道说服大家改变以往客厅收看电视的习惯并不容易,但是笔者还是要强调:如果收视距离与尺寸配合不上,电视机买的太小或距离太远,就算你买的是“Full HD”的顶级机种,你在座位上也无法感受到Full HD极其细致的画质。假如你已经买了平板电视,现在看到本篇的表格,在参照表格之后,我相信大部分消费者在客厅使用的电视机尺寸都太小了。

机车超视距瞭望系统标书技术方案

机车超视距瞭望系统 郑州宏钜电子科技有限公司2014年11月11日

目录 1项目概述 (2) 1.1背景及意义 (2) 1.2设计依据 (2) 2系统设计方案 (3) 2.1.系统总体框图 (3) 2.2.系统原理方框图 (7) 3地面和车载主要组成单元 (8) 3.1.高清工业摄像机 (8) 3.2.数据传输和接收模块 (8) 3.3.系统供电单元 (9) 3.4.系统唤醒单元 (9) 3.5.数据存储单元 (9)

1 项目概述 1.1背景及意义 据不完全统计,例如在京广线郑州局所管辖的范围内,停电停运1分钟造成的直接经济损失达到60万元,一旦发生重大行车事故,将会造成重大的经济损失和不良的社会影响,因此保证机车行驶过程的行车安全意义重大。 由于一些人为或非人为的因素给机车的正常运行也带来了故障隐患,例如铁路沿线的违规施工,人为对铁路设施的有意识或无意识的破坏,铁路沿线的危树,山体滑坡,涵洞桥梁上的危险物,穿越接触网的横过线,以及恶劣天气状况下如大风、大雨、大雪影响等等。在一些天气状况不好,以及弯道、涵洞口等的特殊地方,给机车的瞭望工作带来困难。加上铁路几次提速后,机车的速度越来越高,制动距离也越来越远,当瞭望的司机发现前方路况有险情的时候,已经错过了最佳的制动时机,有可能酿成的事故。 为此,郑州局机务处、新乡机务段联合郑州宏钜电子科技有限公司针对易发生行车事故的铁路沿线的重点区段,推出了机车超视距瞭望系统。该系统紧密结合铁路运输业务需求,采用全嵌入式结构,系统稳定可靠、使用方便,适宜推广。为机车司机提供线路情况的事前预测,提供最直观的资料。最大程度上避免事故的发生,为铁路的正常运输提供有力的支持。 1.2设计依据 本系统设备的设计、制造、检查、试验和验收除了满足本技术规格书的要求外,还符合如下标准: GB191-2000《包装储运图示标记》 GB2887-1989《计算场地技术条件》 GB4208-1993《外壳防护等级》 G.703-1991 《数字接口的物理特性/电气特性》 GB1583-79《彩色电视图像传输标准》 GB50198-94《闭路监视电视系统工程技术规范》 GB/T17626 《电磁兼容》

超视距空战战术编队图解

超视距空战战术编队图解大全 编队进攻性空战基本原则: (1)在兵力上要处于数量优势,同时编成利于攻击的队形。 (2)空战中尽量攻击敌长机,并分割敌僚机,使之丧失战斗力。(3)长机要主动攻击敌机,僚机要时刻观察敌长、僚机行动,掩护长机行动。如条件具备,应主动攻击敌机,并及时报告长机。 (4)长机出现弹药耗尽、负伤、机械设备故障等情况时,僚机应主动承担空中指挥任务。 (5)退出战斗时,编队应向战区的己方一侧、有地面防空火力掩护地区退出。剩余油料较多、位置有利的飞机,应积极掩护其它飞机先行退出战斗。 编队防御性空战基本原则 (1)当双机编队被敌机追踪时,应根据敌机的位置和距离,采取向外上下分开的机动动作,迫使敌顾此失彼。 (2)编队其中一架被跟踪时,其它飞机应全力实施火力掩护,努力使敌机放弃攻击。 (3)尽量用一架(双)飞机引诱敌机,其余飞机对敌攻击;防御的双(单)机向敌机转弯,诱使敌机跟随,另一对己机寻找机会攻敌。(4)当敌机数量明显多于自己编队,或编队失去战斗力的飞机较多时,应主动退出战斗。 单机进攻性空战基本原则 (1)进入作战空域和判明敌机已开始实施攻击时要投掉副油箱。要不间断地观察敌情。要尽量减少无线电通话。在作战地域要以更大的速度飞行。 (2)在战术上要高度重视敌人。要把对方的飞机当成最好的飞机。在攻击前要实施目的明确的机动。 (3)要尽可能从敌机尾后或下方进行攻击。如果己机机动性不及对手,应以高度优势攻击。当有速度较快的飞机掩护时,可减速飞行。(4)未确认敌机时不要攻击。攻击机动动作和射击、发射动作要协调一致。 (5)遵守战斗纪律,要有全局意识和牺牲精神。

单机防御性空战基本原则 (1)发现己机处于被动时,要迅速采取果断动作,摆脱敌机追踪和导弹攻击。当有更快速或更高位置的飞机掩护时,可减速飞行,以获得同伴支援。 (2)要注意来自太阳方向的敌人。不要让敌人尾随。敌机位于己机尾后时,要向敌机方向做“ S ”减速机动。 (3)任何防御的目的是摆脱敌人转入进攻。要识别并预测敌人的攻击意图,并准备随时转入攻击。 (4)如果投不掉副油箱就应立即离开交战空域;双机编队中若被击落一架,另一架应及时退出战斗。 (5)要注意控制自己的情绪。若己机低空性能优越,要充分利用之.尽且与敌在低空周旋.并适时退出战斗。 战斗机性能差距是现实,但空战局面不是性能差距的简单推导,否则战争早消亡了。战术能在相当程度上杭衡技术,战场上也几乎不存在纯教科书式的单机对抗。下面请专家结合不同机型的情况介绍超视距空战基本战术,以期能对空战实际情形有所感受,并体会到敌人的思路和己之对策。空战分进攻性空战和防御性空战两种基本类型,有不同的战术原则。理解这些原则是了解空战战术的基础。 空战队形 目前各国第三代战斗机主要采用双机(四机)雷达跟进队形、双机密集队形、双机橄榄形编队、三机防御和支援队形等。 双(四)机雷达跟进队形  此队形多用于中距空战和侦察,搜索和警戒范围较大,灵活性强,便于相互策应和掩护。各机型运用这一队形特征不同。F-15:距离20千米,高度差600米,观察角0~10°。F-16:距离15~20千米,高度差0~600米,四机编队时,机组内保持防御队形。“幻影”2000:距离20~30千米(一般是25千米),高度差6 00~1000米(一般是600米),间隔3~8千米。这种队形属大间隔、大距离队形,发现目标后可迅速调整变换,迅速转向目标。

超视距雷达

超视距雷达 背景资料:超视距雷达(OTH),也称为超地平线雷达。它利用电磁波在电离层与地面之间的反射或电磁波在地球表面的绕射来探测目标。OTH雷达一般工作在短波波段,工作频率为3~30MHz。这种雷达最重要的优点是不受地球曲率的限制,从电离层(高度80~360km)到地(海)表面全高度地探测空中(飞机、导弹)和海面目标(各种舰船)。 该雷达探测距离远(800~3500km)、覆盖面积大(单部雷达60°方位扇区可达560万平方千米),具有天然抗低空突防、抗隐身飞行器、抗反辐射导弹等优点。它主要用于战略预警及远程战术警

戒情报雷达系统,能以最经济的手段,最高的效费比实现对境外远程目标的早期预警,使国土防空(海)的预警时间提高到小时量级。 目前,世界上拥有先进雷达技术的国家,如美国、俄罗斯、澳大利亚、英国、法国、日本等,都先后研制和部署了OTH雷达系统。 美国空军对东海岸超视距雷达AN/FPS-118的验证过程中,该雷达不仅能发现3335.4千米(1800海里)以外的巡航导弹,而且能在大部分时间跟踪它们。这些巡航导弹的RCS(雷达散射截面积)小于B-2轰炸机,但高于F-117A隐身战斗机。该超视距雷达还能跟踪波多黎各岛上空飞行的长度只有4.3m的私人飞机。 超视距雷达能探测远距离的舰船。ROTHR的试验结果表明,该雷达系统在一个特定的区域里对目标的探测和跟踪能力超过了海军的规定指标,它成功地跟踪了某一海域的25艘舰船中的24艘,而且对另一艘也能勉强跟踪。

苏联从1976年就研制出了OTH雷达,主要作用是作为第二层战略预警系统(预警卫星为第一层战略预警系统)。

超视距空战的应用超视距空战

超视距空战的应用超视距空战 超视距空战一般指在飞行员目视距离外发射导弹攻击目标,因此采用中程导弹和远程导弹都属于超视距范畴。其优点是在速度比选择恰当时能对目标实施360度的全向攻击,明显地扩大了攻击区;由于可以从目标前半球超视距攻击,从而将拦截线外推,提高了保卫目标的安全性;在机载武器、火控系统较先进的条件下或通信指挥等信息保障条件较好的情况下,具有先敌发现先敌发射的优点,从而提高了进攻飞机的空战优势。 但是早期的中程武器系统战果并不理想,以越南战争为例,其 击毁概率不到7%,比理论值整整低了一个数量级。究其原因,主要是导弹及武器火控系统不够理想。航空技术的进步使得中程武器系统日趋成熟,在海湾战争中AIM-7导弹取得了较好的战绩。据资料报道命中率已达70%左右。当然如作战双方在空战中都采取积极主动的 战术,命中率可能要低一些。 目前中程导弹的发展,在射程上没有明显提高的趋势,而将注 意力放在发射后不管和多目标攻击上。发射后不管导弹不采用单纯半主动雷达制导而是用复合制导形式。因此载机发射导弹后很短时间即可机动脱离或开始攻击下一个目标,避免了以前那样长时间不能做大机动的缺点,提高了自身安全性和作战有效性。但如果作战双方均已装备发射后不管导弹,那么雷达作用距离远和导弹射程大的一方具有

先敌发现、先敌发射的优势。可是应该注意到,如果雷达武器指标较低的另一方在被击中之前也已发射了发射后不管导弹,尽管载机已被击中,飞行中的导弹仍可以击中对手。因此,他们之间有可能只是被击中的时间有几秒至十几秒的差异,但结局却有同归于尽的可能性。 因此在采用发射后不管武器系统时,具有先敌发现先敌发射优势的一方并不意味着具有战胜对手的绝对优势。相反的优势可能是在采用了“狼群战术”的一方,即拥有数量较多、价格较便宜的战斗机,且具有良好的协调配合能力以及从不同方位发起攻击的一方。从作战费效比的角度考虑,战机技术复杂、价格昂贵的一方损失将更为惨重。这就给飞机发展带来新的思考,即过分追求高技术可完成多任务的高度综合化的昂贵飞机是否是正确的发展方向? 作战双方在超音速情况下实施了首次迎头超视距攻击后,是否一定转为亚音速近距空战甚至过失速的近距格斗,主要取决于双方对下一步行动的决心。只要一方不打算开展缠斗并继续以超音速飞向目标,近距空战就很难展开,这与执行的作战任务关系密切。 超视作战之后接着就是近距格斗的理论在实践上或多机协同作战中往往是行不通的。基本规律是:在亚音速高机动近距格斗中(包括过失速机动中),任何一方不能坚持而提前退出,将意味着失败被

电视机尺寸及最佳观看距离

电视机尺寸及最佳观看距离 平板电视最佳观看距离计算公式 我们看电影为什么首选电影院?那是因为电影院能给我们一种接近真实的感觉。接近真实是一个比较通俗的说法,一般我们会用“临场感”这个词。一部影视作品要想打动观众,最重要的就是要让观众有一种所见所闻都如同亲历的感觉。对于家庭影院系统,一般人都比较看重清晰度、色彩表现和声音定位等方面,却没有注意到观赏的距离。大家都听过“摆放电视机的空间条件不同,收看的距离也不一样”这样的话,但是你要是问:怎样计算出宽阔的客厅可以摆50-66英寸的平板电视,而卧室、书房这样的小空间,就只能摆32英寸电视机?我相信大家都说不出个所以然来,今天笔者就来解释一下,如何利用科学的计算方法来计算出自家客厅最合适买哪种尺寸、分辨率的电视。 计算观赏距离的公式与换算表格 欧美计算显示器材最佳观赏距离、分辨率与屏幕画面高度三者的相关公式: 最佳观赏距离(公分)= 屏幕高度÷垂直分辨率×3400 这个公式相当明确而好用,但是还是有不少人不太会算,于是有些专业人士干脆把公式代入各种尺寸、分辨率、制成表格提供给大家使用,并加入日本人惯用的“3H、4H、5H”(画面高度的3、4、5倍)作对照,以下是此表格的相关说明。 “不看不知道,一看吓一跳” 请你拿出卷尺,测量主要观赏位置至电视机的距离,取得距离数值之后,比对表格中“720级最佳观赏距离(公尺)”与“1080级最佳观赏距离(公尺)”下方的数值,找出最接近者。例如实际测量的距离是2.5公尺,“720级最佳观赏距离”对照的结果是42英寸,“1080级最佳观赏距离”则是65 英寸。 作完以上的对照之后,你难免会怀疑:我家有必要装那么大的电视吗?要知道说服大家改变以往客厅收看电视的习惯并不容易,但是笔者还是要强调:如果收视距离与尺寸配合不上,电视机买的太小或距离太远,就算你买的是“Full HD”的顶级机种,你在座位上也无法感受到Full HD极其细致的画质。假如你已经买了平板电视,现在看到本篇的表格,在参照表格之后,我相信大部分消费者在客厅使用的电视机尺寸都太小了。 该怎样选择适合自己的分辨率? 对于预算有限的消费者而言,电视机的价格是决定购买与否的首要条件,相对来说,若预算是固定的,消费者可能需要在“较大尺寸的720级”和“尺寸较小的1080级”之间作选择,如果“较大尺寸的720级”比较符合表格的条件,笔者建议以它为优先,至少你花钱买的分辨率在播放高解析讯源时都能享受到。倘若你想购买尺寸较小的1080级,笔者建议你在收看BS Digital、Blu-ray Disc或HD DVD的时候改坐在距离电视较近的座位上,这样才能比较充分地享受到Full HD的画质。

LED屏的点间距和视距计算

LED屏的点间距和视距计算 LED屏的点间距和视距计算 1、点间距计算方法:每个像素点到每一个相邻像素点之间的中心距离;每个像素点可以是一颗LED灯[如:PH10(1R)]、两颗LED灯[如:PH16(2R)]、三颗led灯[如:PH16(2R1G1B)],P16的点间距为:16MM;P20的点间距为:20MM;P12的点间距为:12MM... 2、长度和高度计算方法:点间距×点数=长/高 如:PH16长度=16点×1.6㎝=25.6㎝高度=8点×1.6㎝=12.8㎝ PH10长度=32点×1.0㎝=32㎝高度=16点×1.0㎝=16㎝ 3、屏体使用模组数计算方法:总面积÷模组长度÷模组高度=使用模组数 如:10个平方的PH16户外单色led显示屏使用模组数等于:10平方米÷0.256米÷0.128米=305.17678≈305个 更加精确的计算方法:长度使用模组数×高度使用模组数=使用模组总数 如:长5米、高2米的PH16单色led显示屏使用模组数: 长使用模组数=5米÷0.256米=19.53125≈20个 高使用模组数=2米÷0.128米=15.625≈16个

使用模组总数目=20个×16个=320个 4.LED显示屏可视距离的计算方法: RGB颜色混合距离三色混合成为单一颜色的距离:LED全彩屏视距=像素点间距(mm)×500/1000 最小的观看距离能显示平滑图像的距离:LED显示屏可视距离=像素点间距(mm)×1000/1000 最合适的观看距离观看者能看到高度清晰画面的距离:LED显示屏最佳视距=像素点间距(mm)×3000/1000 最远的观看距离:LED显示屏最远视距=屏幕高度(米)×30(倍)

远程舰载无人机超视距侦察和目标指示系统

10.16 远程舰载无人机超视距侦察和目标指示系统 航天机电集团三院张建舟陈平 摘要远程舰载无人机载超视距侦察和目标指示系统 可组成消灭敌目标的有效打击火力纷纷投资进行开发研制 现代战争是现代科学技术下的天海电交战双方都力图以最小的代价获得最大的效果但是现代战争是信息战争谁的精确制导武器系统就能充分发挥最大效能 战争中敌我均处于攻防对阵状态就获得了组织攻击的最可贵的时间就是拥有先进的武器也难以保障一定能消灭敌方 因此信息的及时获取为整个战争获胜的一个重要因素 目前已经被军事强国广泛应用 是指飞航导弹与巡航导弹武器系统专用的特种无人驾驶飞机上识别定位和目标指示系统 或无人机目标指示系统射前检测射击指挥 它是一种不可替代的不可缺少的武器系统舰载无人机应用广泛 从有关资料可以看出 都在努力发展机载超视距目标探测目标定位系统 在战场上执行目标定位火炮和舰炮火力修正预警任务 而无须有人驾驶侦察机组亲自冒险 是因为无人机在特定条件下有许多优点 尺寸小机动性好留空时间长许多因为考虑人的因素而增加的设备体积重量 为此增加的燃油可以省去许多可以飞行的距离便可以大大增加 雷达散射截面小隐蔽性好 无人机由于重量轻安全系数小于飞机尺寸小易于操作和维护生产成本 美国拥有一系列巡航导弹中而且目标指示从预警机 直升机到无人机机载目标指示系统成龙配套应有尽有 研制舰载无人机的约束条件

航程 要能有效的保护我方来之不易的舰艇免遭敌方远程飞航导弹的毁灭性打击 跟踪和进行目标指示的无人机载目标指示系统 必须进行舰上使用环境分析一般舰上空间宝贵无人机仃放和着舰尺寸很小电磁干扰复杂舰上拥有先进的C4I2系统便于统一规划和执行任务 随着不同的战斗任务摄像机 可旋转红外光电传感器合成孔径雷达等 加上敌我识别可以对目标进行精确的跟踪 其它载荷有通信中继系统电源等 舰载无人机机载侦察定位系统的功能和组成 1. 系统功能 1.1 由于受舰上着舰条件的限制 1.2 在战争和值勤状态下可以随时垂直起飞并根据装订的航程飞行若到某飞行高度超过视距 1.3 舰载测控主站应能对无人机进行跟踪清楚显示载机的飞行状态和参数并对下行信息进行调制解调 在精确跟踪状态得到作战指挥系统所需要的远处战场态势图 1.5 发射导弹后能观察到作战效果并给出目标毁伤评估 有特殊情况可以进行报警 载机可以返回并在预定的我方舰艇上垂直降落 1.7 有中继制导的条件和需求时 实时显示实际航迹航线航线能实施自主 遥控和人工遥控航线进行中继制导 2. 系统组成 系统应由舰载无人机系统机载测控系统或舰载测控副站舰载维修保障系统组成 ???ú?úì?oí?ˉá|×°??·éDD????ó?1üàí?μí3 2.2 机载侦察系统1可在雷达与合成孔径雷达两种工作状态工 作与转换的雷达3°′è?????è? 2a??????ò£???óê?ìì?? ò£2a·¢é?ìì??í??ó·¢é?ìì??2a???t′?μ??′

相关主题
文本预览
相关文档 最新文档