当前位置:文档之家› 中考复习讲义三种构造辅助圆解题的模型

中考复习讲义三种构造辅助圆解题的模型

中考复习讲义三种构造辅助圆解题的模型
中考复习讲义三种构造辅助圆解题的模型

中考热点:三种构造辅助圆解题的模型

一、问题导读

“圆”是一个完美的图形,在初中数学中具有丰富内容,其中大部分是与角度相关性质,如在圆周角中能轻易找到,等角和直角并与圆心角联系也比较紧密,通过在图形中构造辅助圆往往能获得意想不到的效果,如果题目中出现了以下条件:三点及三点以上到同一点距离相等,作辅助圆;同一侧有相等的角,或者需要构造出相等的角时,作辅助圆;若一个四边形的一组对角互补,则它的四个顶点共圆.在这些情况下,借助圆去解决一些问题都是非常好的一个选择,下面举例说明这三种构造辅助圆解题的模型应用。

二、典例精析

类型1 根据共端点等线段模型,根据圆的定义构造圆

1.如图,已知OA=OB=OC,且∠AOB=k∠BOC,则∠ACB是∠BAC的()

A.k/2倍 B.k倍 C.2k D.1/k

【分析】由OA=OB=OC,得到A,B,C在以O为圆心的同一个圆上,则∠AOB=2∠ACB,∠BOC=2∠BAC,而∠AOB=k∠BOC,即可得到∠ACB=k∠BAC.

【解答】∵OA=OB=OC,∴A,B,C在以O为圆心的同一个圆上,如图,

∴∠AOB=2∠ACB,∠BOC=2∠BAC,

而∠AOB=k∠BOC,即2∠ACB=k2∠BAC,∴∠ACB=k∠BAC.故选:B.

2.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()

A.1.5 B.1.2 C.2.4 D.以上都不对

【分析】先依据勾股定理求得AB的长,然后依据翻折的性质可知PF=FC,故此点P在以F为圆心,以2为半径的圆上,依据垂线段最短可知当FP⊥AB时,点P到AB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.

【解答】如图所示:当PE∥AB.

在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴由勾股定理可求得AB=10,

由翻折的性质可知:PF=FC=2,∠FPE=∠C=90°.

∵PE∥AB,∴∠PDB=90°.由垂线段最短可知此时FD有最小值.

又∵FP为定值,∴PD有最小值.

又∵∠A=∠A,∠ACB=∠ADF,∴△AFD∽△ABC.

∴AF/AB=DF/BC,即4/10=DF/8,解得:DF=3.2.

∴PD=DF﹣FP=3.2﹣2=1.2.故选:B.

3.如图2所示,在凸四边形ABCD中,AB=BC=BD,∠ABC=80°,则∠ADC的度数为____度

【解析】∵AB=BC=BD,得到A,C,D在以B为圆心的同一个圆上,

∴∠ACD=1/2∠ABD, ∠DAC=1/2∠DBC,

∵∠ABC=∠ABD +∠DBC =80°,

∴∠ACD+∠DAC=1/2∠ABD+1/2∠DBC=1/2(∠ABD+∠DBC)= 1/2×80°=40°,

∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣40°=140°.

故答案为:140.

4. 如图,在四边形ABCD中,AB=AC=AD,若∠BAC=25°,∠CAD=75°,则∠BDC=度,∠DBC=_____度.

【解析】法一:∵AB=AC=AD,∴点B,C,D在以A为圆心的圆上,

∵∠BAC=25°,∴∠BDC=1/2∠BAC=12.5°,

∵∠CAD=75°,∴∠DBC=1/2∠CAD=37.5°.

故答案为:12.5,37.5.

法二:∵AB=AC=AD,

∴∠ADB=∠ABD,∠ACB=∠ABC,∠ADC=∠ACD,

∵∠BAC=25°,∠CAD=75°,

浅谈构造辅助圆解决点的问题

浅谈构造辅助圆解决点的问题 对于数学中较全面、有简易解题方法且不易看出知识点的题目,如果可以根据题干中的基本要素,结合到圆的相应理论,合适地画出辅助圆,一般可以变复杂为简单,变困难为基础,发现答题技巧,添加辅助圆的一般过程是:基于“圆的定义”添加辅助圆、通过“圆周角的性质”添加辅助圆、通过圆周角与圆内外角的联系添加辅助圆、基于“弦切角的模型”添加辅助圆、利用“圆幂定理”添加辅助圆、利用“判定四点共圆的理论”添加辅助圆、利用“两圆相切的定义”添加辅助圆、利用“托勒密理论”添加辅助圆。 标签:数学问题添加辅助圆基础题型 从全国高中数学联赛与国际数学奥林匹克中涉及的相关题型来看,可以了解到,数学问题,作为竞赛中最常涉及的内容之一,在数学竞赛中,其地位是数一数二的。对于一些较全面、有简易解题方法且不易看出知识点的题目而言,解题的人哪怕是在灵活运用所学知识与思维逻辑推算方面有着较强的能力,但是难免也会被此绊住脚步。因此,解题者如果可以通过题干基本框架及特征,从而联系到圆的理论应用,合适地添加辅助圆,通常能够变复杂为简单,变困难为基础,从而发现答题的关键出口。本篇文章的中心就是介绍如何利用添加辅助圆来达到解题目的。 在日常的教授课程中,老师们常会根据圆的性质来添加辅助圆,由此便将原有问题变成了辅助圆与直线的公共点的相应问题。 一、根据“在同一个圆内,若两弧相等,则两弧对的圆周角相等”添加辅助圆 题1 如图所示,平行四边形ABCD中,E在AD,延长CE至F点,使得。 (1)证明:; (2)用做图工具在直线AD上取一点P,使∠CPB=∠PDC(作法不需写,保留作图印记) (1)由题目可知AD//BC,所以。 又,所以可以知道,由此可得。 (2)因为P在直线AD上,又AD//BC,所以。若要得,就是要使得,从(1)可以知道条件,则只需,也就是和可以视为弧BC对应的圆周角,因此P 点为的外接圆和AD所相交的点。 解(1)省略。

数学解题中的构造法思想

数学解题中的构造法思想 数学科 庞春英 我们首先从下面例题的解法开始讨论: 例:解方程组 ?? ???=++=++=++323232c z c cy x b z b by x a z a ay x 解法一:直接按照三元一次方程组的消元法解题 (略)。 解法二:把原方程组改写为?????=---=---=---0002323 23x cy z c c x by z b b x ay z a a 利用方程根的定义,我 们把a,b,c 看成关于t 的三次方程023=---x yt zt t 的三个根。根据韦达定理得: x abc y ac bc ab z c b a ==++=++,,,因此原方程组的解为:?? ? ??++=++==c b a z ca bc ab y abc x 。 比较例题的两种解法:解法一作为一般的方法,求解极为麻烦,运算量大;解法二则是构造一个满足问题条件的关于t 的三次方程,构造的元件是a,b,c ,构造的“支架”是原方程变形的关系式“023=---x yt zt t ”。在解法二中,以问题已知元素或条件为“元件”,数学中的某些关系式为“支架”,在思维中构造了一种新的“建筑物”这种方法有一定的普遍意义。 在解题过程中思维的创造活动的特点是“构造”,我们称之为构造性思维,运用构造性思维解题的方法称为构造法,即为了解决某个数学问题,我们通过联想和化归的思想,人为地构造辅助图形、模型、方程、函数以帮助解决原来的问题,这样的解题方法,可以看作是构造解题。 早在公元前三百年左右,欧几里德为了证明素数有无穷多个,假设只有有限个素数n p p p p 321,,,而构造一个新素数121+n p p p ,从而证明了原命题。另外,古希腊人为了证明毕达哥拉斯学派的信条“万物皆为(有理数)”是不对的,构造一个边长为1的正方形,则它的对角线竟不是一个“有理数”。上述这些大概是数学史上最早采用构造法解题的例子吧。 所谓构造法,其实质就是运用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决。构造法体现了数学发现的思想,因为解决问题同获得知识一样,首先需要感知它,要通过仔细地观察、分析,去发现问题的各个环节以及其中的联系,从而为寻求解法创造条件;构造法还体现了类比的思想,为了找出解题的途径,很自然地联系已有知识中与之类似的或与之相关的问题,从而为构造模型提供了参照对象;构造法还体现了化归的思想,把一个个零散的发现由表及里,由浅入深地集中和联系起来,通过恰当的方法加

谈构造法在数学解题中的运用

谈构造法在数学解题中的运用 摘要:“构造法”作为一种重要的化归手段,在数学解题中有着重要的作用。本文从“构造函数”、“构造方程”等常见构造及“构造模型”、“构造情境”等特殊构造出发,例谈构造法在数学解题中的运用。 关键词:构造数学解题 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 “构造法”作为一种重要的化归手段,在数学中有着极为重要的作用,现举例谈谈其在数学解题中的运用。 一、构造函数 理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认识上的飞跃。很多数学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。 [例1](柯西不等式)设a i,b i(i=1,2,…,n)均为实数,证明:

? ? ????? ??≤??? ??∑∑∑===n i i n i i n i i i b a b a 1212 12 证:构造二次函数f(x)=?? ? ??+??? ??+??? ??∑∑∑===n i i n i i i n i i b x b a x a 1212122,则 [例2]已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 (第15届俄罗斯数学竞赛题) 分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。 证:构造函数 f(x)=(y+z-1)x+(yz-y-z+1) ∵y,z ∈(0,1), ∴f(0)=yz-y-z+1=(y-1)(z-1)>0 f(1)=(y+z-1)+(yz-y-z+1)=yz >0 而f(x)是一次函数,其图象是直线, ∴由x ∈(0,1)恒有f(x) >0 即(y+z-1)x+(yz-y-z+1) >0 整理可得x(1-y)+y(1-z)+z(1-x) <1 二、构造方程 方程是解数学题的一个重要工具,许多数学问题,根据其数量关系,在已知和未知之间搭上桥梁,构造出方程,使解答简洁、合理。 [例3]已知a,b,c 为互不相等的实数,试证: bc (a-b)(a-c) +ac (b-a)(b-c) +ab (c-a)(c-b) =1 (1) 证:构造方程

初中物理电学综合解题万能模型

《初中物理电学综合解题万能模型》 电压相同的两个电路中:电流比等于电阻的反比. 电学综合题共同的特点是首先通过通断开关,形成两种或两种以上的电路状态,(这是一个将整体化为部分的过程对应学生能力中的分析能力)每一个电路中都会给一部分已知,基本是我们熟知的这几个物理量---电流,电压,电阻,电功率。最后会给某两个电路中的物理量之间的比值关系。(这其实是将两个电路状态进行综合) 所以解电学综合题,首先要进行分析,将一道题化成一个简单电路,并且画出等效电路图并且确定电表测量哪个用电器,这一步非常重要,一定要画对,因为不同的的电路连接方式,物理量之间的关系不同,规律不同,这一步错,之后的所有步骤都会错,会白白浪费时间。判断电路连接方式的方法有两种,一,电流流向法,二,等电势法,也叫节点法。往往我们要两种方法结合在一起应用,可以快速准确的确定电路连接方式和画出等效电路图。这两种方法,是我们的必备的基本功,一定要好熟练掌握。(化整为零,将整体变为部分,是难度降低,从而使为题得以解决我们都知道愚公移山的故事,我们没有那么大的力量一次性将整个山移走,但是我们可以一筐一筐的将土移走,这样可以将不可能完成的事得以变成现实,解题与此相类似) 分析结束,就要进行综合,这样可以把不同电路的已知条件综合在一起,有利于解题(题目之所以难解,是因为已知太少,综合可以零散的已知整合在一起从而很方便的找到未知。题目一般会给几个综合性的已知,比如电流比,电压比,功率比,电阻比。我们要充分运用这些已知。那么如何应用呢? 上面的这个万能模型,系统直观的展现了应用的思路。电路连接方式发生变化的时,不变的是用电器的电阻和电源电压,变化的是流过用电器的电流,其两端的电压以及电功率。我们都学过串并联电路的规律,电阻比决定电流比,电压比和功率之比,也就是不变量决定变量。也就是说如果我们找到了不变量电阻以及电阻之间的关系,那么其他的量都能确定。所以我们要想办法通过题目中所给的变量比---电流比,电压比,功率比,找到电阻比,这是我们努力的方向,应该有这样的意识。

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

浅谈构造法解题在高中数学竞赛中的应用

学好构造法 妙解竞赛题 在数学竞赛辅导过程中,需要长期给学生进行有针对性的数学思想方法的训练。其中构造法解题的思想,就是一种值得推广的解题思想方法。通过构造,可以建立起各种数学知识之间的联系与相互转化,让学生在熟练掌握各种数学知识的前提下交互使用,融会贯通。 一、构造几何模型,使代数问题几何化。 代数运算虽然直接,但有时会比较抽象且运算复杂,构造合乎要求的几何图形,可以是所求解的问题变得直观明朗,从而找到一个全新的接替办法。 例一,设a 为实数,证明:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,且三角形的面积为定值。 分析:从题目给出的三个根式我们知道,当实数a 去互为相反的两数时,只是其中两式角色互换,实质一样,故只需争对非负实数a 展开讨论即可。 ()( ) ? ???-+=++????-+=+-+= +120cos 121160cos 12113 2342222222 22a a a a a a a a a a 构造合乎要求的几何图形如图所示: ? =∠?=∠======120601CBE DAB CD BE AB a BC DF AD 于是:()( ) 343 2,3,222 2+=+= = =a a EF AE a AF 1 120cos 121,1,160cos 121,1,2 2 2 222++=????-+===+-=????-+====a a a a CE BE a BC a a a a DB FC AB a AD 所以:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,即ECF ?。 则:AEF AECF ECF S S S ??-= ?60 F E D C B A ?30 ? 120a a a 1 1 1

例谈构造法在中学数学解题中的应用

例谈构造法在中学数学解题中的应用 发表时间:2012-01-12T09:16:31.067Z 来源:《素质教育》2012年1月下供稿作者:高雁[导读] 方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。高雁江苏省吴江市松陵高级中学215200 摘要:构造法是一种重要的数学解题方法,在解题中被广泛应用。构造法是一种极其富有技巧性和创造性的解题方法,体现了数学中发现、类比、化归的思想,渗透着猜想、探索、特殊化等重要的数学方法。运用构造法解数学题可从中激发学生的发散思维,使学生的思维 和解题能力得到培养,对培养学生的多元化思维和创新精神大有裨益。关键词:构造法构造数学解题 “构造法”是指为解决某个数学问题时先构造一种数学形式(比如几何图形、代数式、方程等),寻求与问题的某种内在联系,使之简单明了,起到化简、转化和桥梁作用,从而找到解决问题的思路、方法。此法重在“构造”、深刻分析、正确思维和丰富联想,它体现了数学中发现、类比、化归等思想,渗透着猜想、试验、探索、概括等重要方法,是一种富有创造性的解决问题的方法。 下面举一些应用构造法的例题,介绍其在数学解题中的巧妙应用。 一、构造方程 方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。根据问题条件中的数量关系和结构特征,构造出一个新的方程,然后依据方程的理论,往往能使问题在新的关系下得以转化而获解。构造方程是初等代数的基本方法之一。 二、构造几何图形(体) 如果问题条件中的数量关系有明显的或隐含的几何意义与背景,或能以某种方式与几何图形建立起联系,则可考虑通过构造几何图形将题设中的数量关系直接在图形中得以实现,然后,借助于图形的性质在所构造的图形中寻求问题的结论。构造的图形,最好是简单而又熟悉其性质的,这些几何图形包括平面几何图形、立体几何图形及通过建立坐标系得到的解析几何图形。 三、构造函数 所谓“构造函数”是指:由题设条件为对象,构想、组合出一种新的函数关系、方程、多项式等具体形式,使问题在新的观点下实现转化而获解。构造函数证(解)问题是一种创造性思维过程,具有较大的灵活性和技巧性。在运用过程中,应有目的、有意识地进行构造,始终“盯住”要证、要解的目标。

初中物理模型--最新版

初中物理模型--精选全解 一、电学模型(一) 模型口诀 先判串联和并联,电表测量然后判; 一路通底必是串,若有分支是并联; A 表相当于导线,并联短路会出现; 如果发现它并源,毁表毁源太凄惨; 若有电器与它并,电路发生局部短; V 表可并不可串,串时相当电路断; 如果发现它被串,电流为零应当然。 模型思考 你想知道常用、快捷、有效、正确识别电路连接方式的四种方法吗? 你会迅速、快捷、无误地判断出电路发生变化时电流表、电压表的示数如何变化吗? 你能根据实验现象或者题中给出的器材,准确、有效、方便的查找到电路中发生故障的原因吗? 模型归纳示图 去表法 串联电路 标电流法 并联电路 节点法 去元件法 正确识别电路办法 A V

明晰电压表电流表测量电路部分 部分电阻变化 总电阻变化 总电流变化 部分电流、部分电压、电表示数 电功、电功率 故障已给出 假设法 判断电路故障 电路图分析 故障未给出短路 串、并连接 断路 电器连接方式 使用注意 电表用途 判断电流电压示数

串、并联电路的识别方法 电路连接有两种基本方法──串联与并联。对于初学者要能够很好识别它们有点难度,下面结合串并联电路特点和实例,学习区别这两种电路的基本方法,希望对初学者有所帮助。 一、串联电路 如果电路中所有的元件是逐个顺次首尾连接起来的,此电路就是串联。我们常见装饰用的“满天星”小彩灯,就是串联的。家用电路中的开关与它所控制的用电器之间也是串联的。串联电路有以下一些特点: (1)电路连接特点:串联的整个电路只有一条电流的路径,各用电器依次相连,没有“分支点”。 (2)用电器工作特点:各用电器相互影响,电路中若有一个用电器不工作,其余的用电器就无法工作。 (3)开关控制特点:串联电路中的开关控制整个电路,开关位置变了,对电路的控制作用没有影响。即串联电路中开关的控制作用与其在电路中的位置无关。 二、并联电路 如果电器中各元件并列连接在电路的两点间,此电路就是并联电路。教室里的电灯、马路上的路灯、家庭中的电灯、电风扇、电冰箱、电视机等用电器之间都是并联在电路中的。并联电路有以下特点: (1)电路连接特点:并联电路由干路和几条支路组成,有“分支点”。每条支路各自和干路形成回路,有几条支路,就有几个回路。 (2)用电器工作特点:在并联电路中各用电器之间相不影响。某一条支路中的用电器若不工作,其他支路的用电器仍能工作。比如教室里的电灯,有一只烧坏,其它的电灯仍然能亮。这就是互不影响。 (3)开关控制特点:并联电路中,干路开关的作用与支路开关的作用不同。干路开关起着总开关的作用,控制整个电路。而各条支路开关只控制它所在的那条支路。 三、识别电路方法

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

例谈高中数学解题中的“法宝”

例谈高中数学解题中的“法宝” 高中数学教学课程标准中明确规定了学习数学不仅包括数学内容、数学语言,更重要的是数学思想、方法。在数学解题过程中,某些数学问题用常规方法是难以解决的,这时可以根据题目的条件和结论的特征,从新的角度,用新的观点去观察分析,用已知的数学关系为“支架”构造出满足条件或结论的数学对象,使原问题中隐晦不清的关系在新构造的数学对象中清楚地表现出来,从而借助该数学对象解决数学问题。这种解决数学问题的方法就是构造法。 一、构造法解题的思路 构造法解题的基本思想方法是“转化”思想。用构造法解题的巧妙之处在于不是直接去解决所给的问题,而是把它转化成一个与原问题有关的辅助新问题,然后通过新问题的解决帮助解决原问题。 二、构造法的思维方式 构造法是一种简捷、快速,灵活变通的解题方法,这些特点,特别是简捷的特点会大大提高学生的求知欲,他们会有一种跃跃欲试的渴望,但却无从知道什么样的问题适合用构造法去解,如何构造? 应用构造法解题的关键一是要明确的解题方向,即要明确为了解决什么样的问题面建立一个相应的构造;二是要

弄清条件的本质特点,以便重新进行逻辑整合。构造法的思维方式是多样的,主要有类比构造,即所研究问题对象之间或这些对象与已学过的知识间存在着形式上、本质上的相同或相似性的可考虑类比构造;联想构造、转换构造、归纳构造、直觉构造、逆向构造,即按逆向思维方式,向原有数学形式的相反方向去思考,通过构造对立的数学形式来解决问题。 三、构造法在中学数学解题中的应用 1. 构造函数 函数在整个中学数学是占有相当的内容,学生对于函数的性质也比较熟悉。选择烂熟于胸的内容来解决棘手问题,会大大提高学生解决问题的能力。 2. 构造一元二次方程 方程作为中学数学的重要内容之一,它与代数式、函数、不等式等知识密切不可分。依据方程理论,能使许多的问题得以转化从而得到解决,这对学生的数学思想的培养具有重要意义。 有些数学题,经过观察可以构造一个方程,从而得到巧妙简捷的解答。 例2 若(z-x)2-4(x-y)(y-z)=0 ,求证:x,y,z成等差数列。 分析:拿到题目感到无从下手,思路受阻。但我们细

通用模型解题法初中物理

通用模型解题法初中物理 赢在教育 物理教师:喻老师 QQ:41975427

一、电学模型(一) 模型口诀 先判串联和并联,电表测量然后判; 一路通底必是串,若有分支是并联; A 表相当于导线,并联短路会出现; 如果发现它并源,毁表毁源太凄惨; 若有电器与它并,电路发生局部短; V 表可并不可串,串时相当电路断; 如果发现它被串,电流为零应当然。 模型思考 你想知道常用、快捷、有效、正确识别电路连接方式的四种方法吗? 你会迅速、快捷、无误地判断出电路发生变化时电流表、电压表的示数如何变化吗? 你能根据实验现象或者题中给出的器材,准确、有效、方便的查找到电路中发生故障的原因吗? 模型归纳示图 串联电路 标电流法 并联电路 节点法 去元件法 明晰电压表电流表测量电路部分 部分电阻变化 总电阻变化 总电流变化 部分电流、部分电压、电表示数 电功、电功率 故障已给出 假设法 判断电路故障 故障未给出短路 串、并连接断路 正 确识别电路 办法 判断 电流 电压 示数

电表用途 串、并联电路的识别方法 电路连接有两种基本方法──串联与并联。 对于初学者要能够很好识别它们有点难度,下面结合串并联电路特点和实例,学习区别这两种电路的基本方法,希望对初学者有所帮助。 一、串联电路 如果电路中所有的元件是逐个顺次首尾连接起来的,此电路就是串联。我们常见装饰用的“满天星”小彩灯,就是串联的。家用电路中的开关与它所控制的用电器之间也是串联的。串联电路有以下一些特点: (1)电路连接特点:串联的整个电路只有一条电流的路径,各用电器依次相连,没有“分支点”。 (2)用电器工作特点:各用电器相互影响,电路中若有一个用电器不工作,其余的用电器就无法工作。 (3)开关控制特点:串联电路中的开关控制整个电路,开关位置变了,对电路的控制作用没有影响。即串联电路中开关的控制作用与其在电路中的位置无关。 二、并联电路 如果电器中各元件并列连接在电路的两点间,此电路就是并联电路。教室里的电灯、马路上的路灯、家庭中的电灯、电风扇、电冰箱、电视机等用电器之间都是并联在电路中的。并联电路有以下特点: (1)电路连接特点:并联电路由干路和几条支路组成,有“分支点”。每条支路各自和干路形成回路,有几条支路,就有几个回路。 (2)用电器工作特点:在并联电路中各用电器之间相不影响。某一条支路中的用电器若不工作,其他支路的用电器仍能工作。比如教室里的电灯,有一只烧坏,其它的电灯仍然能亮。这就是互不影响。 (3)开关控制特点:并联电路中,干路开关的作用与支路开关的作用不同。干路开关起着总开关的作用,控制整个电路。而各条支路开关只控制它所在的那条支路。 三、识别电路方法 1.定义法:综合运用上面介绍串并联电路的连接特点及用电器工作特点,针对一些简单、规则的电路是行之有效的方法,也是其它方法的基础。 2.路径识别法:根据串并联电路连接特点,串联的整个电路只有一条电流的路径,如果有两条或两条以上的路径即为并联电路。 例题1如图1所示的电路,是判断连接方式是串联还是并联?

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

初中物理模型

一、电学模型(一) 模型口诀 先判串联和并联,电表测量然后判; 一路通底必是串,若有分支是并联; A 表相当于导线,并联短路会出现; 如果发现它并源,毁表毁源太凄惨; 若有电器与它并,电路发生局部短; V 表可并不可串,串时相当电路断; 如果发现它被串,电流为零应当然。 模型思考 你想知道常用、快捷、有效、正确识别电路连接方式的四种方法吗? 你会迅速、快捷、无误地判断出电路发生变化时电流表、电压表的示数如何变化吗? 你能根据实验现象或者题中给出的器材,准确、有效、方便的查找到电路中发生故障的原因吗? 模型归纳示图 去表法 串联电路 标电流法 并联电路 节点法 去元件法 正确识别电路办法

明晰电压表电流表测量电路部分 部分电阻变化 总电阻变化 总电流变化 部分电流、部分电压、电表示数 电功、电功率 故障已给出 假设法 判断电路故障 电路图分析 故障未给出短路 串、并连接 断路 电器连接方式 使用注意 电表用途 判断电流电压示数

串、并联电路的识别方法 电路连接有两种基本方法──串联与并联。对于初学者要能够很好识别它们有点难度,下面结合串并联电路特点和实例,学习区别这两种电路的基本方法,希望对初学者有所帮助。 一、串联电路 如果电路中所有的元件是逐个顺次首尾连接起来的,此电路就是串联。我们常见装饰用的“满天星”小彩灯,就是串联的。家用电路中的开关与它所控制的用电器之间也是串联的。串联电路有以下一些特点: (1)电路连接特点:串联的整个电路只有一条电流的路径,各用电器依次相连,没有“分支点”。 (2)用电器工作特点:各用电器相互影响,电路中若有一个用电器不工作,其余的用电器就无法工作。 (3)开关控制特点:串联电路中的开关控制整个电路,开关位置变了,对电路的控制作用没有影响。即串联电路中开关的控制作用与其在电路中的位置无关。 二、并联电路 如果电器中各元件并列连接在电路的两点间,此电路就是并联电路。教室里的电灯、马路上的路灯、家庭中的电灯、电风扇、电冰箱、电视机等用电器之间都是并联在电路中的。并联电路有以下特点: (1)电路连接特点:并联电路由干路和几条支路组成,有“分支点”。每条支路各自和干路形成回路,有几条支路,就有几个回路。 (2)用电器工作特点:在并联电路中各用电器之间相不影响。某一条支路中的用电器若不工作,其他支路的用电器仍能工作。比如教室里的电灯,有一只烧坏,其它的电灯仍然能亮。这就是互不影响。 (3)开关控制特点:并联电路中,干路开关的作用与支路开关的作用不同。干路开关起着总开关的作用,控制整个电路。而各条支路开关只控制它所在的那条支路。 三、识别电路方法 1.定义法:综合运用上面介绍串并联电路的连接特点及用电器工作特点,针对一些简单、规则的电路是行之有效的方法,也是其它方法的基础。 2.路径识别法:根据串并联电路连接特点,串联的整个电路只有一条电流的路径,如果有两条或两条以上的路径即为并联电路。 例题1如图1所示的电路,是判断连接方式是串联还是并联?

2017年中考专题复习—辅助圆教学设计

2017年中考专题复习—辅助圆教学设计 学生情况分析:作为专题复习,初三的学生已经学习了圆的基本知识,掌握了圆的一些有关性质,并对辅助圆有了初步的认识.对于直线形中常见的几何问题形成了一些基本的解题策略,但从辅助圆这个新的视角解决问题还显得弱了很多.学生对于一些数学问题容易产生想法,但欠缺的是归纳总结提升,而本节课想要达到的目的,就是引导学生学会归纳总结,将以前学过的一些知识从一个新的视角研究,简化证明过程.初步形成构造曲线形辅助线的意识. 设计意图:对于平面几何问题,学生常常想到的是构造直线形辅助线来转化条件,从而利用三角形、四边形的知识来解决问题.但辅助线的添加就被局限在直线形,而实际上曲线形辅助线在一些特定条件下,更有利于条件的集中,辅助圆是曲线形辅助线的代表,利用圆,就会让图形的条件更丰富,而学生对此又很少了解,故想借此节课,和学生一起探究,来感受辅助圆的独特.本节课想以一种学生探究,老师引领学生作归纳总结的形式呈现,通过学生思想的碰撞,最终达成共识. 教学目标:1.进一步巩固圆的定义和性质,能够正确利用圆找到符合条件的点所在的位置; 2.通过对例题条件和结论的分析,体会利用圆解决点的轨迹问题,进而掌握利用作圆解决分类讨论问题的方法; 3.逐步建立从圆的观点看问题的意识,能够多角度认识事物,全面还原事物的本质. 教学重点:利用辅助圆解决有关问题 教学难点:建立用圆的观点看问题的意识,能够判断出构造圆的条件 教学过程: 画辅助圆即“四点共圆”这类问题一般有两形式:一是要证明某四点共圆(;二是通过某四点共圆来得到一些重要的结果,进而解决问题,下面是与画辅助圆有关的一些基本知识。 1、若干个点与某定点的距离相等,则这些点在同一圆周上(证明多个点到同一个定点的距离相等即可) 2、在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆。(共斜边的两个直角三角形顶点共圆) 3、若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆 4、若点C,D在线段AB的同侧,且∠ACB=∠ADB,则A,B,C,D四点共圆探究1 1、如图所示,在四边形ABCD中,AB=AC=AD,∠BAC=20° ∠CAD=80°,则∠BDC=______度,∠DBC=______度

构造法解题一例

构造法解题一例 构造法解题是数学中常用的一种解题思路,是深入分析、正确思维以及丰富联想的产物,请看下面的这道例题: 例:正数a 、b 、c 、A 、B 、C 满足条件a+A=b+B=c+C=k 求证:aB+bC+cAk(aB+bC+cA) 得证。

证明五:还可联想函数式,构造以c(或a或b)为变量字母的一次函数式: f(c)=(k-a-b)c+k(a+b)-ab-k2 (0

(完整版)初中物理题型解题技巧

初中物理题型解题技巧 物理试卷结构(共五大题型) 一、选择题: 二、填空题: 三、作图题: 四、探究与实验题: 五、简答计算题: 【选择题】 物理选择题的特点是概念性强、针对性强,具有一定的多样性、迷惑性。选择题能考查学生在学习活动中的记忆与理解、判断与推理、分析与比较、鉴别与评估等多种能力,所以它是考查学生学习掌握知识和运用知识能力的常用方法。 选择题的题型一般有: 概念辨析类、规律理解类、联系实际类、求比值类、图像分析类、电路故障类、对物理方法的理解类、估值类等。 概念辨析 所谓的概念辨析法是指用物理概念作为标准去分析题目所给的条件和提出的问题,辨别正误,从而判断获取正确结果的解题方法。 解答这类题主要对物理概念要准确记忆和正确理解,对相关的不同概念的区分及对某些重要概念的内涵要分析到位。 规律理解 主要考查对物理过程中物理规律的辨别能力。 解答的关键是对题干中描述的物理过程做出正确的判断与分析,然后找准其对应的物理规律,再利用物理规律对选项的内容逐一进行分析,最后做出选择。 联系实际 这类题主要考查物理规律、原理在生产、生活中的应用。 解答的关键是对生产、生活或事例的分析,要能透过现象看本质,在剖析事例或现象的过程中,找到与物理原理的联系,进而做出解答。 求比值类(比例法、数据代人法) ()比例法:利用数学的比例式来解决物理问题的方法称之为比例法。 用比例法解题可以省略反复套用公式而带来计算的烦琐,对物理量的单位也没有统一的要求,只要相比的同一物理量的单位相同就可以了。运用这种方法既能通过计算定量得出结果,也能经过分析定性比较大小。 运用比例法的一般步骤是: 了解题意,选择相应的物理公式。 依据题目描述的物理现象找出保持不变或者相等的物理量。 用不变的(或相等)的量为纽带,将公式联立成比例式。 ()数据代入法:根据题目给定的数据,给未知的某个物理量假定一个恰当的值代入题中,然后进行计算。 图像分析 在物理学中,常采用数学中的函数图像,将物理量之间的关系表示出来。因此图像实际上反映了物理过程(如熔化图线等)和物理量的关系(如电阻的伏安特性曲线等)。运用图像知识来解物理试题的方法,叫图像法。 运用此方法时应做到: 识别或认定图像横坐标和纵坐标所表示的物理量,弄清情景所描述的物理过程及其有关的因

倍比法解题例谈

倍比法解题例谈 湖北省仙桃市吴乃华 利用两个同类量的倍数关系来解题,传统的做法通常是用倍比这一思路,来解答一些简单的如可以用“归一”来解答的问题。其实,用这种方法不仅还可以解答整数倍的其它典型问题,有时也可以把一些分数问题中的同一单位“1”的两个分率,或者虽不是同一单位“1”,但是具有某部分绝对数相等的情况的两个分率,利用其倍数关系,同样可以使问题得以解决。由于这种方法避开了某些常规模式的束缚,思路简单、明了,有时还使个别条件成了多余,因而省去了许多繁难的计算,大大地简化了解题的过程。 小学数学应用题,大都反映为三量间的关系,因此,两个同类量的倍比,常常可以分为正向倍比和反向倍比两种情况。并且当两量的倍比为反向倍比时,需要运用比例的知识来作认识上的转化,以调整自己的视角,比如“时间的比等于速度的反比”等等。特别值得注意的是,这种转化仅仅是认识上的转化,形式上不需作任何改变,但如果思想上没有这种认识,这种解法是没有意义的。 1. 正向倍比解题 (1) 两个同类量的正比 【例1】六(1)班全体同学为新盖教学楼搬一堆砖。如果每人搬18块,就还剩30块不能搬走;如果每人搬20块,搬完这堆砖后还可以多搬50块,这堆砖共有多少块? 分析与解答第一个方案每人搬的块数是第二个方案每人搬的块数的18÷20= 9 10 。由题意可知,人 数一定,能搬砖的总块数与每人搬的块数是成正比例的,从而可推知第一个方案能搬砖的总块数也是第二 个方案能搬的总块数的 9 10 ,比第二个方案可搬的总块数少1- 9 10 = 1 10 . 已知第二个方案比第一个方案能多搬30 + 50 = 80(块),所以这堆砖共有: (30 + 50 ) ÷(1- 1 10 )-50 = 750(块). 【例2】某自行车运动员以每小时20千米的速度沿公路骑行训练。行出42千米后,他的教练骑摩托车以每小时50千米的速度去追。教练要行多少千米才能追上? 分析与解答运动员每小时的速度是教练的20 ÷ 50=2 5 ,比教练的摩托车每小时慢1- 2 5 = 3 5 。由 于运动员在前42千米,教练就必须在相同的时间内比他多行42千米。因此,教练要行的路程就是: 42÷(1-2 5 )=70(千米) (2) 同一单位“1”的两个分率的倍比 【例3】一根钢管长2. 7米,截下总长的3/10 做了9个机械零件。剩余部分还可以做这样的零件几个?

初中解题技巧之构造法专题

初中解题方法之构造法专题 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 一 真题链接 1.(2012 青海)若m,n 为实数,且2012),08212n m n m n m +=--+-+则(的值为 2.(2012 莆田) 3.(2012?铁岭)如果021=-++y x ,那么xy= 4.(2012?佛山)如图,已知AB=DC ,DB=AC (1)求证:∠ABD=∠DCA .注:证明过程要求给出每一步结论成立的依据. (2)在(1)的证明过程中,需要作辅助线,它的意图是什么? 5. (2012?佳木斯)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把 228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表: (1)求这两种货车各用多少辆? (2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与 a 的函数关系式(写出自变量的取值范围); (3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.

二.名词释义 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一.某些题目根据条件、仔细观察其特点,构造一个“方程”求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 二.构建几何图形 对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例2:已知,则x 的取值范围是() A 1≤≤5 B ≤1 C 1<<5 D ≥5 分析:根据绝对值的几何意义可知:表示数轴上到1与5的距离之和等于4的所有点所表示的数。如图3,只要表示数的点落在1和5之间(包括1和5),那么它到1与5的距离之和都等于4,所以1≤≤5,故选A. 三、构造函数模型,解数学实际问题

相关主题
文本预览
相关文档 最新文档