当前位置:文档之家› 构造辅助圆巧解三角形问题

构造辅助圆巧解三角形问题

构造辅助圆巧解三角形问题
构造辅助圆巧解三角形问题

构造辅助圆巧解三角形问题

在解决三角形相关问题时,有时常规方法求解难度大,技巧性强,且不易奏效,但若 能针对题目的本质特征,恰当地构造辅助圆,巧妙地运用圆的有关知识,则可起到化隐为显、化难为易、化繁为简的作用,使复杂的问题迎刃而解.下面结合实例谈谈构造辅助圆在巧解三角形问题中的应用,希望给大家以启示, 一、构造辅助圆求三角形的面积

例1 如图l ,已知AB=AC=BC=AD ,AE 平分∠CAD ,CE ⊥BC ,AE =3,BD =5,则

ABC

S ?=__________.

解 AB=AC=AD ,∴点B 、C 、D 在以A 为圆心, AB 为半径的圆上(如图1). CE ⊥BC ,∠ACB=60°,∴∠ACE=30°.

又 ∠BDC=21

∠BAC=30°, ∴∠ACE=∠BDC. AE 平分∠CAD ,∴∠CAE=21

∠CAD

∠DBC=21∠CAD , ∠CAE=∠DBC ,△ACE ∽△BDC , BC AE

BD AC =

AC=BC ,

BD AE BC ?=∴2

. ABC S ?=243BC ,∴ABC S ?=3

41543=?BD AE .

评注 本题主要考查了圆的性质、相似三角形的性质与判定以及三角形的面积公式.由条件AB=AC=AD .自然联想到构造辅助圆⊙A ,从而得到∠BDC=30°,其中由△ACE ∽△BDC 得出BC2 = BD AE ?是求解的关键.

二、构造辅助圆求三角形的内角

例2 如图2,已知AD 、AE 、AM 分别为△ABC 的BC 边上的高、角平分线、中线,且∠1=∠2,则∠BAC=____°.

解 作△ABC 的外接圆交AE 延长线于点N ,连结MN ,BN ,CN. ∠BAE=∠CAE , ∴BN

⌒ =CN ⌒ ,则BN=CN. 又 MB=MC ,∴MN ⊥BC .而 AD ⊥BC ,∴MN ∥AD , 于是∠ANM=∠l=∠2,故MA=MN.

∴点M 是弦BC 、AN 的中垂线的交点,即M 为圆心.

又BC 为直径,∴∠BAC=90°.

评注 此题若直接求∠BAC 的度数很难达到目的,而通过构造△ABC 的外接圆之后,可充分利用等腰三角形及圆的相关性质,说明点M 是外接圆的圆心,又因BC 为直径,从而得出∠BAC=90°,问题得以巧妙解决. 三、构造辅助圆求三角形的高

例3 如图3,已知在△ABC 中,CD ⊥AB 于D ,∠ACB=45°,AD =2,BD =3,求CD 的长.

解 作△ABC 的外接圆⊙O ,连结AO ,BO ,CO. 过点D 作OE ⊥AB 于点E ,OF ⊥CD 于点F .

∠ACB=45°, ∴∠AOB=90°, ∴△AOB 是等腰直角三角形.

AB=AD+BD=5,∴OC=OB=225,OE=DF=25

又 DE=AE - AD=21,∴OF=21

在Rt △COF 中,由勾股定理,得CF=27

,∴CD=CF+DF=6.

评注 由于AB 的长及∠ACB=45°是确定的,可联想构造出△ABC 的外接圆⊙O .于是得到△AOB 是等腰直角三角形,再利用勾股定理问题便得以顺利解决,当然本题还有其它解法,其中构造辅助圆应是一种比较巧妙的解法. 四、构造辅助圆求三角形的边长

例4 知图4,已知1?,2?,

3

?同一平面内的三条平行直线,1?与2?的距离是l ,2?与

3

?的距离是2,等边△ABC 的三个顶点分别在1?,2?,3?

上,则等边△ABC 的边长为______。

解 作点B 关于

3

?的对称点D .连结AD 、CD ,延长DB 交于1?于点F ,则CD=CB .

△ABC 是等边三角形,∴CA=CB ,则CA=CB=CD.

∴点A 、B 、D 在以C 为圆心,CA 为半径的圆上,则∠ADB=21

∠ACB=30°. BE=DE=2,BF=l ,∴DF=5,AF=33

5.

在Rt △AFB 中,由勾股定理,得AB=

321

222=

+BF AF ,∴等边△ABC 的边长

3212.

评注 本题通过作点B 关于

3

?的对称点,构造辅助圆⊙C 找到了解题的突破口,其

中根据圆的相关知识及直角三角形的性质,求出AF 的长是解题的关键. 五、构造辅助圆求三角形中线段的长

例5 如图5,在△ABC 中,D 为AB 边上一点,E 为CD 的中点,AC=2,∠ABC=30°, ∠A=∠BED=45°,则BD 的长为____.

解 作△BED 的外接圆⊙N ,过点N 作NL ⊥AB 于点L ,过点C 作CF ⊥AB 于点F .过点E 作EG ⊥AB 于点G ,过点E 作EM ⊥NL 于点M.

AC=2,∠A=45°,∴AF=CF=1. ∠ABC=30°,∴BF=3.

E 为CD 的中点,EG ⊥AB ,∴FG=DG .

DN=BN ,NL ⊥AB ,∴DL=BL ,∴GL=21

BF=23.

∠BED=45°,∴∠BND=90°,即△BDN 是等腰直角三角形,∴LN=21

BD ,

设BL=DL=x 则NL=x . EG=21CF=21,∴MN=x-21

,EN=DN=

2x.

在Rt △NEM 中,由勾股定理,得EM2+ NM2= EN2.

∴()

2

2

2

22123x x =??? ??-+???? ?

?,解得

21

5-=

x ,∴BD=152-=x .

评注 本题是以确定的角来定位置,再求线段的长度,综合性较强,灵活性较高,有一定难度.联想到∠BED=45°,可构造辅助圆⊙N ,再根据勾股定理构建已知线段与未知线段之间的关系,从而顺利突破难点,得以求解. 六、构造辅助圆求三角形中的最值问题

例6 如图6,已知∠MON=60°,Rt △ABC 的顶点A ,B 分别在ON 和OM 上运动,

∠ABC=90°,AB=32,BC =2,则顶点C 到点O 的距离的最大值为____.

解 作△AOB 的外接圆⊙P ,连结PO ,PA ,PB ,PC. 过点P 作PE ⊥AB 于E ,作PD ⊥BC 交CB 延长线于点D .

∠MON=60°,∴∠APB=120°.

PA=PB 且 PE ⊥AB ,∴AE=BE=3,∠PBE=30°,∴在Rt △PEB 中,

PB=2

°30cos =BE

.

∠PBC=120°,∴∠PBD=60°,∴BD=21

PB=1,PD=3,则CD=BD+BC=3.

在Rt △PCD 中,由勾股定理,得PC=322

2

=+CD PD .

O C≤OP+PC ,∴OC 的最大值为23+2.

评注本题中由于AB的长和 MON的度数为定值,可得辅助圆⊙P的半径也为定值,从而求出CP的长,再由三点共线问题便得以解决.此题属于双动点最值问题,解题技巧性较强,具有较高的思维含量.

解题时要细心观察题目所给的条件及所要解决的问题,若能与圆结缘,构造一个辅助圆,以圆为载体,去重新认识题中所给的角、线段、三角形等基本图形,再结合圆的一些特有的性质,对问题进行综合分析与探讨,往往会使我们的思路柳暗花明、豁然开朗.总之,只要我们多观察、多思考,多探究,数学解题就会变得充满活力与乐趣,使我们爱学数学、乐学数学,让提高数学素养真正落到实处.

巧构一线三直角解题

巧构一线三直角解题 发表时间:2017-02-14T14:06:18.193Z 来源:《中小学教育》2017年2月第269期作者:鲍玉秀张刚 [导读] 教师在教学时要注意给学生创造机会,让学生学会找基本图形。 山东省淄博市周村区北郊中学255000;山东省淄博市修文外国语学校255000 教师在教学时要注意给学生创造机会,让学生学会找基本图形。通过基本图形的积累,学生在分析题目时,就能唤醒利用这些基本图形,并能直接解题。几何命题的证明方法很多,只要找到规律、找到模型,我们就可以“以不变应万变”,任何问题就能迎刃而解。所以说,模型建立是学好数学的秘密武器。 基本图形:如图1,B、D、C在一条直线上,∠B=∠ADE=∠C=90°。我们称这一图形为“一线三直角”模型,则△ABD∽△DCE(或 △ABD≌△DCE)。 点评:我们在教学中经常遇到此图形,只要见到一直角在一条直线上,我们可以构造两侧的直角三角形,利用相似三角形可以解决一类相关问题。当出现了有相等边的条件之后,相似就转化为全等了。综合性题目往往就会把相似和全等的转化作为出题的一种形式。本文将重点对这一基本图形进行探讨。 一、在旋转中出现一线三直角基本图形(全等) 如图,将AO绕点O按逆时针方向旋转90°,得到A’O。若点A的坐标为(a,b),则点A’的坐标为( )。 解析:过A点作AB⊥x轴,垂足为E,过A’作A’E’⊥x轴,则△A’OE≌△OAE,所以A’E’=OE=a,AE=OE’=b,所以A’的坐标为(-b,a)。 点评:教师在平时教学中就要注意基本图形的构造,为以后学习打下良好的基础。 变式:直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为2。把一块含有45°角的直角三角形如图放置,顶点A、B、C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()。 分析:∠AEC=90°,并在直线l3,此时我们可以构造一线三直角数学模型,△ADE与△BEC全等,所以DB=CE=3。 二、在折叠中构造一线三直角 如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连结OB,将纸片OABC沿OB折叠,使点A落在A’的位置。若OB= 5,tan∠BOC= ,则点A’的坐标是多少? 解析:因为OB= 5,tan∠BOC= ,OA=1,AB=2,△A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1), DE=AB,2a+ (a+1)=2,解得a= ,所以A’的坐标(- ,)。 点评:此题是以矩形折叠为载体,如果利用常规方法勾股定理及全等计算很麻烦。如果构造一线三直角是非常简单的,过A’做AB的平行线,与BC、AO的延长线交于E、D, △A’OD∽△A’BE。设OD=a,则A’E=2a, A’D= (a+1),DE=AB,2a+ (a+1)=2,计算量相当简单。 三、画斜为直,找直线构造一线三直角 如图,在平面直角坐标系xoy中,点A的坐标是(-7,1),∠AOB=135°,OB=5。(1)求△AOB的面积。(2)求点B的坐标。 解析:设B(x,y),过B点作BF⊥x轴,过D点作x轴的平行线,与y轴交于G点,过A点作AC⊥CD。因为∠AOB=135°,AO=5 2,所以∠AOD=45°,AD=OD=5,所以△BOF≌△DOG≌△DCA,所以AD=OD=BO,AC=DG=OF,CD=OG=BF,所以△AOB的面积= ×5×5= ,所以x+y=7,1+y=x,所以x=4,y=3。 点评:这是一道一题多解的题,将∠AOB=135°转化为∠AOD=45°,构造等腰直角三角形,再构造模型一线三直角(全等)。 四、在圆中构造一线三直角 如图,在平面直角坐标系中,⊙P与x轴相切于点C,与y轴分别交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、E,连接DC并延长交y轴于点F。若点F的坐标为(0,1),点D的坐标为(6,-1)。(1)求证:DC=FC。(2)求直线AD的解析式。 解析:(1)由△OFC≌△GDC得到OC=CG,过点作DG⊥x轴,连接AC,因为AD为直径,所以∠AGD=90°,△OAG∽△CGD,所以DG∶GC=OG∶OA,所以1∶3=3∶OA,所以OA=9。 点评:从圆中找直角,利用直径得圆周角等于90°,问题便可迎刃而解。 基本图形的教学是初中几何教学的重点,也是难点,教师在平时教学中要注重基本图形的研究,要有足够的耐心等学生慢慢积累。学生的学习达到一定程度就会从复杂的图形中提炼出基本图形,才会出现解决问题时的灵感。

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

构造全等三角形种常用方法

名师堂 校区地址: 南充 市顺庆区吉隆街 咨询电话: 2244028优学小班——提分更快、针对更强、时效更高 构造全等三角形种常用方法 在证明两个三角形全等时,选择三角形全等的五种方法(“SSS ”,“SAS ”,“ASA ”,“AAS ”,“HL ”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边的夹角用“SAS ”或再找第三组对应边用“SSS ”;若找到一组角则需找另一组角(可能用“ASA ”或“AAS ”)或夹这个角的另一组对应边用“SAS ”;若是判定两个直角三角形全等则优先考虑“HL ”。上述可归纳为: () ()() ()S SSS S A SAS S S SAS A A AAS ASA ??? ????????? ?用用用用或 搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了.下面举例说明几种常见的构造方法,供同学们参考. 1.截长补短法 例1.如图(1)已知:正方形ABCD 中,∠BAC 的平分线交BC 于E , 求证:AB+BE=AC . 解法(一)(补短法或补全法)延长AB 至F 使AF=AC , 由已知△AEF ≌△AEC ,∴∠F=∠ACE=45o, ∴BF=BE ,∴AB+BE=AB+BF=AF=AC . 解法(二)(截长法或分割法)在AC 上截取AG=AB ,由已知 △ ABE ≌△AGE ,∴EG=BE, ∠AGE=∠ABE,∵∠ACE=45o, ∴CG=EG, ∴AB+BE=AG+CG=AC . 2.平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对Rt △,有时可作出斜边的中线. 例2.△ABC 中,∠BAC=60°,∠C=40°AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q , 求证:AB+BP=BQ+AQ . 证明:如图(1),过O 作OD ∥BC 交AB 于D ,∴∠ADO=∠ABC =180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°, ∴∠ADO=∠AQO ,又∵∠DAO=∠QAO ,OA=AO , ∴△ADO ≌△AQO ,∴OD=OQ ,AD=AQ ,又∵OD ∥BP , ∴∠PBO=∠DOB ,又∵∠PBO=∠DBO ,∴∠DBO=∠DOB , ∴BD=OD ,∴AB+BP=AD+DB+BP =AQ+OQ+BO=AQ+BQ . A B C P Q D O D

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

全等三角形辅助线经典做法习题

全等三角形证明方法中辅助线做法 一、截长补短 通过添加辅助线利用截长补短,从而达到改变线段之间的长短,达到构造全等三角形的条件 1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.

3.如图,在△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,BD ,CE 交于点O,试判断BE,CD,BC 的数量关系,并加以证明. 4.如图,AD ∥BC,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD,BC,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=2 1 ∠BAD ,上述结论是否仍然成立,并说明理由.

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

专题研究:全等三角形证明方法归纳及典型例题

全等三角形的证明 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3)边边边定理(SSS):三边对应相等的两个三角形全等. (4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 专题1、常见辅助线的做法 典型例题 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种:

巧作辅助线构造全等三角形求解角度

巧作辅助线构造全等三角形求解角度 【例1】如图1-1,四边形ABCD中,△ABD为等边三角形,∠CAD=45°,∠BDC =30°,求∠ACB的度数。 此题看上去挺简单,但想不到思路就不容易做出来。 【解析】以AC为边向AC左侧作等边三角形ACF(如图1-1-1)。 则∠CDA=90°,∵∠CAD=45°, ∴∠ACD=45o,∴AD=DC; ∵△ACF为等边三角形, ∴∠BAF=60o-(60o-45o)=45o, 又∵AF=AC,AB=AD, ∴△AFB≌△ACD, ∴BF=CD,∵AD=CD, ∴BF=BA; 在△ABC和△FBC中: BA=BF,AC=FC,BC=BC, ∴△ABC≌△FBC, ∴∠ACB=∠FCB=30o。

【例2】如图2-1,四边形ABCD中,∠ABC=∠ACB=58°,∠CAD=48°,∠BDC=30°,求∠ACB的度数。 【思路】依据【例1】的思路,构造等边三角形和全等三角形。 【解析】以AC为边向AC左侧作等边三角形ACF,在CD上取一点E,使得∠ADE=∠AED(如图2-1-1)。 则∠CDA=∠AED=88°, ∴AD=AE=AB; ∠DAE=4o, ∴∠CAE=48o-4 o=44 o, ∴∠ACE=44 o, ∴AE=CE; ∵△ACF为等边三角形, ∴∠BAF=60o-(64o-48o)=44o, ∴∠BAF=∠CAE, 又∵AF=AC,AB=AE, ∴△AFB≌△ACE,∴BF=CE, ∵AE=CE,∴BF=BA; 在△ABC和△FBC中: BA=BF,AC=FC,BC=BC,

∴△ABC≌△FBC, ∴∠ACB=∠FCB=30o。 【猜想】通过以上两个例子我们发现,在等腰三角形ABD中,顶角∠BAD的四等分线AC与底边绕点D逆时针旋转30 o后的直线交于点C,所构成的∠ACB角度为30 o,那么对于顶角∠BAD小于60 o时,【猜想】是否成立呢? 【例3】如图3-1,四边形ABCD中,∠ABC=∠ACB=64°,∠CAD=39°,∠BCD=30°,求∠ACB的度数。 【解析】以AC为边向AC左侧作等边三角形ACF,在CD延长线上取一点E,使得∠ADE=∠AED(如图3-1-1)。 则∠CDA=94°, ∠ADE=∠AED =180o-94o=86°, ∴AD=AE=AB; ∠DAE=8o,∠CAE=39o+8o=47o, ∴∠ACE=180o-47o-86o=47o, ∴AE=CE; ∵△ACF为等边三角形,

三角形全等的五种判定方法及如何构造三角形全等

全等三角形综合复习 1. 全等三角形的概念及性质; 2. 三角形全等的判定; 3. 角平分线的性质及判定。 知识点一:证明三角形全等的思路 通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析: 找夹角SAS 已知两边找第三边SSS 找直角HL ACF BDE。 已知一边一角 边为角的对边 边为角的邻边 找任一角AAS 找夹角的另 一 边SAS 找夹边的另 一 角ASA 找边的对角AAS 已知两角 找夹边ASA 找任一对边AAS 例1.如图,A,F,E,B四点共线, AC CE,BD DF,AE BF,AC BD。求证:

知识点二:构造全等三角形 例2.如图,在ABC中, 例3.如图,在ABC中,AB BC , ABC 90°。F为AB延长线上一点,点E在BC上, BE BF,连接AE,EF 和CF。求证:AE CF。 知识点三:常见辅助线的作法 1.连接四边形的对角线 例 4.如图,AB//CD,AD//BC,求证:AB CD。 解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。

2?作垂线,利用角平分线的知识 例5.如图,AP,CP分别是ABC外角 BP为MBN的平分线。 解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时 , 角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。 3. “截长补短”构造全等三角形 AB AC PB PC。 在AB上截取AN AC,连接PN 在APN与APC中 AN AC Q 1 2 AP AP APN APC (SAS) PN PC Q 在BPN 中,PB PN BN PB PC AB AC,即AB —AC>PB —PC。 例6.如图,在ABC中,AB AC, 1 2,P为AD上任意一点。求证: 常过 。求 证: 解答过程:

(完整word版)解直角三角形思想方法中考题型

思想方法中考题型 一、方程思想 根据题意设适当的未知数,从已知和未知中寻求等量关系,构造出方程或方程组,从而使问题获解. 例1如图1,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,又知河宽CD为50米.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,求缆绳AC的长(答案可带根号). 解:过A点作AB⊥CD交CD的延长线于点B,设AB=x 在Rt△ABC中,因为∠ACB=∠CAE=30°,所以AC=2ABC=2x,BC=3AB=3x 在Rt△ABD中,因为∠ADB=∠EAD=45°,所以DB=AB=x 因为CD=50,所以 解得x=25(1+3)。答:缆绳AC的长为() 5013 +米. 说明先得出边角之间的关系,再构造方程求解,这是直角三角形的边角关系应用的常见方法,应值得注意. 二、数形结合思想 将数量和图形巧妙结合来寻找解题思路 例2如图2,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆。已知A、B、C所处位置的海拔高度分别为124m、400m、1100m,如图建立直角坐标系,即A(a,124)、B(b,400)、C(c, 1100),若直线AB的解析式为y=1 2x+4,直线BC与水平线BC1的交角为45°. ⑴分别求出A、B、C三个缆车站所在位置的坐标; ⑵求缆车从B站出发到达C站单向运行的距离(精确到1m). A(240,124)、B(792,400)、C(2192,1100);(2)7002≈990(米). 三、转化思想 抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法. 例3如图3,学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成26°角,斜坡CD与水平地面成30°的角.求旗杆AB的高度(精确到1米).(tan26°=0.43) 解:延长AD、BC交于点E,过点D作DF⊥CE于F.则依据题意可知,∠E=°,∠DCE=°。 在Rt△CFD中,得DF=4,CF=43≈6.928, 在Rt△DFE中, 在Rt△ABE中, 答:旗杆AB的高度约为. 四、建模思想 所谓建模思想就是认真分析题意,将实际问题抽象、转化为数学问题,建立数学模型,再通过对数学模型的探索达到解决问题的目的. 例4如图4,MN表示一段高速公路的设计路线图.在点M测得点N在它的南偏东30°的方向.测得另一点A在它的南偏东60°的方向;取MN上另一点B,在点B测得点A在它的南偏东75°的方向.以点A为圆心,500m为半径的圆形区域为某居民区.已知MB=400m,通过计算回答:如果不改变方向,高速公路是否会穿过居民区? 解:过点A作AC⊥MN于点C.依题意,得∠AMC=60°-30°=30°,∠ABC=75°-30°=45°.设AC为x m, 图2 B A 图4 M 30° 60° 75° 北 北 N C 图1 F 图3 E D C B A

构造全等三角形的方法

全等三角形的构造方法 全等三角形是初中数学中的重要内容之一,是今后学习其他内容的基础。判断三角形全等公理有SAS ASA AAS SSS和HL,如果能够直接证明三角形的全等的,直接根据相应的公理就可以证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。一些较难的一些证明问题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 构造方法有: 1 .截长补短法。 2?平行线法(或平移法):若题设中含有中点可以试过中点作平行线或中位线, 对Rt△,有时可作出斜边的中线。 3. 旋转法:对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造 全等三角形。 4. 倍长中线法:题中条件若有中线,可延长一倍,以构造全等三角形,从而将 分散条件集中在一个三角形内。 5. 翻折法:若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质, 沿轴翻转图形来构造全等三角形。下面举例说明几种常见的构造方法,供同学们参考. 1. 截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短 法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然 后证明加长的那部分与另一较短的线段相等. 例1.如图所示,在Rt△ ABC中,/ C=90,BC=AC AD平分/ BAC交BC 于D,求证:AB=AC+CD 例2 已知:如图,AB=AC E为AB上一点,F是AC延长线上一点,且BE=CF EF 交BC于点D.求证:DE=DF E

全等三角形的构造技巧(2020版)

全等三角形的构造技巧 一、利用角平分线,构造全等三角形 【方法剖析】因为角平分线本身已经具备全等的三个条件中的两个(角相等和公共边相等), 故在处理角平分线问题时,常作以下辅助线构造全等三角形: (1)在角的两边截取两条相等的线段; (2)过角平分线上一点作角两边的垂线; (3)延长角平分线的垂线. (一)在角两边截取相等线段 例1.如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC =AB +CD. 证明:在BC 上截取BF =AB ,连接EF.∵∠ABC 、∠BCD 的平分线交AD 于点E , ∴∠ABE =∠FBE ,∠BCE =∠DCE , 在△ABE 和△FBE 中,?????AB =FB ,∠ABE =∠FBE ,BE =BE , ∴△ABE ≌△FBE.∴∠BAE =∠BFE. ∵AB ∥CD ,∴∠BAE +∠CDE =180°.∴∠BFE +∠CDE =180°. ∵∠BFE +∠CFE =180°,∴∠CFE =∠CDE. 在△FCE 和△DCE 中,?????∠CFE =∠CDE ,∠FCE =∠DCE ,CE =CE , ∴△FCE ≌△DCE.∴CF =CD. ∴BC =BF +CF =AB +CD. 练习: 1.如图,BC >AB,BD 平分∠ABC 且AD=DC,求证: ∠A+∠C=1800. 分析:在边BC 上截取AB=BE,连接DE,则△BAD ≌△BED,这样, AD 转移到了DE 的位置,∠A 与∠C 就建立了联系。也可看成 △BAD 翻折到了△BED 的位置。 (二)利用角平分线的性质,过角平分线上一点作角两边的垂线 例1.如图,∠AOB =90°,将三角尺的直角顶点落在∠AOB 的平分线上的任意一点P ,使三 角尺的两条直角边与∠AOB 的两边分别相交于点E 、F ,试证PE =PF. 图1 图2 分析:如图1,因为OC 是角平分线,所以本题可以过P 点作PM ⊥OA 于M ,PN ⊥OB 于N ,不 难发现只要证明△PME ≌△PNF ,即可得到PE =PF ,根据∠PME =∠PNF =90°、PM =PN(角平 B A M N E F O P B A E F O P G A B C E D

构造直角三角形来解题

构造直角三角形巧解题 山东省博兴县锦秋街道清河学校 张海生 256500 有些几何题,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化,就会收到化难为易、事半功倍的效果.下面举例介绍构造直角三角形解题的若干常用方法,供同学们复习时参考. 一、利用已知直角构造直角三角形 例1:如图1,在四边形ABCD 中,∠A=060,∠B=∠D=090,AB=2,CD=1.则BC 和AD 的长分别为_______和_______. 解析:考虑到图中含有090和060的角,若延长AD 、BC 相交于E ,则可以构造出Rt △AEB 和Rt △CED ,易知∠E=030,从而可求出DE=3,AE=4,BE=23,故AD=4-3,BC=23-2. 二、利用勾股定理构造直角三角形 例2:如图2,在四边形ABCD 中,AB=AD=8,∠A=060,∠ADC=0150,已知四边形ABCD 的周长为32,求四边形ABCD 的面积. 解析:四边形ABCD 是一个不规则的四边形,要求其面积,可设法变成特殊的三角形求解.连接BD ,则△ABD 是等边三角形, △BDC 是直角三角形,由于AB=AD=BD=8,,求△ABD 的面积不难解决,关键是求△BDC 的面积.可运用周长和勾股定理联合求出DC ,从而求出△BDC 的面积. 解答:连接BD.∵AB=AD ,∠A=060,∴△ABD 是等边三角形. ∴∠ADB=060,BD=AD=AB=8. 因为∠ADC=0150,∴∠BDC=090, 故△BDC 是直角三角形, 因为四边形ABCD 的周长为32, AB=AD=8, ∴BC+DC=32-16=16,BC=16-DC. 在Rt △BDC 中,222BC DC BD =+, 即()222168DC DC -=+.解得DC=6. ∴248621=??=?B DC S .用勾股定理求出等边△ABD 的高为3482 3=?. 3163482 1=??=?A B D S .∴24316+=+=??B DC A B D A B CD S S S 四. 说明:⑴求不规则的图形面积应用割补法把图形分解为特殊的图形;⑴四边形中通过添加辅助线构造直角三角形;⑶边长为a 的等边三角形的高为a 23,面积为24 3a . 三、利用高构造直角三角形 例3:如图3,等腰△ABC 的底边长为8cm ,腰长为5cm ,一动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究:当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直. 解析:本题是一道探究性的动态问题,假设P 在某一时刻有PA ⊥AC ,此时P 点运动了几秒,这是解决问题的着手点.设BP=x ,PC=8-x ,在Rt △PAC 中,由于PA 不知道,无法建立关系式.考虑△ABC 是等腰三角形,如作底边上的高AD ,则可用x 的代数式表示AP ,用勾股定理便可求出x ,进而求出运动时间.当P 点运动到D 与C 之间时,也存在AP ⊥AB 的情况,故要分类 讨论. 解答:作底边BC 的高AD ,则AD ⊥BC ,垂足为D. 设BP=xcm ,PA ⊥AC. 图1 图2 图3

八年级数学上册小专题五构造全等三角形的方法技巧选做练习新版新人教版Word版

小专题(五) 构造全等三角形的方法技巧 (本专题部分习题有难度,请根据实际情况选做) 方法1 利用补形构造全等三角形 1.已知:如图,在△ABC 中,∠BCA =90°,AC =BC ,AE 平分∠BAC,B E⊥AE,求证:BE =1 2 AD. 方法2 利用“截长补短法”构造全等三角形 2.如图,在△ABC 中,AD 平分∠BAC,∠C =2∠B ,试判断AB ,AC ,CD 三者之间的数量关系,并说明理由.(想一想,你会几种方法) 3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠AB C 和∠ACB,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明. 4.如图,AD ∥BC ,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD ,BC ,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG =BE.连接AG ,先证明△ABE≌△A DG ,再证明△AEF≌△AGF,可得出结论,他的结论应是________________; (2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=1 2∠BAD , 上述结论是否仍然成立,并说明理由. 方法3 利用“倍长中线法”构造全等三角形

(完整版)全等三角形题型总结材料

全等三角形的判定题型 类型一、全等三角形的判定1——“边边边” 例题、已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC. (答案)证明:连接DC , 在△ACD 与△BDC 中 ()AD BC AC BD CD DC ?=?=??=? 公共边 ∴△ACD ≌△BDC (SSS ) ∴∠CAD =∠DBC (全等三角形对应角相等) 类型二、全等三角形的判定2——“边角边” 例题、已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且 AE =12 (AB +AD ),求证:∠B +∠D =180°. (答案)证明:在线段AE 上,截取EF =EB ,连接FC , ∵CE ⊥AB ,∴∠CEB =∠CEF =90° 在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =??∠=∠??? ∴△CBE 和△CFE (SAS )∴∠B =∠CFE ∵AE =12 (AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB ∵AE =AF +EF , ∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF 在△AFC 和△ADC 中(AF AD FAC DAC AC AC =??∠=∠??=? 角平分线定义) ∴△AFC ≌△ADC (SAS )∴∠AFC =∠D ∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形的判定3——“角边角” 例题、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ . 求证:HN =PM. 证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°, 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2 在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠??=??∠=∠? ∴△MPQ ≌△NHQ (ASA ) ∴PM =HN

构造全等三角形的基本方法

构造全等三角形的基本方法 第一种:倍长中线法(利用中点、中线构造) 例题1、如图,△ABC中,AD是中线,AB=4,AC=6,AD的范围是.2】

第二种:利用角平分线 角平分线常见的辅助线作法: 例题2、已知在△ABC中,∠B=2∠C,∠A的平分线AD交BC边于点D.求证:AC=AB+BD. 3】 【例1】

例题3、BE是角平分线,AD垂直BE于D,求证:∠2=∠1+∠C 第三种:截长补短法(通常用来证明线段和差相等) “截长法”即把结论中最大的线段根据已知条件分成两段,使其中一段与较短线段相等,然后证明余下的线段与另一条线段相等的方法.“补短法”为把两条线段中的一条接长成为一条长线段,然后证明接成的线段与较长的线段相等,或是把一条较短的线段加长,使它等于较长的一段,然后证明加长的那部分与另一较短的线段相等. 例题5:如图(1)已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 例题6、AB//CD,BE,CE是角平分线,求证:BC=AB+CD

第四种:旋转 对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形 例3、如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=6,PB=2,PC=4,求∠BPC的度数. 例4、如图,正方形ABCD中,DE=3,BF=1,∠EAF=45°,则EF= .

例5、如图所示,两个边长都为2的正方形ABCD和OPQR,如果O点正好是正方形ABCD的中心,而正方形OPQR可以绕O点旋转,那么它们重叠部分的面积为 第五种:平行线法 例7、如图,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。

倍长中线构造全等三角形

倍长中线构造全等三角 形 -CAL-FENGHAI.-(YICAI)-Company One1

巧添辅助线——倍长中线 【夯实基础】 例:ABC ?中,AD是BAC ∠的平分线,且BD=CD,求证AB=AC 方法1:作DE⊥AB于E,作DF⊥AC于F,证明二次全等方法2:辅助线同上,利用面积 方法3:倍长中线AD 【方法精讲】常用辅助线添加方法——倍长中线 △ABC中 AD到E, AD是BC边中线, 连接BE 方式2 ⊥AD于F, AD的延长线于 连接 【经典例题】 例1:△ABC中,AB=5,AC=3,求中线AD的取值范围 提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边 例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE 方法1:过D作DG∥AE交BC于G,证明ΔDGF≌ΔCEF 方法2:过E作EG∥AB交BC的延长线于G,证明ΔEFG 方法3:过D作DG⊥BC于G,过E作EH⊥BC 证明ΔBDG≌ΔECH 2

3 例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交 AC 于F ,求证:AF=EF 提示:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形 例4:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 提示: 方法1:倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH 例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 提示:倍长AE 至F ,连结DF 证明ΔABE ≌ΔFDE (SAS ) 进而证明ΔADF ≌ΔADC (SAS ) 【融会贯通】 1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论 提示:延长AE 、DF 交于G 证明AB=GC 、AF=GF 所以AB=AF+FC B 第 1 题图 A B F D E C

九年级数学下册第7章锐角三角函数7.5解直角三角形7.5.2构造直角三角形解题同步练习一

第7章锐角三角函数 7.5 第2课时构造直角三角形解题 知识点构造直角三角形解题 1.如图7-5-12,在△ABC中,AB=AC,AH⊥BC,垂足为H,如果AH=BC,那么sin ∠BAC的值是( ) A.5 4 B. 4 5 C. 3 5 D. 5 3 7-5-12 7-5-13 2.如图7-5-13,圆的内接正五边形ABCDE的边长为a,圆的半径为r,下列等式成立的是( ) A.a=2r·sin36° B.a=2r·cos36° C.a=r·sin36° D.a=2r·sin72° 3.如图7-5-14,在△ABC中,AB=3,BC=2,∠B=60°,则△ABC的面积等于( ) A.3 3 2 B. 3 2 C. 3 D.3 3 7-5-14

7-5-15 4.如图7-5-15,在四边形ABCD 中,∠B =∠D =90°,AB =3,BC =2,tan A =4 3 ,则 CD =________. 5.如图7-5-16,正三角形ABC 内接于⊙O ,若AB =2 3 cm ,求⊙O 的半径. 图7-5-16 6.2018·自贡 如图7-5-17,在△ABC 中,BC =12,tan A =3 4,∠B =30°,求AC 和AB 的长. 图7-5-17

7.如图7-5-18,已知∠B =37°,AB =20,C 是射线BM 上一点. (1)在下列条件中,可以唯一确定BC 长的是________(填写所有符合条件的序号); ①AC =13;② tan ∠ACB =12 5 ;③连接AC ,△ABC 的面积为126. (2)在(1)的答案中,选择一个作为条件,画出草图,求BC (参考数据: sin37°≈0.60, cos37°≈0.80, tan37°≈0.75). 图7-5-18

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见的辅助线的作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

相关主题
文本预览
相关文档 最新文档